|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_organization_task1_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_organization_task1_fold0 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7080 |
|
- Qwk: 0.6596 |
|
- Mse: 0.7206 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.3333 | 2 | 4.7375 | -0.0187 | 4.6528 | |
|
| No log | 0.6667 | 4 | 2.9523 | 0.0354 | 2.8976 | |
|
| No log | 1.0 | 6 | 1.9933 | 0.0369 | 1.9520 | |
|
| No log | 1.3333 | 8 | 1.4358 | 0.1414 | 1.4243 | |
|
| No log | 1.6667 | 10 | 1.3507 | 0.0742 | 1.3574 | |
|
| No log | 2.0 | 12 | 1.2869 | 0.3309 | 1.2992 | |
|
| No log | 2.3333 | 14 | 1.3060 | 0.4324 | 1.3235 | |
|
| No log | 2.6667 | 16 | 1.2124 | 0.4085 | 1.2278 | |
|
| No log | 3.0 | 18 | 1.0567 | 0.4854 | 1.0647 | |
|
| No log | 3.3333 | 20 | 0.9500 | 0.4639 | 0.9565 | |
|
| No log | 3.6667 | 22 | 0.8719 | 0.5769 | 0.8846 | |
|
| No log | 4.0 | 24 | 0.7991 | 0.5769 | 0.8115 | |
|
| No log | 4.3333 | 26 | 0.7537 | 0.5769 | 0.7666 | |
|
| No log | 4.6667 | 28 | 0.7147 | 0.5514 | 0.7274 | |
|
| No log | 5.0 | 30 | 0.6387 | 0.5811 | 0.6471 | |
|
| No log | 5.3333 | 32 | 0.6221 | 0.5748 | 0.6286 | |
|
| No log | 5.6667 | 34 | 0.6363 | 0.5811 | 0.6453 | |
|
| No log | 6.0 | 36 | 0.6849 | 0.5811 | 0.6955 | |
|
| No log | 6.3333 | 38 | 0.6868 | 0.5811 | 0.6971 | |
|
| No log | 6.6667 | 40 | 0.6843 | 0.5435 | 0.6932 | |
|
| No log | 7.0 | 42 | 0.7048 | 0.5081 | 0.7131 | |
|
| No log | 7.3333 | 44 | 0.7116 | 0.5804 | 0.7201 | |
|
| No log | 7.6667 | 46 | 0.7162 | 0.5779 | 0.7250 | |
|
| No log | 8.0 | 48 | 0.7262 | 0.5779 | 0.7360 | |
|
| No log | 8.3333 | 50 | 0.7157 | 0.5779 | 0.7258 | |
|
| No log | 8.6667 | 52 | 0.7189 | 0.5779 | 0.7301 | |
|
| No log | 9.0 | 54 | 0.7090 | 0.6547 | 0.7206 | |
|
| No log | 9.3333 | 56 | 0.7059 | 0.6547 | 0.7179 | |
|
| No log | 9.6667 | 58 | 0.7067 | 0.6547 | 0.7191 | |
|
| No log | 10.0 | 60 | 0.7080 | 0.6596 | 0.7206 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|