salbatarni commited on
Commit
f1ed8fc
·
verified ·
1 Parent(s): 32940bd

End of training

Browse files
Files changed (1) hide show
  1. README.md +97 -87
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_organization_task3_fold1
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_organization_task3_fold1
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.6478
18
- - Qwk: 0.4607
19
- - Mse: 0.6478
20
 
21
  ## Model description
22
 
@@ -45,88 +45,98 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.125 | 2 | 3.2900 | 0.0231 | 3.2900 |
51
- | No log | 0.25 | 4 | 1.3894 | 0.0822 | 1.3894 |
52
- | No log | 0.375 | 6 | 0.7800 | 0.1877 | 0.7800 |
53
- | No log | 0.5 | 8 | 1.0858 | 0.2133 | 1.0858 |
54
- | No log | 0.625 | 10 | 1.0129 | 0.2378 | 1.0129 |
55
- | No log | 0.75 | 12 | 0.8148 | 0.3122 | 0.8148 |
56
- | No log | 0.875 | 14 | 0.8640 | 0.3294 | 0.8640 |
57
- | No log | 1.0 | 16 | 0.5808 | 0.5261 | 0.5808 |
58
- | No log | 1.125 | 18 | 0.5809 | 0.5472 | 0.5809 |
59
- | No log | 1.25 | 20 | 0.6891 | 0.4535 | 0.6891 |
60
- | No log | 1.375 | 22 | 0.8095 | 0.4026 | 0.8095 |
61
- | No log | 1.5 | 24 | 0.6001 | 0.4892 | 0.6001 |
62
- | No log | 1.625 | 26 | 0.5488 | 0.5204 | 0.5488 |
63
- | No log | 1.75 | 28 | 0.6546 | 0.4189 | 0.6546 |
64
- | No log | 1.875 | 30 | 0.5905 | 0.4711 | 0.5905 |
65
- | No log | 2.0 | 32 | 0.5350 | 0.5446 | 0.5350 |
66
- | No log | 2.125 | 34 | 0.6019 | 0.4942 | 0.6019 |
67
- | No log | 2.25 | 36 | 0.6144 | 0.4795 | 0.6144 |
68
- | No log | 2.375 | 38 | 0.5350 | 0.5333 | 0.5350 |
69
- | No log | 2.5 | 40 | 0.5122 | 0.5472 | 0.5122 |
70
- | No log | 2.625 | 42 | 0.5046 | 0.5160 | 0.5046 |
71
- | No log | 2.75 | 44 | 0.5608 | 0.4614 | 0.5608 |
72
- | No log | 2.875 | 46 | 0.6094 | 0.4437 | 0.6094 |
73
- | No log | 3.0 | 48 | 0.5336 | 0.5068 | 0.5336 |
74
- | No log | 3.125 | 50 | 0.5450 | 0.5314 | 0.5450 |
75
- | No log | 3.25 | 52 | 0.5818 | 0.5196 | 0.5818 |
76
- | No log | 3.375 | 54 | 0.6351 | 0.4649 | 0.6351 |
77
- | No log | 3.5 | 56 | 0.6078 | 0.4611 | 0.6078 |
78
- | No log | 3.625 | 58 | 0.5257 | 0.4924 | 0.5257 |
79
- | No log | 3.75 | 60 | 0.5373 | 0.4903 | 0.5373 |
80
- | No log | 3.875 | 62 | 0.6198 | 0.4443 | 0.6198 |
81
- | No log | 4.0 | 64 | 0.6554 | 0.4271 | 0.6554 |
82
- | No log | 4.125 | 66 | 0.5949 | 0.4804 | 0.5949 |
83
- | No log | 4.25 | 68 | 0.5758 | 0.5021 | 0.5758 |
84
- | No log | 4.375 | 70 | 0.6050 | 0.4669 | 0.6050 |
85
- | No log | 4.5 | 72 | 0.6617 | 0.4443 | 0.6617 |
86
- | No log | 4.625 | 74 | 0.5939 | 0.4755 | 0.5939 |
87
- | No log | 4.75 | 76 | 0.5429 | 0.5333 | 0.5429 |
88
- | No log | 4.875 | 78 | 0.5670 | 0.4951 | 0.5670 |
89
- | No log | 5.0 | 80 | 0.6057 | 0.4790 | 0.6057 |
90
- | No log | 5.125 | 82 | 0.5475 | 0.5271 | 0.5475 |
91
- | No log | 5.25 | 84 | 0.5293 | 0.5556 | 0.5293 |
92
- | No log | 5.375 | 86 | 0.5920 | 0.4961 | 0.5920 |
93
- | No log | 5.5 | 88 | 0.8172 | 0.3957 | 0.8172 |
94
- | No log | 5.625 | 90 | 0.8892 | 0.3757 | 0.8892 |
95
- | No log | 5.75 | 92 | 0.7109 | 0.4460 | 0.7109 |
96
- | No log | 5.875 | 94 | 0.5766 | 0.5031 | 0.5766 |
97
- | No log | 6.0 | 96 | 0.5308 | 0.5421 | 0.5308 |
98
- | No log | 6.125 | 98 | 0.5523 | 0.5081 | 0.5523 |
99
- | No log | 6.25 | 100 | 0.6890 | 0.4239 | 0.6890 |
100
- | No log | 6.375 | 102 | 0.7810 | 0.4232 | 0.7810 |
101
- | No log | 6.5 | 104 | 0.6877 | 0.4432 | 0.6877 |
102
- | No log | 6.625 | 106 | 0.5825 | 0.4691 | 0.5825 |
103
- | No log | 6.75 | 108 | 0.5649 | 0.4830 | 0.5649 |
104
- | No log | 6.875 | 110 | 0.5645 | 0.4955 | 0.5645 |
105
- | No log | 7.0 | 112 | 0.6053 | 0.4622 | 0.6053 |
106
- | No log | 7.125 | 114 | 0.6870 | 0.4274 | 0.6870 |
107
- | No log | 7.25 | 116 | 0.7007 | 0.4215 | 0.7007 |
108
- | No log | 7.375 | 118 | 0.6387 | 0.4483 | 0.6387 |
109
- | No log | 7.5 | 120 | 0.5709 | 0.5018 | 0.5709 |
110
- | No log | 7.625 | 122 | 0.5594 | 0.5102 | 0.5594 |
111
- | No log | 7.75 | 124 | 0.6003 | 0.4811 | 0.6003 |
112
- | No log | 7.875 | 126 | 0.6909 | 0.4242 | 0.6909 |
113
- | No log | 8.0 | 128 | 0.7230 | 0.4165 | 0.7230 |
114
- | No log | 8.125 | 130 | 0.6705 | 0.4395 | 0.6705 |
115
- | No log | 8.25 | 132 | 0.6041 | 0.4682 | 0.6041 |
116
- | No log | 8.375 | 134 | 0.5802 | 0.4903 | 0.5802 |
117
- | No log | 8.5 | 136 | 0.5853 | 0.4903 | 0.5853 |
118
- | No log | 8.625 | 138 | 0.6211 | 0.4634 | 0.6211 |
119
- | No log | 8.75 | 140 | 0.6644 | 0.4483 | 0.6644 |
120
- | No log | 8.875 | 142 | 0.6824 | 0.4514 | 0.6824 |
121
- | No log | 9.0 | 144 | 0.6713 | 0.4472 | 0.6713 |
122
- | No log | 9.125 | 146 | 0.6586 | 0.4498 | 0.6586 |
123
- | No log | 9.25 | 148 | 0.6406 | 0.4592 | 0.6406 |
124
- | No log | 9.375 | 150 | 0.6229 | 0.4711 | 0.6229 |
125
- | No log | 9.5 | 152 | 0.6220 | 0.4720 | 0.6220 |
126
- | No log | 9.625 | 154 | 0.6319 | 0.4686 | 0.6319 |
127
- | No log | 9.75 | 156 | 0.6419 | 0.4623 | 0.6419 |
128
- | No log | 9.875 | 158 | 0.6451 | 0.4623 | 0.6451 |
129
- | No log | 10.0 | 160 | 0.6478 | 0.4607 | 0.6478 |
 
 
 
 
 
 
 
 
 
 
130
 
131
 
132
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_organization_task3_fold2
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_organization_task3_fold2
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.6024
18
+ - Qwk: 0.0538
19
+ - Mse: 1.6024
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
50
+ | No log | 0.1111 | 2 | 4.4408 | 0.0040 | 4.4408 |
51
+ | No log | 0.2222 | 4 | 2.1445 | -0.0019 | 2.1445 |
52
+ | No log | 0.3333 | 6 | 1.2335 | -0.0070 | 1.2335 |
53
+ | No log | 0.4444 | 8 | 1.2037 | -0.0160 | 1.2037 |
54
+ | No log | 0.5556 | 10 | 1.2041 | -0.0073 | 1.2041 |
55
+ | No log | 0.6667 | 12 | 1.1517 | 0.0051 | 1.1517 |
56
+ | No log | 0.7778 | 14 | 1.2374 | 0.0328 | 1.2374 |
57
+ | No log | 0.8889 | 16 | 1.1607 | -0.0476 | 1.1607 |
58
+ | No log | 1.0 | 18 | 1.1734 | -0.0518 | 1.1734 |
59
+ | No log | 1.1111 | 20 | 1.2625 | -0.0809 | 1.2625 |
60
+ | No log | 1.2222 | 22 | 1.3757 | 0.0003 | 1.3757 |
61
+ | No log | 1.3333 | 24 | 1.1818 | -0.1060 | 1.1818 |
62
+ | No log | 1.4444 | 26 | 1.2926 | 0.0 | 1.2926 |
63
+ | No log | 1.5556 | 28 | 1.6227 | -0.0906 | 1.6227 |
64
+ | No log | 1.6667 | 30 | 1.8505 | 0.0618 | 1.8505 |
65
+ | No log | 1.7778 | 32 | 1.4810 | 0.0402 | 1.4810 |
66
+ | No log | 1.8889 | 34 | 1.6514 | 0.0454 | 1.6514 |
67
+ | No log | 2.0 | 36 | 1.9399 | 0.0198 | 1.9399 |
68
+ | No log | 2.1111 | 38 | 1.6927 | 0.0351 | 1.6927 |
69
+ | No log | 2.2222 | 40 | 1.5365 | 0.0112 | 1.5365 |
70
+ | No log | 2.3333 | 42 | 1.7530 | 0.0199 | 1.7530 |
71
+ | No log | 2.4444 | 44 | 1.5376 | 0.0302 | 1.5376 |
72
+ | No log | 2.5556 | 46 | 1.4487 | -0.0223 | 1.4487 |
73
+ | No log | 2.6667 | 48 | 1.7456 | 0.0144 | 1.7456 |
74
+ | No log | 2.7778 | 50 | 1.9590 | 0.0498 | 1.9590 |
75
+ | No log | 2.8889 | 52 | 1.6503 | 0.0145 | 1.6503 |
76
+ | No log | 3.0 | 54 | 1.4764 | -0.0314 | 1.4764 |
77
+ | No log | 3.1111 | 56 | 1.6835 | 0.0294 | 1.6835 |
78
+ | No log | 3.2222 | 58 | 1.7955 | 0.0312 | 1.7955 |
79
+ | No log | 3.3333 | 60 | 1.7538 | 0.0635 | 1.7538 |
80
+ | No log | 3.4444 | 62 | 1.4927 | 0.0176 | 1.4927 |
81
+ | No log | 3.5556 | 64 | 1.6904 | 0.0720 | 1.6904 |
82
+ | No log | 3.6667 | 66 | 1.8393 | 0.0312 | 1.8393 |
83
+ | No log | 3.7778 | 68 | 1.8313 | 0.0254 | 1.8313 |
84
+ | No log | 3.8889 | 70 | 1.6934 | 0.0842 | 1.6934 |
85
+ | No log | 4.0 | 72 | 1.5049 | 0.0730 | 1.5049 |
86
+ | No log | 4.1111 | 74 | 1.6026 | 0.0175 | 1.6026 |
87
+ | No log | 4.2222 | 76 | 1.5882 | 0.0325 | 1.5882 |
88
+ | No log | 4.3333 | 78 | 1.6196 | 0.0264 | 1.6196 |
89
+ | No log | 4.4444 | 80 | 1.5514 | 0.0974 | 1.5514 |
90
+ | No log | 4.5556 | 82 | 1.4767 | 0.0909 | 1.4767 |
91
+ | No log | 4.6667 | 84 | 1.2836 | 0.1034 | 1.2836 |
92
+ | No log | 4.7778 | 86 | 1.3626 | 0.0270 | 1.3626 |
93
+ | No log | 4.8889 | 88 | 1.6465 | 0.0229 | 1.6465 |
94
+ | No log | 5.0 | 90 | 1.8343 | -0.0220 | 1.8343 |
95
+ | No log | 5.1111 | 92 | 1.6557 | 0.0083 | 1.6557 |
96
+ | No log | 5.2222 | 94 | 1.3225 | -0.0058 | 1.3225 |
97
+ | No log | 5.3333 | 96 | 1.2482 | 0.0470 | 1.2482 |
98
+ | No log | 5.4444 | 98 | 1.3076 | 0.0607 | 1.3076 |
99
+ | No log | 5.5556 | 100 | 1.6016 | 0.0775 | 1.6016 |
100
+ | No log | 5.6667 | 102 | 1.8225 | 0.0197 | 1.8225 |
101
+ | No log | 5.7778 | 104 | 1.7541 | -0.0002 | 1.7541 |
102
+ | No log | 5.8889 | 106 | 1.5325 | 0.0489 | 1.5325 |
103
+ | No log | 6.0 | 108 | 1.4866 | 0.1203 | 1.4866 |
104
+ | No log | 6.1111 | 110 | 1.5168 | 0.0747 | 1.5168 |
105
+ | No log | 6.2222 | 112 | 1.5806 | 0.0628 | 1.5806 |
106
+ | No log | 6.3333 | 114 | 1.5301 | 0.0840 | 1.5301 |
107
+ | No log | 6.4444 | 116 | 1.5252 | 0.1176 | 1.5252 |
108
+ | No log | 6.5556 | 118 | 1.6195 | 0.0414 | 1.6195 |
109
+ | No log | 6.6667 | 120 | 1.7519 | -0.0347 | 1.7519 |
110
+ | No log | 6.7778 | 122 | 1.7121 | 0.0055 | 1.7121 |
111
+ | No log | 6.8889 | 124 | 1.5662 | 0.0951 | 1.5662 |
112
+ | No log | 7.0 | 126 | 1.5098 | 0.1301 | 1.5098 |
113
+ | No log | 7.1111 | 128 | 1.5746 | 0.12 | 1.5746 |
114
+ | No log | 7.2222 | 130 | 1.7267 | -0.0092 | 1.7267 |
115
+ | No log | 7.3333 | 132 | 1.7245 | -0.0092 | 1.7245 |
116
+ | No log | 7.4444 | 134 | 1.5965 | 0.0502 | 1.5965 |
117
+ | No log | 7.5556 | 136 | 1.5245 | 0.0966 | 1.5245 |
118
+ | No log | 7.6667 | 138 | 1.4468 | 0.0095 | 1.4468 |
119
+ | No log | 7.7778 | 140 | 1.4564 | 0.0425 | 1.4564 |
120
+ | No log | 7.8889 | 142 | 1.5131 | 0.0840 | 1.5131 |
121
+ | No log | 8.0 | 144 | 1.6343 | 0.0606 | 1.6343 |
122
+ | No log | 8.1111 | 146 | 1.6708 | 0.0339 | 1.6708 |
123
+ | No log | 8.2222 | 148 | 1.7099 | 0.0339 | 1.7099 |
124
+ | No log | 8.3333 | 150 | 1.7246 | 0.0339 | 1.7246 |
125
+ | No log | 8.4444 | 152 | 1.7128 | 0.0339 | 1.7128 |
126
+ | No log | 8.5556 | 154 | 1.6734 | 0.0657 | 1.6734 |
127
+ | No log | 8.6667 | 156 | 1.6578 | 0.0520 | 1.6578 |
128
+ | No log | 8.7778 | 158 | 1.7162 | 0.0533 | 1.7162 |
129
+ | No log | 8.8889 | 160 | 1.7512 | -0.0403 | 1.7512 |
130
+ | No log | 9.0 | 162 | 1.7393 | -0.0034 | 1.7393 |
131
+ | No log | 9.1111 | 164 | 1.6847 | 0.0542 | 1.6847 |
132
+ | No log | 9.2222 | 166 | 1.6059 | 0.0442 | 1.6059 |
133
+ | No log | 9.3333 | 168 | 1.5649 | 0.0881 | 1.5649 |
134
+ | No log | 9.4444 | 170 | 1.5449 | 0.1090 | 1.5449 |
135
+ | No log | 9.5556 | 172 | 1.5536 | 0.1090 | 1.5536 |
136
+ | No log | 9.6667 | 174 | 1.5814 | 0.0419 | 1.5814 |
137
+ | No log | 9.7778 | 176 | 1.5969 | 0.0560 | 1.5969 |
138
+ | No log | 9.8889 | 178 | 1.6011 | 0.0560 | 1.6011 |
139
+ | No log | 10.0 | 180 | 1.6024 | 0.0538 | 1.6024 |
140
 
141
 
142
  ### Framework versions