File size: 2,048 Bytes
b37e2e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: imdb-distilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# imdb-distilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4670
- Accuracy: 0.8528
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3777 | 1.0 | 3125 | 0.4630 | 0.8263 |
| 0.2795 | 2.0 | 6250 | 0.4771 | 0.8549 |
| 0.1698 | 3.0 | 9375 | 0.5689 | 0.8526 |
| 0.1093 | 4.0 | 12500 | 0.9568 | 0.8460 |
| 0.0664 | 5.0 | 15625 | 1.0550 | 0.8470 |
| 0.0333 | 6.0 | 18750 | 1.1734 | 0.8487 |
| 0.0238 | 7.0 | 21875 | 1.1931 | 0.8482 |
| 0.0123 | 8.0 | 25000 | 1.2663 | 0.8507 |
| 0.0056 | 9.0 | 28125 | 1.3256 | 0.8549 |
| 0.0022 | 10.0 | 31250 | 1.4670 | 0.8528 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|