--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-base_auditor_sentiment results: [] --- # roberta-base_auditor_sentiment This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5356 - Accuracy: 0.8554 - Precision: 0.8224 - Recall: 0.8722 - F1: 0.8414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4217 | 1.0 | 485 | 0.6358 | 0.8223 | 0.8142 | 0.8135 | 0.8134 | | 0.6538 | 2.0 | 970 | 0.6491 | 0.8388 | 0.8584 | 0.8025 | 0.8192 | | 0.3961 | 3.0 | 1455 | 0.5356 | 0.8554 | 0.8224 | 0.8722 | 0.8414 | | 0.1121 | 4.0 | 1940 | 0.7393 | 0.8512 | 0.8414 | 0.8477 | 0.8428 | | 0.0192 | 5.0 | 2425 | 0.7233 | 0.8698 | 0.8581 | 0.8743 | 0.8657 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1