--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_vocabulary_task7_fold0 results: [] --- # arabert_baseline_vocabulary_task7_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3528 - Qwk: 0.6935 - Mse: 0.3528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.3333 | 2 | 1.5791 | 0.0862 | 1.5791 | | No log | 0.6667 | 4 | 0.7772 | 0.4706 | 0.7772 | | No log | 1.0 | 6 | 0.7965 | 0.4532 | 0.7965 | | No log | 1.3333 | 8 | 0.6398 | 0.4532 | 0.6398 | | No log | 1.6667 | 10 | 0.3283 | 0.6814 | 0.3283 | | No log | 2.0 | 12 | 0.3264 | 0.6814 | 0.3264 | | No log | 2.3333 | 14 | 0.5269 | 0.5702 | 0.5269 | | No log | 2.6667 | 16 | 0.5821 | 0.4880 | 0.5821 | | No log | 3.0 | 18 | 0.5634 | 0.4918 | 0.5634 | | No log | 3.3333 | 20 | 0.3969 | 0.6316 | 0.3969 | | No log | 3.6667 | 22 | 0.3136 | 0.6792 | 0.3136 | | No log | 4.0 | 24 | 0.3010 | 0.7265 | 0.3010 | | No log | 4.3333 | 26 | 0.3722 | 0.6850 | 0.3722 | | No log | 4.6667 | 28 | 0.5081 | 0.6769 | 0.5081 | | No log | 5.0 | 30 | 0.5267 | 0.6788 | 0.5267 | | No log | 5.3333 | 32 | 0.4329 | 0.6935 | 0.4329 | | No log | 5.6667 | 34 | 0.2874 | 0.7797 | 0.2874 | | No log | 6.0 | 36 | 0.2708 | 0.7797 | 0.2708 | | No log | 6.3333 | 38 | 0.2866 | 0.7797 | 0.2866 | | No log | 6.6667 | 40 | 0.3412 | 0.7355 | 0.3412 | | No log | 7.0 | 42 | 0.4474 | 0.6935 | 0.4474 | | No log | 7.3333 | 44 | 0.4536 | 0.6947 | 0.4536 | | No log | 7.6667 | 46 | 0.3805 | 0.6935 | 0.3805 | | No log | 8.0 | 48 | 0.3311 | 0.7355 | 0.3311 | | No log | 8.3333 | 50 | 0.3056 | 0.7797 | 0.3056 | | No log | 8.6667 | 52 | 0.3214 | 0.7355 | 0.3214 | | No log | 9.0 | 54 | 0.3432 | 0.6935 | 0.3432 | | No log | 9.3333 | 56 | 0.3493 | 0.6935 | 0.3493 | | No log | 9.6667 | 58 | 0.3560 | 0.6935 | 0.3560 | | No log | 10.0 | 60 | 0.3528 | 0.6935 | 0.3528 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1