salbatarni commited on
Commit
375fef9
·
verified ·
1 Parent(s): 7fce797

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -82
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_organization_task2_fold3
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_organization_task2_fold3
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.5676
18
- - Qwk: 0.8167
19
- - Mse: 0.5676
20
 
21
  ## Model description
22
 
@@ -45,83 +45,88 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.1333 | 2 | 1.8692 | 0.1353 | 1.8692 |
51
- | No log | 0.2667 | 4 | 1.4213 | 0.1397 | 1.4213 |
52
- | No log | 0.4 | 6 | 1.4691 | 0.3731 | 1.4691 |
53
- | No log | 0.5333 | 8 | 1.1350 | 0.5085 | 1.1350 |
54
- | No log | 0.6667 | 10 | 1.0589 | 0.4468 | 1.0589 |
55
- | No log | 0.8 | 12 | 0.6836 | 0.7114 | 0.6836 |
56
- | No log | 0.9333 | 14 | 0.7934 | 0.7564 | 0.7934 |
57
- | No log | 1.0667 | 16 | 0.6366 | 0.7754 | 0.6366 |
58
- | No log | 1.2 | 18 | 0.6294 | 0.6090 | 0.6294 |
59
- | No log | 1.3333 | 20 | 0.5984 | 0.6582 | 0.5984 |
60
- | No log | 1.4667 | 22 | 0.6612 | 0.7573 | 0.6612 |
61
- | No log | 1.6 | 24 | 0.6149 | 0.7707 | 0.6149 |
62
- | No log | 1.7333 | 26 | 0.5768 | 0.7921 | 0.5768 |
63
- | No log | 1.8667 | 28 | 0.5478 | 0.7836 | 0.5478 |
64
- | No log | 2.0 | 30 | 0.6323 | 0.7873 | 0.6323 |
65
- | No log | 2.1333 | 32 | 0.7541 | 0.7799 | 0.7541 |
66
- | No log | 2.2667 | 34 | 0.5899 | 0.7730 | 0.5899 |
67
- | No log | 2.4 | 36 | 0.5646 | 0.7204 | 0.5646 |
68
- | No log | 2.5333 | 38 | 0.5812 | 0.7665 | 0.5812 |
69
- | No log | 2.6667 | 40 | 0.7559 | 0.7804 | 0.7559 |
70
- | No log | 2.8 | 42 | 0.6782 | 0.7852 | 0.6782 |
71
- | No log | 2.9333 | 44 | 0.5336 | 0.7721 | 0.5336 |
72
- | No log | 3.0667 | 46 | 0.5156 | 0.7461 | 0.5156 |
73
- | No log | 3.2 | 48 | 0.5374 | 0.7842 | 0.5374 |
74
- | No log | 3.3333 | 50 | 0.6264 | 0.7999 | 0.6264 |
75
- | No log | 3.4667 | 52 | 0.8571 | 0.7933 | 0.8571 |
76
- | No log | 3.6 | 54 | 0.7545 | 0.8124 | 0.7545 |
77
- | No log | 3.7333 | 56 | 0.5238 | 0.7922 | 0.5238 |
78
- | No log | 3.8667 | 58 | 0.4796 | 0.7536 | 0.4796 |
79
- | No log | 4.0 | 60 | 0.4953 | 0.7964 | 0.4953 |
80
- | No log | 4.1333 | 62 | 0.6345 | 0.7733 | 0.6345 |
81
- | No log | 4.2667 | 64 | 0.7544 | 0.7901 | 0.7544 |
82
- | No log | 4.4 | 66 | 0.6943 | 0.7949 | 0.6943 |
83
- | No log | 4.5333 | 68 | 0.5528 | 0.8088 | 0.5528 |
84
- | No log | 4.6667 | 70 | 0.4774 | 0.7978 | 0.4774 |
85
- | No log | 4.8 | 72 | 0.5067 | 0.7997 | 0.5067 |
86
- | No log | 4.9333 | 74 | 0.6779 | 0.8166 | 0.6779 |
87
- | No log | 5.0667 | 76 | 0.7490 | 0.8085 | 0.7490 |
88
- | No log | 5.2 | 78 | 0.6112 | 0.8038 | 0.6112 |
89
- | No log | 5.3333 | 80 | 0.5181 | 0.7860 | 0.5181 |
90
- | No log | 5.4667 | 82 | 0.5173 | 0.7861 | 0.5173 |
91
- | No log | 5.6 | 84 | 0.5810 | 0.8108 | 0.5810 |
92
- | No log | 5.7333 | 86 | 0.6378 | 0.8013 | 0.6378 |
93
- | No log | 5.8667 | 88 | 0.7117 | 0.8099 | 0.7117 |
94
- | No log | 6.0 | 90 | 0.6295 | 0.8118 | 0.6295 |
95
- | No log | 6.1333 | 92 | 0.5548 | 0.8052 | 0.5548 |
96
- | No log | 6.2667 | 94 | 0.5066 | 0.7699 | 0.5066 |
97
- | No log | 6.4 | 96 | 0.5174 | 0.7849 | 0.5174 |
98
- | No log | 6.5333 | 98 | 0.6036 | 0.8042 | 0.6036 |
99
- | No log | 6.6667 | 100 | 0.7393 | 0.8146 | 0.7393 |
100
- | No log | 6.8 | 102 | 0.7344 | 0.8098 | 0.7344 |
101
- | No log | 6.9333 | 104 | 0.6184 | 0.8121 | 0.6184 |
102
- | No log | 7.0667 | 106 | 0.5416 | 0.7974 | 0.5416 |
103
- | No log | 7.2 | 108 | 0.5343 | 0.7929 | 0.5343 |
104
- | No log | 7.3333 | 110 | 0.5632 | 0.8094 | 0.5632 |
105
- | No log | 7.4667 | 112 | 0.5781 | 0.8097 | 0.5781 |
106
- | No log | 7.6 | 114 | 0.6404 | 0.8068 | 0.6404 |
107
- | No log | 7.7333 | 116 | 0.6828 | 0.8187 | 0.6828 |
108
- | No log | 7.8667 | 118 | 0.6504 | 0.8045 | 0.6504 |
109
- | No log | 8.0 | 120 | 0.5838 | 0.8057 | 0.5838 |
110
- | No log | 8.1333 | 122 | 0.5378 | 0.8062 | 0.5378 |
111
- | No log | 8.2667 | 124 | 0.5466 | 0.8079 | 0.5466 |
112
- | No log | 8.4 | 126 | 0.5939 | 0.8052 | 0.5939 |
113
- | No log | 8.5333 | 128 | 0.6680 | 0.8023 | 0.6680 |
114
- | No log | 8.6667 | 130 | 0.6894 | 0.8051 | 0.6894 |
115
- | No log | 8.8 | 132 | 0.6689 | 0.8044 | 0.6689 |
116
- | No log | 8.9333 | 134 | 0.6450 | 0.8040 | 0.6450 |
117
- | No log | 9.0667 | 136 | 0.5946 | 0.8173 | 0.5946 |
118
- | No log | 9.2 | 138 | 0.5617 | 0.8132 | 0.5617 |
119
- | No log | 9.3333 | 140 | 0.5493 | 0.8151 | 0.5493 |
120
- | No log | 9.4667 | 142 | 0.5410 | 0.8105 | 0.5410 |
121
- | No log | 9.6 | 144 | 0.5422 | 0.8142 | 0.5422 |
122
- | No log | 9.7333 | 146 | 0.5512 | 0.8086 | 0.5512 |
123
- | No log | 9.8667 | 148 | 0.5620 | 0.8148 | 0.5620 |
124
- | No log | 10.0 | 150 | 0.5676 | 0.8167 | 0.5676 |
 
 
 
 
 
125
 
126
 
127
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_organization_task2_fold4
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_organization_task2_fold4
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.4343
18
+ - Qwk: 0.7442
19
+ - Mse: 0.4343
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
50
+ | No log | 0.125 | 2 | 3.0559 | 0.0132 | 3.0559 |
51
+ | No log | 0.25 | 4 | 1.5018 | 0.1018 | 1.5018 |
52
+ | No log | 0.375 | 6 | 0.9403 | 0.3496 | 0.9403 |
53
+ | No log | 0.5 | 8 | 1.0512 | 0.4227 | 1.0512 |
54
+ | No log | 0.625 | 10 | 0.7038 | 0.5121 | 0.7038 |
55
+ | No log | 0.75 | 12 | 0.7727 | 0.4566 | 0.7727 |
56
+ | No log | 0.875 | 14 | 0.5989 | 0.5213 | 0.5989 |
57
+ | No log | 1.0 | 16 | 0.6428 | 0.6397 | 0.6428 |
58
+ | No log | 1.125 | 18 | 0.6331 | 0.7095 | 0.6331 |
59
+ | No log | 1.25 | 20 | 0.5024 | 0.6478 | 0.5024 |
60
+ | No log | 1.375 | 22 | 0.7624 | 0.4770 | 0.7624 |
61
+ | No log | 1.5 | 24 | 0.5793 | 0.5485 | 0.5793 |
62
+ | No log | 1.625 | 26 | 0.4887 | 0.6546 | 0.4887 |
63
+ | No log | 1.75 | 28 | 0.5482 | 0.6854 | 0.5482 |
64
+ | No log | 1.875 | 30 | 0.5328 | 0.7446 | 0.5328 |
65
+ | No log | 2.0 | 32 | 0.4476 | 0.6785 | 0.4476 |
66
+ | No log | 2.125 | 34 | 0.5184 | 0.5745 | 0.5184 |
67
+ | No log | 2.25 | 36 | 0.4772 | 0.6201 | 0.4772 |
68
+ | No log | 2.375 | 38 | 0.4229 | 0.7095 | 0.4229 |
69
+ | No log | 2.5 | 40 | 0.4747 | 0.7500 | 0.4747 |
70
+ | No log | 2.625 | 42 | 0.4556 | 0.7201 | 0.4556 |
71
+ | No log | 2.75 | 44 | 0.4703 | 0.6407 | 0.4703 |
72
+ | No log | 2.875 | 46 | 0.4875 | 0.6566 | 0.4875 |
73
+ | No log | 3.0 | 48 | 0.5070 | 0.7290 | 0.5070 |
74
+ | No log | 3.125 | 50 | 0.4950 | 0.7764 | 0.4950 |
75
+ | No log | 3.25 | 52 | 0.4192 | 0.7444 | 0.4192 |
76
+ | No log | 3.375 | 54 | 0.4132 | 0.6919 | 0.4132 |
77
+ | No log | 3.5 | 56 | 0.4024 | 0.7128 | 0.4024 |
78
+ | No log | 3.625 | 58 | 0.4094 | 0.7451 | 0.4094 |
79
+ | No log | 3.75 | 60 | 0.4675 | 0.7828 | 0.4675 |
80
+ | No log | 3.875 | 62 | 0.4559 | 0.7636 | 0.4559 |
81
+ | No log | 4.0 | 64 | 0.4150 | 0.7449 | 0.4150 |
82
+ | No log | 4.125 | 66 | 0.3994 | 0.7551 | 0.3994 |
83
+ | No log | 4.25 | 68 | 0.3872 | 0.7513 | 0.3872 |
84
+ | No log | 4.375 | 70 | 0.3951 | 0.7719 | 0.3951 |
85
+ | No log | 4.5 | 72 | 0.4536 | 0.7801 | 0.4536 |
86
+ | No log | 4.625 | 74 | 0.4695 | 0.7891 | 0.4695 |
87
+ | No log | 4.75 | 76 | 0.4253 | 0.7787 | 0.4253 |
88
+ | No log | 4.875 | 78 | 0.3967 | 0.7809 | 0.3967 |
89
+ | No log | 5.0 | 80 | 0.3954 | 0.7506 | 0.3954 |
90
+ | No log | 5.125 | 82 | 0.4062 | 0.7844 | 0.4062 |
91
+ | No log | 5.25 | 84 | 0.4096 | 0.7688 | 0.4096 |
92
+ | No log | 5.375 | 86 | 0.4305 | 0.7167 | 0.4305 |
93
+ | No log | 5.5 | 88 | 0.4607 | 0.6647 | 0.4607 |
94
+ | No log | 5.625 | 90 | 0.4776 | 0.6876 | 0.4776 |
95
+ | No log | 5.75 | 92 | 0.4996 | 0.7150 | 0.4996 |
96
+ | No log | 5.875 | 94 | 0.5241 | 0.7677 | 0.5241 |
97
+ | No log | 6.0 | 96 | 0.5059 | 0.7933 | 0.5059 |
98
+ | No log | 6.125 | 98 | 0.4470 | 0.7830 | 0.4470 |
99
+ | No log | 6.25 | 100 | 0.4010 | 0.7665 | 0.4010 |
100
+ | No log | 6.375 | 102 | 0.4147 | 0.6921 | 0.4147 |
101
+ | No log | 6.5 | 104 | 0.4226 | 0.6845 | 0.4226 |
102
+ | No log | 6.625 | 106 | 0.4193 | 0.7197 | 0.4193 |
103
+ | No log | 6.75 | 108 | 0.4395 | 0.7571 | 0.4395 |
104
+ | No log | 6.875 | 110 | 0.4602 | 0.7536 | 0.4602 |
105
+ | No log | 7.0 | 112 | 0.4569 | 0.7332 | 0.4569 |
106
+ | No log | 7.125 | 114 | 0.4359 | 0.7109 | 0.4359 |
107
+ | No log | 7.25 | 116 | 0.4245 | 0.7097 | 0.4245 |
108
+ | No log | 7.375 | 118 | 0.4142 | 0.7397 | 0.4142 |
109
+ | No log | 7.5 | 120 | 0.4102 | 0.7558 | 0.4102 |
110
+ | No log | 7.625 | 122 | 0.4179 | 0.7845 | 0.4179 |
111
+ | No log | 7.75 | 124 | 0.4170 | 0.7876 | 0.4170 |
112
+ | No log | 7.875 | 126 | 0.4173 | 0.7876 | 0.4173 |
113
+ | No log | 8.0 | 128 | 0.4157 | 0.7629 | 0.4157 |
114
+ | No log | 8.125 | 130 | 0.4165 | 0.7617 | 0.4165 |
115
+ | No log | 8.25 | 132 | 0.4198 | 0.7551 | 0.4198 |
116
+ | No log | 8.375 | 134 | 0.4256 | 0.7560 | 0.4256 |
117
+ | No log | 8.5 | 136 | 0.4285 | 0.7405 | 0.4285 |
118
+ | No log | 8.625 | 138 | 0.4320 | 0.7413 | 0.4320 |
119
+ | No log | 8.75 | 140 | 0.4361 | 0.7522 | 0.4361 |
120
+ | No log | 8.875 | 142 | 0.4387 | 0.7512 | 0.4387 |
121
+ | No log | 9.0 | 144 | 0.4377 | 0.7502 | 0.4377 |
122
+ | No log | 9.125 | 146 | 0.4356 | 0.7447 | 0.4356 |
123
+ | No log | 9.25 | 148 | 0.4354 | 0.7421 | 0.4354 |
124
+ | No log | 9.375 | 150 | 0.4355 | 0.7421 | 0.4355 |
125
+ | No log | 9.5 | 152 | 0.4365 | 0.7421 | 0.4365 |
126
+ | No log | 9.625 | 154 | 0.4364 | 0.7421 | 0.4364 |
127
+ | No log | 9.75 | 156 | 0.4354 | 0.7509 | 0.4354 |
128
+ | No log | 9.875 | 158 | 0.4347 | 0.7442 | 0.4347 |
129
+ | No log | 10.0 | 160 | 0.4343 | 0.7442 | 0.4343 |
130
 
131
 
132
  ### Framework versions