--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_style_task8_fold1 results: [] --- # arabert_baseline_style_task8_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3875 - Qwk: 0.7083 - Mse: 0.3875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.5 | 2 | 1.0660 | 0.2857 | 1.0660 | | No log | 1.0 | 4 | 0.9800 | 0.4940 | 0.9800 | | No log | 1.5 | 6 | 0.5715 | 0.5758 | 0.5715 | | No log | 2.0 | 8 | 0.9494 | 0.3957 | 0.9494 | | No log | 2.5 | 10 | 0.4859 | 0.6111 | 0.4859 | | No log | 3.0 | 12 | 0.3914 | 0.8048 | 0.3914 | | No log | 3.5 | 14 | 0.4214 | 0.7388 | 0.4214 | | No log | 4.0 | 16 | 0.4551 | 0.7388 | 0.4551 | | No log | 4.5 | 18 | 0.5826 | 0.7083 | 0.5826 | | No log | 5.0 | 20 | 0.5851 | 0.6392 | 0.5851 | | No log | 5.5 | 22 | 0.5408 | 0.7083 | 0.5408 | | No log | 6.0 | 24 | 0.4212 | 0.7298 | 0.4212 | | No log | 6.5 | 26 | 0.3887 | 0.8205 | 0.3887 | | No log | 7.0 | 28 | 0.3697 | 0.8048 | 0.3697 | | No log | 7.5 | 30 | 0.3635 | 0.8048 | 0.3635 | | No log | 8.0 | 32 | 0.3627 | 0.8048 | 0.3627 | | No log | 8.5 | 34 | 0.3751 | 0.7159 | 0.3751 | | No log | 9.0 | 36 | 0.3889 | 0.7083 | 0.3889 | | No log | 9.5 | 38 | 0.3890 | 0.7083 | 0.3890 | | No log | 10.0 | 40 | 0.3875 | 0.7083 | 0.3875 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1