File size: 3,496 Bytes
e834942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_organization_task2_fold1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabert_baseline_organization_task2_fold1

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4740
- Qwk: 0.5263
- Mse: 0.4884

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Qwk     | Mse    |
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
| No log        | 0.3333 | 2    | 2.7474          | 0.0719  | 2.8478 |
| No log        | 0.6667 | 4    | 0.9337          | 0.1600  | 0.9879 |
| No log        | 1.0    | 6    | 0.4534          | 0.0     | 0.4764 |
| No log        | 1.3333 | 8    | 0.7904          | -0.0408 | 0.7830 |
| No log        | 1.6667 | 10   | 0.7018          | 0.0769  | 0.6973 |
| No log        | 2.0    | 12   | 0.5298          | 0.2258  | 0.5356 |
| No log        | 2.3333 | 14   | 0.4547          | 0.0     | 0.4751 |
| No log        | 2.6667 | 16   | 0.4579          | 0.0     | 0.4810 |
| No log        | 3.0    | 18   | 0.4621          | 0.0     | 0.4849 |
| No log        | 3.3333 | 20   | 0.5042          | 0.1563  | 0.5232 |
| No log        | 3.6667 | 22   | 0.5058          | 0.1905  | 0.5230 |
| No log        | 4.0    | 24   | 0.4808          | 0.2623  | 0.4947 |
| No log        | 4.3333 | 26   | 0.4464          | 0.4828  | 0.4576 |
| No log        | 4.6667 | 28   | 0.3793          | 0.2258  | 0.3943 |
| No log        | 5.0    | 30   | 0.3971          | 0.2623  | 0.4100 |
| No log        | 5.3333 | 32   | 0.5018          | 0.5263  | 0.5120 |
| No log        | 5.6667 | 34   | 0.5357          | 0.3390  | 0.5481 |
| No log        | 6.0    | 36   | 0.4854          | 0.3000  | 0.5002 |
| No log        | 6.3333 | 38   | 0.4022          | 0.2623  | 0.4219 |
| No log        | 6.6667 | 40   | 0.4018          | 0.2597  | 0.4313 |
| No log        | 7.0    | 42   | 0.4157          | 0.2597  | 0.4485 |
| No log        | 7.3333 | 44   | 0.3858          | 0.2895  | 0.4130 |
| No log        | 7.6667 | 46   | 0.3839          | 0.3200  | 0.4045 |
| No log        | 8.0    | 48   | 0.4237          | 0.5263  | 0.4396 |
| No log        | 8.3333 | 50   | 0.4462          | 0.5263  | 0.4608 |
| No log        | 8.6667 | 52   | 0.4536          | 0.5263  | 0.4681 |
| No log        | 9.0    | 54   | 0.4620          | 0.5263  | 0.4764 |
| No log        | 9.3333 | 56   | 0.4700          | 0.5263  | 0.4842 |
| No log        | 9.6667 | 58   | 0.4698          | 0.5263  | 0.4842 |
| No log        | 10.0   | 60   | 0.4740          | 0.5263  | 0.4884 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1