--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task2_fold0 results: [] --- # arabert_cross_relevance_task2_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2433 - Qwk: 0.0809 - Mse: 0.2430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0351 | 2 | 0.5429 | 0.0139 | 0.5422 | | No log | 0.0702 | 4 | 0.2881 | -0.0033 | 0.2878 | | No log | 0.1053 | 6 | 0.2552 | 0.0037 | 0.2550 | | No log | 0.1404 | 8 | 0.2756 | 0.0363 | 0.2756 | | No log | 0.1754 | 10 | 0.2731 | 0.0358 | 0.2730 | | No log | 0.2105 | 12 | 0.2492 | 0.0319 | 0.2491 | | No log | 0.2456 | 14 | 0.2366 | 0.0426 | 0.2365 | | No log | 0.2807 | 16 | 0.2435 | 0.0674 | 0.2435 | | No log | 0.3158 | 18 | 0.2530 | 0.0698 | 0.2530 | | No log | 0.3509 | 20 | 0.2490 | 0.0774 | 0.2489 | | No log | 0.3860 | 22 | 0.2454 | 0.0743 | 0.2454 | | No log | 0.4211 | 24 | 0.2447 | 0.0740 | 0.2446 | | No log | 0.4561 | 26 | 0.2496 | 0.0713 | 0.2494 | | No log | 0.4912 | 28 | 0.2557 | 0.0679 | 0.2553 | | No log | 0.5263 | 30 | 0.2693 | 0.0721 | 0.2689 | | No log | 0.5614 | 32 | 0.2903 | 0.0721 | 0.2898 | | No log | 0.5965 | 34 | 0.2872 | 0.0721 | 0.2868 | | No log | 0.6316 | 36 | 0.2801 | 0.0787 | 0.2797 | | No log | 0.6667 | 38 | 0.2824 | 0.0809 | 0.2819 | | No log | 0.7018 | 40 | 0.2708 | 0.0809 | 0.2704 | | No log | 0.7368 | 42 | 0.2675 | 0.0809 | 0.2672 | | No log | 0.7719 | 44 | 0.2680 | 0.0809 | 0.2677 | | No log | 0.8070 | 46 | 0.2603 | 0.0809 | 0.2600 | | No log | 0.8421 | 48 | 0.2536 | 0.0809 | 0.2534 | | No log | 0.8772 | 50 | 0.2489 | 0.0809 | 0.2487 | | No log | 0.9123 | 52 | 0.2470 | 0.0809 | 0.2467 | | No log | 0.9474 | 54 | 0.2448 | 0.0809 | 0.2446 | | No log | 0.9825 | 56 | 0.2433 | 0.0809 | 0.2430 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1