Adapters
English
art
noxo8888's picture
Create app.py
94a7d1f verified
raw
history blame
1.84 kB
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline
from datetime import datetime
import os
class RafayyAI:
def __init__(self):
self.model = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
if torch.cuda.is_available():
self.model = self.model.to("cuda")
def generate_image(self, prompt, negative_prompt=""):
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"generated_{timestamp}.png"
# Generate image
image = self.model(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
guidance_scale=7.5
).images[0]
# Save image
image.save(filename)
return filename
# Initialize the AI
rafayy = RafayyAI()
# Create Gradio interface
def generate(prompt, negative_prompt=""):
return rafayy.generate_image(prompt, negative_prompt)
demo = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate..."),
gr.Textbox(label="Negative Prompt (Optional)", placeholder="What you don't want in the image...")
],
outputs=gr.Image(label="Generated Image"),
title="Rafayy AI Image Generator",
description="Generate unique images from text descriptions",
examples=[
["A beautiful sunset over mountains", "blur, low quality"],
["A futuristic city at night", "dark, blurry"],
["A cute cat playing with yarn", "ugly, distorted"]
]
)
# Launch the app
if __name__ == "__main__":
demo.launch()