|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_vocabulary_task7_fold1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_vocabulary_task7_fold1 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4434 |
|
- Qwk: 0.7306 |
|
- Mse: 0.4409 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.3333 | 2 | 1.1716 | 0.2597 | 1.1767 | |
|
| No log | 0.6667 | 4 | 0.7370 | 0.5706 | 0.7641 | |
|
| No log | 1.0 | 6 | 0.7497 | 0.5562 | 0.7703 | |
|
| No log | 1.3333 | 8 | 0.6581 | 0.5987 | 0.6708 | |
|
| No log | 1.6667 | 10 | 0.6557 | 0.4 | 0.6660 | |
|
| No log | 2.0 | 12 | 0.4981 | 0.7242 | 0.5095 | |
|
| No log | 2.3333 | 14 | 0.5966 | 0.5490 | 0.6027 | |
|
| No log | 2.6667 | 16 | 0.7334 | 0.5273 | 0.7340 | |
|
| No log | 3.0 | 18 | 0.7026 | 0.5268 | 0.7001 | |
|
| No log | 3.3333 | 20 | 0.5537 | 0.6360 | 0.5517 | |
|
| No log | 3.6667 | 22 | 0.5745 | 0.6402 | 0.5704 | |
|
| No log | 4.0 | 24 | 0.6711 | 0.5418 | 0.6622 | |
|
| No log | 4.3333 | 26 | 0.6481 | 0.5418 | 0.6370 | |
|
| No log | 4.6667 | 28 | 0.5399 | 0.6015 | 0.5315 | |
|
| No log | 5.0 | 30 | 0.4583 | 0.6890 | 0.4538 | |
|
| No log | 5.3333 | 32 | 0.4300 | 0.7379 | 0.4272 | |
|
| No log | 5.6667 | 34 | 0.4490 | 0.6402 | 0.4450 | |
|
| No log | 6.0 | 36 | 0.5299 | 0.6360 | 0.5222 | |
|
| No log | 6.3333 | 38 | 0.5460 | 0.5268 | 0.5387 | |
|
| No log | 6.6667 | 40 | 0.4926 | 0.6360 | 0.4893 | |
|
| No log | 7.0 | 42 | 0.4501 | 0.6402 | 0.4494 | |
|
| No log | 7.3333 | 44 | 0.4428 | 0.7379 | 0.4421 | |
|
| No log | 7.6667 | 46 | 0.4707 | 0.6360 | 0.4684 | |
|
| No log | 8.0 | 48 | 0.4833 | 0.6360 | 0.4804 | |
|
| No log | 8.3333 | 50 | 0.5033 | 0.6360 | 0.4988 | |
|
| No log | 8.6667 | 52 | 0.5001 | 0.6360 | 0.4953 | |
|
| No log | 9.0 | 54 | 0.4748 | 0.6833 | 0.4711 | |
|
| No log | 9.3333 | 56 | 0.4541 | 0.6833 | 0.4512 | |
|
| No log | 9.6667 | 58 | 0.4462 | 0.6833 | 0.4437 | |
|
| No log | 10.0 | 60 | 0.4434 | 0.7306 | 0.4409 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|