Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
model base: https://huggingface.co/microsoft/mdeberta-v3-base
|
6 |
+
|
7 |
+
dataset: https://github.com/ramybaly/Article-Bias-Prediction
|
8 |
+
|
9 |
+
|
10 |
+
training parameters:
|
11 |
+
- devices: 2xH100
|
12 |
+
- batch_size: 100
|
13 |
+
- epochs: 5
|
14 |
+
- dropout: 0.05
|
15 |
+
- max_length: 512
|
16 |
+
- learning_rate: 3e-5
|
17 |
+
- warmup_steps: 100
|
18 |
+
- random_state: 239
|
19 |
+
|
20 |
+
|
21 |
+
training methodology:
|
22 |
+
- sanitize dataset following specific rule-set, utilize random split as provided in the dataset
|
23 |
+
- train on train split and evaluate on validation split in each epoch
|
24 |
+
- evaluate test split only on the model that performed best on validation loss
|
25 |
+
|
26 |
+
result summary:
|
27 |
+
- throughout the five training epochs, model of x epoch achieved the lowest validation loss of x
|
28 |
+
- on test split x epoch model achieved f1 score of x and a test loss of x
|
29 |
+
|
30 |
+
usage:
|
31 |
+
|
32 |
+
```
|
33 |
+
model = AutoModelForSequenceClassification.from_pretrained("premsa/political-bias-prediction-allsides-mDeBERTa")
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(premsa/"premsa/political-bias-prediction-allsides-mDeBERTa")
|
35 |
+
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
36 |
+
print(nlp("die massen werden von den medien kontrolliert."))
|
37 |
+
```
|