--- license: mit --- # Model Card for FIRST FIRST is a language models trained for listwise reranking tasks leveraging the output logits of the first generated identifier to directly produce a ranked ordering of candidates. Built on the Zephyr-7B-β model, FIRST undergoes single-stage fine-tuning on a converted alphabetic version of the RankZephyr dataset. (i,e RankGPT-4 reorderings of OpenAI's Ada2 orderings for 5k queries) More details can be found in the paper. ### Model Description - **Model type:** Fine-tuned on listwise reranking data from Zephyr-7B-β model. - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) ### Model Sources - **Repository:** [https://github.com/gangiswag/llm-reranker](https://github.com/gangiswag/llm-reranker) - **Paper:** [https://arxiv.org/abs/2406.15657](https://arxiv.org/abs/2406.15657) ### Evaluations At the time of release, FIRST demonstrates superior performance across a variety of reranking datasets. The table below provides a detailed performance comparison against other LLM rerankers on the BEIR benchmark. (More details can be found in the paper.) | Reranker | Training Data | Avg. | Climate FEVER | DBPedia | FEVER | FiQA | Hotpot QA | MS Marco | NFCorpus | NQ | Sci-docs | Sci-fact | Trec-COVID | |---------------|----------------|-------|---------------|---------|-------|-------|-----------|----------|----------|-------|----------|----------|------------| | Rank Vicuna | GPT 3.5 | 50.7 | **28.2** | 50.0 | 81.0 | 35.9 | 73.5 | 36.7 | 33.1 | 58.6 | 18.4 | 70.5 | 71.3 | | Rank Zephyr | GPT 3.5 + 3.5 | 53.7 | 25.6 | 50.0 | 80.1 | **42.2** | 71.6 | 42.7 | **37.7** | 65.6 | **20.5** | **76.7** | 78.4 | | **FIRST** | GPT-4 | **54.3** | 26.7 | **50.9**| **81.7**| **42.2** | **74.2** | **44.4** | 37.4 | **66.4**| 20.4 | 74.6 | **78.8** | ## Citation If you find FIRST useful for your work, please consider citing our paper: ```bibtex @article{reddy2024first, title={FIRST: Faster Improved Listwise Reranking with Single Token Decoding}, author={Reddy, Revanth Gangi and Doo, JaeHyeok and Xu, Yifei and Sultan, Md Arafat and Swain, Deevya and Sil, Avirup and Ji, Heng}, journal={arXiv preprint arXiv:2406.15657}, year={2024} }