File size: 2,728 Bytes
e08753f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_style_task8_fold1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabert_baseline_style_task8_fold1

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3875
- Qwk: 0.7083
- Mse: 0.3875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Qwk    | Mse    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 0.5   | 2    | 1.0660          | 0.2857 | 1.0660 |
| No log        | 1.0   | 4    | 0.9800          | 0.4940 | 0.9800 |
| No log        | 1.5   | 6    | 0.5715          | 0.5758 | 0.5715 |
| No log        | 2.0   | 8    | 0.9494          | 0.3957 | 0.9494 |
| No log        | 2.5   | 10   | 0.4859          | 0.6111 | 0.4859 |
| No log        | 3.0   | 12   | 0.3914          | 0.8048 | 0.3914 |
| No log        | 3.5   | 14   | 0.4214          | 0.7388 | 0.4214 |
| No log        | 4.0   | 16   | 0.4551          | 0.7388 | 0.4551 |
| No log        | 4.5   | 18   | 0.5826          | 0.7083 | 0.5826 |
| No log        | 5.0   | 20   | 0.5851          | 0.6392 | 0.5851 |
| No log        | 5.5   | 22   | 0.5408          | 0.7083 | 0.5408 |
| No log        | 6.0   | 24   | 0.4212          | 0.7298 | 0.4212 |
| No log        | 6.5   | 26   | 0.3887          | 0.8205 | 0.3887 |
| No log        | 7.0   | 28   | 0.3697          | 0.8048 | 0.3697 |
| No log        | 7.5   | 30   | 0.3635          | 0.8048 | 0.3635 |
| No log        | 8.0   | 32   | 0.3627          | 0.8048 | 0.3627 |
| No log        | 8.5   | 34   | 0.3751          | 0.7159 | 0.3751 |
| No log        | 9.0   | 36   | 0.3889          | 0.7083 | 0.3889 |
| No log        | 9.5   | 38   | 0.3890          | 0.7083 | 0.3890 |
| No log        | 10.0  | 40   | 0.3875          | 0.7083 | 0.3875 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1