salbatarni commited on
Commit
0992c5e
·
verified ·
1 Parent(s): 3441eda

End of training

Browse files
Files changed (1) hide show
  1. README.md +82 -82
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_organization_task5_fold0
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_organization_task5_fold0
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.8536
18
- - Qwk: 0.5305
19
- - Mse: 0.8521
20
 
21
  ## Model description
22
 
@@ -45,83 +45,83 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.1333 | 2 | 2.8325 | 0.0355 | 2.8291 |
51
- | No log | 0.2667 | 4 | 1.6790 | 0.2071 | 1.6769 |
52
- | No log | 0.4 | 6 | 1.2491 | 0.3232 | 1.2479 |
53
- | No log | 0.5333 | 8 | 1.0946 | 0.4006 | 1.0940 |
54
- | No log | 0.6667 | 10 | 0.9240 | 0.5244 | 0.9238 |
55
- | No log | 0.8 | 12 | 1.0994 | 0.4812 | 1.0991 |
56
- | No log | 0.9333 | 14 | 1.0985 | 0.4785 | 1.0981 |
57
- | No log | 1.0667 | 16 | 0.9091 | 0.5213 | 0.9088 |
58
- | No log | 1.2 | 18 | 0.8691 | 0.5235 | 0.8687 |
59
- | No log | 1.3333 | 20 | 1.1009 | 0.4480 | 1.1002 |
60
- | No log | 1.4667 | 22 | 0.9916 | 0.4796 | 0.9909 |
61
- | No log | 1.6 | 24 | 0.8206 | 0.5231 | 0.8200 |
62
- | No log | 1.7333 | 26 | 0.8819 | 0.5255 | 0.8812 |
63
- | No log | 1.8667 | 28 | 1.1165 | 0.4625 | 1.1156 |
64
- | No log | 2.0 | 30 | 0.9537 | 0.5260 | 0.9531 |
65
- | No log | 2.1333 | 32 | 0.7775 | 0.6092 | 0.7773 |
66
- | No log | 2.2667 | 34 | 0.8262 | 0.5792 | 0.8258 |
67
- | No log | 2.4 | 36 | 0.9527 | 0.5326 | 0.9519 |
68
- | No log | 2.5333 | 38 | 0.8990 | 0.5382 | 0.8983 |
69
- | No log | 2.6667 | 40 | 0.7673 | 0.6124 | 0.7669 |
70
- | No log | 2.8 | 42 | 0.7340 | 0.6181 | 0.7335 |
71
- | No log | 2.9333 | 44 | 0.8826 | 0.5543 | 0.8815 |
72
- | No log | 3.0667 | 46 | 1.2982 | 0.4128 | 1.2965 |
73
- | No log | 3.2 | 48 | 1.1748 | 0.4370 | 1.1731 |
74
- | No log | 3.3333 | 50 | 0.7851 | 0.5568 | 0.7840 |
75
- | No log | 3.4667 | 52 | 0.6933 | 0.6150 | 0.6924 |
76
- | No log | 3.6 | 54 | 0.7593 | 0.5656 | 0.7582 |
77
- | No log | 3.7333 | 56 | 0.9243 | 0.4943 | 0.9229 |
78
- | No log | 3.8667 | 58 | 0.9098 | 0.5117 | 0.9084 |
79
- | No log | 4.0 | 60 | 0.7896 | 0.5674 | 0.7885 |
80
- | No log | 4.1333 | 62 | 0.7231 | 0.6204 | 0.7224 |
81
- | No log | 4.2667 | 64 | 0.7654 | 0.6006 | 0.7646 |
82
- | No log | 4.4 | 66 | 0.8645 | 0.5394 | 0.8632 |
83
- | No log | 4.5333 | 68 | 0.8997 | 0.5331 | 0.8983 |
84
- | No log | 4.6667 | 70 | 0.7948 | 0.5651 | 0.7936 |
85
- | No log | 4.8 | 72 | 0.7556 | 0.5765 | 0.7545 |
86
- | No log | 4.9333 | 74 | 0.7815 | 0.5752 | 0.7803 |
87
- | No log | 5.0667 | 76 | 0.7767 | 0.5824 | 0.7755 |
88
- | No log | 5.2 | 78 | 0.8240 | 0.5627 | 0.8228 |
89
- | No log | 5.3333 | 80 | 0.8544 | 0.5524 | 0.8531 |
90
- | No log | 5.4667 | 82 | 0.8799 | 0.5383 | 0.8785 |
91
- | No log | 5.6 | 84 | 0.8068 | 0.5637 | 0.8055 |
92
- | No log | 5.7333 | 86 | 0.7866 | 0.5790 | 0.7853 |
93
- | No log | 5.8667 | 88 | 0.8602 | 0.5505 | 0.8588 |
94
- | No log | 6.0 | 90 | 0.8403 | 0.5508 | 0.8390 |
95
- | No log | 6.1333 | 92 | 0.7915 | 0.5599 | 0.7903 |
96
- | No log | 6.2667 | 94 | 0.7576 | 0.5889 | 0.7565 |
97
- | No log | 6.4 | 96 | 0.7814 | 0.5709 | 0.7802 |
98
- | No log | 6.5333 | 98 | 0.7840 | 0.5682 | 0.7828 |
99
- | No log | 6.6667 | 100 | 0.8376 | 0.5500 | 0.8362 |
100
- | No log | 6.8 | 102 | 0.8823 | 0.5259 | 0.8808 |
101
- | No log | 6.9333 | 104 | 0.8409 | 0.5388 | 0.8395 |
102
- | No log | 7.0667 | 106 | 0.7908 | 0.5700 | 0.7895 |
103
- | No log | 7.2 | 108 | 0.8370 | 0.5398 | 0.8356 |
104
- | No log | 7.3333 | 110 | 0.9465 | 0.5061 | 0.9448 |
105
- | No log | 7.4667 | 112 | 0.9805 | 0.4909 | 0.9787 |
106
- | No log | 7.6 | 114 | 0.8809 | 0.5217 | 0.8793 |
107
- | No log | 7.7333 | 116 | 0.7546 | 0.5828 | 0.7533 |
108
- | No log | 7.8667 | 118 | 0.7282 | 0.5855 | 0.7270 |
109
- | No log | 8.0 | 120 | 0.7740 | 0.5703 | 0.7727 |
110
- | No log | 8.1333 | 122 | 0.8664 | 0.5129 | 0.8649 |
111
- | No log | 8.2667 | 124 | 0.8853 | 0.5069 | 0.8838 |
112
- | No log | 8.4 | 126 | 0.8189 | 0.5483 | 0.8175 |
113
- | No log | 8.5333 | 128 | 0.7717 | 0.5683 | 0.7704 |
114
- | No log | 8.6667 | 130 | 0.7625 | 0.5761 | 0.7613 |
115
- | No log | 8.8 | 132 | 0.7903 | 0.5682 | 0.7890 |
116
- | No log | 8.9333 | 134 | 0.8518 | 0.5384 | 0.8503 |
117
- | No log | 9.0667 | 136 | 0.9168 | 0.5056 | 0.9152 |
118
- | No log | 9.2 | 138 | 0.9669 | 0.4922 | 0.9652 |
119
- | No log | 9.3333 | 140 | 0.9617 | 0.4944 | 0.9600 |
120
- | No log | 9.4667 | 142 | 0.9232 | 0.5081 | 0.9216 |
121
- | No log | 9.6 | 144 | 0.8847 | 0.5249 | 0.8831 |
122
- | No log | 9.7333 | 146 | 0.8666 | 0.5296 | 0.8651 |
123
- | No log | 9.8667 | 148 | 0.8562 | 0.5305 | 0.8547 |
124
- | No log | 10.0 | 150 | 0.8536 | 0.5305 | 0.8521 |
125
 
126
 
127
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_organization_task5_fold1
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_organization_task5_fold1
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.9408
18
+ - Qwk: 0.3679
19
+ - Mse: 0.9408
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
50
+ | No log | 0.1333 | 2 | 5.0062 | -0.0036 | 5.0062 |
51
+ | No log | 0.2667 | 4 | 2.2755 | 0.0402 | 2.2755 |
52
+ | No log | 0.4 | 6 | 0.9209 | 0.1375 | 0.9209 |
53
+ | No log | 0.5333 | 8 | 0.7216 | 0.2666 | 0.7216 |
54
+ | No log | 0.6667 | 10 | 2.2848 | 0.1146 | 2.2848 |
55
+ | No log | 0.8 | 12 | 2.4339 | 0.1213 | 2.4339 |
56
+ | No log | 0.9333 | 14 | 0.7615 | 0.3777 | 0.7615 |
57
+ | No log | 1.0667 | 16 | 0.6179 | 0.5173 | 0.6179 |
58
+ | No log | 1.2 | 18 | 0.6800 | 0.3857 | 0.6800 |
59
+ | No log | 1.3333 | 20 | 1.1833 | 0.3011 | 1.1833 |
60
+ | No log | 1.4667 | 22 | 1.1609 | 0.3150 | 1.1609 |
61
+ | No log | 1.6 | 24 | 0.6395 | 0.4537 | 0.6395 |
62
+ | No log | 1.7333 | 26 | 0.5534 | 0.5065 | 0.5534 |
63
+ | No log | 1.8667 | 28 | 0.6236 | 0.4420 | 0.6236 |
64
+ | No log | 2.0 | 30 | 0.6228 | 0.4306 | 0.6228 |
65
+ | No log | 2.1333 | 32 | 0.5518 | 0.4931 | 0.5518 |
66
+ | No log | 2.2667 | 34 | 0.6084 | 0.4242 | 0.6084 |
67
+ | No log | 2.4 | 36 | 0.7055 | 0.3694 | 0.7055 |
68
+ | No log | 2.5333 | 38 | 0.7175 | 0.3935 | 0.7175 |
69
+ | No log | 2.6667 | 40 | 0.6114 | 0.4689 | 0.6114 |
70
+ | No log | 2.8 | 42 | 0.7045 | 0.4030 | 0.7045 |
71
+ | No log | 2.9333 | 44 | 0.9915 | 0.3267 | 0.9915 |
72
+ | No log | 3.0667 | 46 | 1.0131 | 0.3023 | 1.0131 |
73
+ | No log | 3.2 | 48 | 0.7062 | 0.3732 | 0.7062 |
74
+ | No log | 3.3333 | 50 | 0.5236 | 0.5208 | 0.5236 |
75
+ | No log | 3.4667 | 52 | 0.5249 | 0.5718 | 0.5249 |
76
+ | No log | 3.6 | 54 | 0.5782 | 0.4935 | 0.5782 |
77
+ | No log | 3.7333 | 56 | 0.8300 | 0.4331 | 0.8300 |
78
+ | No log | 3.8667 | 58 | 1.0062 | 0.3503 | 1.0062 |
79
+ | No log | 4.0 | 60 | 0.8152 | 0.3857 | 0.8152 |
80
+ | No log | 4.1333 | 62 | 0.5614 | 0.4616 | 0.5614 |
81
+ | No log | 4.2667 | 64 | 0.5056 | 0.5013 | 0.5056 |
82
+ | No log | 4.4 | 66 | 0.5357 | 0.4729 | 0.5357 |
83
+ | No log | 4.5333 | 68 | 0.6479 | 0.4155 | 0.6479 |
84
+ | No log | 4.6667 | 70 | 0.8469 | 0.3777 | 0.8469 |
85
+ | No log | 4.8 | 72 | 0.8226 | 0.3870 | 0.8226 |
86
+ | No log | 4.9333 | 74 | 0.7370 | 0.4225 | 0.7370 |
87
+ | No log | 5.0667 | 76 | 0.7636 | 0.4313 | 0.7636 |
88
+ | No log | 5.2 | 78 | 0.8153 | 0.4219 | 0.8153 |
89
+ | No log | 5.3333 | 80 | 0.8004 | 0.4026 | 0.8004 |
90
+ | No log | 5.4667 | 82 | 0.7252 | 0.4152 | 0.7252 |
91
+ | No log | 5.6 | 84 | 0.7142 | 0.4140 | 0.7142 |
92
+ | No log | 5.7333 | 86 | 0.7743 | 0.3924 | 0.7743 |
93
+ | No log | 5.8667 | 88 | 0.6869 | 0.4122 | 0.6869 |
94
+ | No log | 6.0 | 90 | 0.6812 | 0.4211 | 0.6812 |
95
+ | No log | 6.1333 | 92 | 0.7593 | 0.4027 | 0.7593 |
96
+ | No log | 6.2667 | 94 | 0.9111 | 0.3581 | 0.9111 |
97
+ | No log | 6.4 | 96 | 0.9395 | 0.3469 | 0.9395 |
98
+ | No log | 6.5333 | 98 | 0.7996 | 0.3869 | 0.7996 |
99
+ | No log | 6.6667 | 100 | 0.6895 | 0.4088 | 0.6895 |
100
+ | No log | 6.8 | 102 | 0.6709 | 0.4175 | 0.6709 |
101
+ | No log | 6.9333 | 104 | 0.7444 | 0.4091 | 0.7444 |
102
+ | No log | 7.0667 | 106 | 0.9335 | 0.3874 | 0.9335 |
103
+ | No log | 7.2 | 108 | 1.1591 | 0.3347 | 1.1591 |
104
+ | No log | 7.3333 | 110 | 1.1745 | 0.3240 | 1.1745 |
105
+ | No log | 7.4667 | 112 | 1.0111 | 0.3414 | 1.0111 |
106
+ | No log | 7.6 | 114 | 0.7911 | 0.3951 | 0.7911 |
107
+ | No log | 7.7333 | 116 | 0.7124 | 0.4080 | 0.7124 |
108
+ | No log | 7.8667 | 118 | 0.7261 | 0.4029 | 0.7261 |
109
+ | No log | 8.0 | 120 | 0.7824 | 0.3852 | 0.7824 |
110
+ | No log | 8.1333 | 122 | 0.8528 | 0.3744 | 0.8528 |
111
+ | No log | 8.2667 | 124 | 0.8584 | 0.3744 | 0.8584 |
112
+ | No log | 8.4 | 126 | 0.8434 | 0.3747 | 0.8434 |
113
+ | No log | 8.5333 | 128 | 0.8058 | 0.3877 | 0.8058 |
114
+ | No log | 8.6667 | 130 | 0.7951 | 0.3938 | 0.7951 |
115
+ | No log | 8.8 | 132 | 0.8278 | 0.3925 | 0.8278 |
116
+ | No log | 8.9333 | 134 | 0.8301 | 0.3938 | 0.8301 |
117
+ | No log | 9.0667 | 136 | 0.8599 | 0.3885 | 0.8599 |
118
+ | No log | 9.2 | 138 | 0.9104 | 0.3734 | 0.9104 |
119
+ | No log | 9.3333 | 140 | 0.9438 | 0.3692 | 0.9438 |
120
+ | No log | 9.4667 | 142 | 0.9743 | 0.3664 | 0.9743 |
121
+ | No log | 9.6 | 144 | 0.9827 | 0.3664 | 0.9827 |
122
+ | No log | 9.7333 | 146 | 0.9690 | 0.3656 | 0.9690 |
123
+ | No log | 9.8667 | 148 | 0.9506 | 0.3654 | 0.9506 |
124
+ | No log | 10.0 | 150 | 0.9408 | 0.3679 | 0.9408 |
125
 
126
 
127
  ### Framework versions