prithivMLmods commited on
Commit
4e64d82
·
verified ·
1 Parent(s): 28e974a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -1
README.md CHANGED
@@ -9,6 +9,61 @@ library_name: transformers
9
  tags:
10
  - fire-detection
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  Classification report:
13
 
14
  precision recall f1-score support
@@ -19,4 +74,14 @@ tags:
19
 
20
  accuracy 0.9941 3030
21
  macro avg 0.9941 0.9941 0.9941 3030
22
- weighted avg 0.9941 0.9941 0.9941 3030
 
 
 
 
 
 
 
 
 
 
 
9
  tags:
10
  - fire-detection
11
  ---
12
+ # **Fire-Detection-Siglip2**
13
+
14
+ **Fire-Detection-Siglip2** is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect fire, smoke, or normal conditions using the SiglipForImageClassification architecture.
15
+
16
+ The model categorizes images into three classes:
17
+ - **Class 0:** "Fire" – The image shows active fire.
18
+ - **Class 1:** "Normal" – The image depicts a normal, fire-free environment.
19
+ - **Class 2:** "Smoke" – The image contains visible smoke, indicating potential fire risk.
20
+
21
+ ```python
22
+ !pip install -q transformers torch pillow gradio
23
+ ```
24
+
25
+ ```python
26
+ import gradio as gr
27
+ from transformers import AutoImageProcessor
28
+ from transformers import SiglipForImageClassification
29
+ from transformers.image_utils import load_image
30
+ from PIL import Image
31
+ import torch
32
+
33
+ # Load model and processor
34
+ model_name = "prithivMLmods/Fire-Detection-Siglip2"
35
+ model = SiglipForImageClassification.from_pretrained(model_name)
36
+ processor = AutoImageProcessor.from_pretrained(model_name)
37
+
38
+ def fire_detection(image):
39
+ """Classifies an image as fire, smoke, or normal conditions."""
40
+ image = Image.fromarray(image).convert("RGB")
41
+ inputs = processor(images=image, return_tensors="pt")
42
+
43
+ with torch.no_grad():
44
+ outputs = model(**inputs)
45
+ logits = outputs.logits
46
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
47
+
48
+ labels = model.config.id2label
49
+ predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
50
+
51
+ return predictions
52
+
53
+ # Create Gradio interface
54
+ iface = gr.Interface(
55
+ fn=fire_detection,
56
+ inputs=gr.Image(type="numpy"),
57
+ outputs=gr.Label(label="Detection Result"),
58
+ title="Fire Detection Model",
59
+ description="Upload an image to determine if it contains fire, smoke, or a normal condition."
60
+ )
61
+
62
+ # Launch the app
63
+ if __name__ == "__main__":
64
+ iface.launch()
65
+ ```
66
+
67
  Classification report:
68
 
69
  precision recall f1-score support
 
74
 
75
  accuracy 0.9941 3030
76
  macro avg 0.9941 0.9941 0.9941 3030
77
+ weighted avg 0.9941 0.9941 0.9941 3030
78
+
79
+ # **Intended Use:**
80
+
81
+ The **Fire-Detection-Siglip2** model is designed to classify images into three categories: **fire, smoke, or normal conditions**. It helps in early fire detection and environmental monitoring.
82
+
83
+ ### Potential Use Cases:
84
+ - **Fire Safety Monitoring:** Detecting fire and smoke in surveillance footage.
85
+ - **Early Warning Systems:** Helping in real-time fire hazard detection in public and private areas.
86
+ - **Disaster Prevention:** Assisting emergency response teams by identifying fire-prone areas.
87
+ - **Smart Home & IoT Integration:** Enhancing automated fire alert systems in smart security setups.