salbatarni's picture
Training in progress, step 61
3588df4 verified
|
raw
history blame
3.31 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task2_fold3
    results: []

arabert_cross_relevance_task2_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2961
  • Qwk: 0.3277
  • Mse: 0.2961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0351 2 1.1621 0.0229 1.1621
No log 0.0702 4 0.5340 0.1841 0.5340
No log 0.1053 6 0.5506 0.1500 0.5506
No log 0.1404 8 0.5057 0.1888 0.5057
No log 0.1754 10 0.4434 0.1993 0.4434
No log 0.2105 12 0.4171 0.2214 0.4171
No log 0.2456 14 0.3762 0.2316 0.3762
No log 0.2807 16 0.3295 0.2935 0.3295
No log 0.3158 18 0.3210 0.2948 0.3210
No log 0.3509 20 0.3093 0.2948 0.3093
No log 0.3860 22 0.3105 0.3062 0.3105
No log 0.4211 24 0.3464 0.3679 0.3464
No log 0.4561 26 0.3981 0.6151 0.3981
No log 0.4912 28 0.3851 0.6021 0.3851
No log 0.5263 30 0.3431 0.4831 0.3431
No log 0.5614 32 0.3017 0.3166 0.3017
No log 0.5965 34 0.2863 0.3277 0.2863
No log 0.6316 36 0.2906 0.3407 0.2906
No log 0.6667 38 0.2981 0.3509 0.2981
No log 0.7018 40 0.2999 0.3509 0.2999
No log 0.7368 42 0.2988 0.3391 0.2988
No log 0.7719 44 0.2970 0.3148 0.2970
No log 0.8070 46 0.2972 0.3126 0.2972
No log 0.8421 48 0.2982 0.3126 0.2982
No log 0.8772 50 0.2966 0.3158 0.2966
No log 0.9123 52 0.2961 0.3277 0.2961
No log 0.9474 54 0.2957 0.3286 0.2957
No log 0.9825 56 0.2961 0.3277 0.2961

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1