File size: 5,286 Bytes
ad0a227 05373e3 7becb91 ad0a227 64053e4 ad0a227 64053e4 ad0a227 64053e4 ad0a227 64053e4 2fa6f45 64053e4 cb49937 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 5b4d841 64053e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
base_model: ibm-granite/granite-3.1-2b-instruct
tags:
- text-generation-inference
- transformers
- granite
- trl
- grpo
- ruslanmv
license: apache-2.0
language:
- en
---
# Granite-3.1-2B-Reasoning (Fine-tuned for Logical Reasoning)
## Model Overview
This model is a fine-tuned version of **ibm-granite/granite-3.1-2b-instruct**, specifically optimized for **enhanced reasoning capabilities**. Fine-tuning has been conducted to improve its performance on logical reasoning, structured problem-solving, and complex analytical tasks.
- **Developed by:** [ruslanmv](https://huggingface.co/ruslanmv)
- **License:** Apache 2.0
- **Base Model:** [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct)
- **Fine-tuned for:** Logical reasoning, structured problem-solving, long-context tasks
- **Supported Languages:** English
---
## Model Summary
**Granite-3.1-2B-Reasoning** is part of IBM’s **Granite 3.1** language model series, which supports extended context lengths and strong multi-domain performance. This fine-tuned variant enhances the model's ability to process complex reasoning tasks efficiently.
### Improvements Over Base Model:
✅ Improved **reasoning** and **problem-solving** skills
✅ Optimized for **instruction-following** and **logical deduction**
✅ Maintains the **efficiency and robustness** of Granite-3.1
---
## Installation & Usage
Install the required dependencies:
```bash
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
### Running the Model
Use the following Python snippet to load and generate text with the fine-tuned model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
# Model and tokenizer
model_name = "ruslanmv/granite-3.1-2b-Reasoning"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map='auto', # or 'cuda' if you have only one GPU
torch_dtype=torch.float16, # Use float16 for faster and less memory intensive inference
load_in_4bit=True # Enable 4-bit quantization for lower memory usage - requires bitsandbytes
)
# Prepare dataset
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
text = tokenizer.apply_chat_template([
{"role" : "system", "content" : SYSTEM_PROMPT},
{"role" : "user", "content" : "Calculate pi."},
], tokenize = False, add_generation_prompt = True)
inputs = tokenizer(text, return_tensors="pt").to("cuda") # Move input tensor to GPU
# Sampling parameters
generation_config = GenerationConfig(
temperature = 0.8,
top_p = 0.95,
max_new_tokens = 1024, # Equivalent to max_tokens in the original code, but for generation
)
# Inference
with torch.inference_mode(): # Use inference mode for faster generation
outputs = model.generate(**inputs, generation_config=generation_config)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Find the start of the actual response
start_index = output.find("assistant")
if start_index != -1:
# Remove the initial part including "assistant"
output = output[start_index + len("assistant"):].strip()
print(output)
```
and the output is :
```
<reasoning>
Pi is an irrational number, which means it cannot be precisely calculated using finite decimal or fractional notation. It is typically represented by the Greek letter π and its approximate value is 3.14159. However, for a more precise calculation, we can use mathematical algorithms like the Leibniz formula for π or the Gregory-Leibniz series.
The Leibniz formula for π is:
π = 4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + 1/13 - 1/15 +...)
This series converges slowly, so many terms are needed for a good approximation. For instance, using 10 terms, the approximation would be:
π ≈ 4 * (1 - 0.3333333333333333 + 0.1111111111111111 - 0.0344827586206897 + 0.0090040875518672 - 0.0025958422650073 + 0.0006929403729561 - 0.0001866279043531 + 0.0000499753694946 - 0.0000133386323746 + 0.0000035303398593 - 0.0000009009433996)
π ≈ 3.141592653589793
This is a rough approximation of π using 10 terms. For a more precise value, you can use more terms or employ other algorithms.
</reasoning>
<answer>
π ≈ 3.141592653589793
</answer>
```
---
## Intended Use
Granite-3.1-2B-Reasoning is designed for tasks requiring structured **reasoning**, including:
- **Logical and analytical problem-solving**
- **Text-based reasoning tasks**
- **Mathematical and symbolic reasoning**
- **Advanced instruction-following**
---
## License & Acknowledgments
This model is released under the **Apache 2.0** license. It is fine-tuned from IBM’s **Granite 3.1-2B-Instruct** model. Special thanks to the **IBM Granite Team** for developing the base model.
For more details, visit the [IBM Granite Documentation](https://huggingface.co/ibm-granite).
---
### Citation
If you use this model in your research or applications, please cite:
```
@misc{ruslanmv2025granite,
title={Fine-Tuning Granite-3.1 for Advanced Reasoning},
author={Ruslan M.V.},
year={2025},
url={https://huggingface.co/ruslanmv/granite-3.1-2b-Reasoning}
}
```
|