--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task2_fold1 results: [] --- # arabert_cross_relevance_task2_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3095 - Qwk: 0.0122 - Mse: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0317 | 2 | 0.4149 | -0.0147 | 0.4158 | | No log | 0.0635 | 4 | 0.5335 | 0.1106 | 0.5335 | | No log | 0.0952 | 6 | 0.5725 | 0.1645 | 0.5725 | | No log | 0.1270 | 8 | 0.3171 | -0.0585 | 0.3169 | | No log | 0.1587 | 10 | 0.2926 | 0.0 | 0.2912 | | No log | 0.1905 | 12 | 0.2846 | 0.0 | 0.2833 | | No log | 0.2222 | 14 | 0.3130 | 0.0 | 0.3124 | | No log | 0.2540 | 16 | 0.4146 | -0.0932 | 0.4145 | | No log | 0.2857 | 18 | 0.5126 | -0.0604 | 0.5126 | | No log | 0.3175 | 20 | 0.5293 | 0.0071 | 0.5293 | | No log | 0.3492 | 22 | 0.5096 | -0.0065 | 0.5096 | | No log | 0.3810 | 24 | 0.4663 | -0.0607 | 0.4663 | | No log | 0.4127 | 26 | 0.3891 | 0.0072 | 0.3890 | | No log | 0.4444 | 28 | 0.3106 | 0.0 | 0.3105 | | No log | 0.4762 | 30 | 0.2879 | 0.0 | 0.2877 | | No log | 0.5079 | 32 | 0.2833 | 0.0 | 0.2833 | | No log | 0.5397 | 34 | 0.2867 | 0.0 | 0.2867 | | No log | 0.5714 | 36 | 0.2981 | 0.0 | 0.2981 | | No log | 0.6032 | 38 | 0.3163 | 0.0122 | 0.3163 | | No log | 0.6349 | 40 | 0.3375 | -0.0208 | 0.3375 | | No log | 0.6667 | 42 | 0.3404 | -0.0128 | 0.3404 | | No log | 0.6984 | 44 | 0.3376 | -0.0128 | 0.3376 | | No log | 0.7302 | 46 | 0.3381 | -0.0128 | 0.3381 | | No log | 0.7619 | 48 | 0.3257 | -0.0042 | 0.3257 | | No log | 0.7937 | 50 | 0.3134 | 0.0122 | 0.3134 | | No log | 0.8254 | 52 | 0.3075 | 0.0 | 0.3075 | | No log | 0.8571 | 54 | 0.3042 | 0.0 | 0.3042 | | No log | 0.8889 | 56 | 0.3043 | 0.0 | 0.3043 | | No log | 0.9206 | 58 | 0.3064 | 0.0 | 0.3064 | | No log | 0.9524 | 60 | 0.3082 | 0.0122 | 0.3082 | | No log | 0.9841 | 62 | 0.3095 | 0.0122 | 0.3095 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1