new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

3DPFIX: Improving Remote Novices' 3D Printing Troubleshooting through Human-AI Collaboration

The widespread consumer-grade 3D printers and learning resources online enable novices to self-train in remote settings. While troubleshooting plays an essential part of 3D printing, the process remains challenging for many remote novices even with the help of well-developed online sources, such as online troubleshooting archives and online community help. We conducted a formative study with 76 active 3D printing users to learn how remote novices leverage online resources in troubleshooting and their challenges. We found that remote novices cannot fully utilize online resources. For example, the online archives statically provide general information, making it hard to search and relate their unique cases with existing descriptions. Online communities can potentially ease their struggles by providing more targeted suggestions, but a helper who can provide custom help is rather scarce, making it hard to obtain timely assistance. We propose 3DPFIX, an interactive 3D troubleshooting system powered by the pipeline to facilitate Human-AI Collaboration, designed to improve novices' 3D printing experiences and thus help them easily accumulate their domain knowledge. We built 3DPFIX that supports automated diagnosis and solution-seeking. 3DPFIX was built upon shared dialogues about failure cases from Q&A discourses accumulated in online communities. We leverage social annotations (i.e., comments) to build an annotated failure image dataset for AI classifiers and extract a solution pool. Our summative study revealed that using 3DPFIX helped participants spend significantly less effort in diagnosing failures and finding a more accurate solution than relying on their common practice. We also found that 3DPFIX users learn about 3D printing domain-specific knowledge. We discuss the implications of leveraging community-driven data in developing future Human-AI Collaboration designs.

Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective

OpenAI o1 represents a significant milestone in Artificial Inteiligence, which achieves expert-level performances on many challanging tasks that require strong reasoning ability.OpenAI has claimed that the main techinique behinds o1 is the reinforcement learining. Recent works use alternative approaches like knowledge distillation to imitate o1's reasoning style, but their effectiveness is limited by the capability ceiling of the teacher model. Therefore, this paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning, focusing on four key components: policy initialization, reward design, search, and learning. Policy initialization enables models to develop human-like reasoning behaviors, equipping them with the ability to effectively explore solution spaces for complex problems. Reward design provides dense and effective signals via reward shaping or reward modeling, which is the guidance for both search and learning. Search plays a crucial role in generating high-quality solutions during both training and testing phases, which can produce better solutions with more computation. Learning utilizes the data generated by search for improving policy, which can achieve the better performance with more parameters and more searched data. Existing open-source projects that attempt to reproduce o1 can be seem as a part or a variant of our roadmap. Collectively, these components underscore how learning and search drive o1's advancement, making meaningful contributions to the development of LLM.

Flow of Reasoning: Efficient Training of LLM Policy with Divergent Thinking

Divergent thinking, the cognitive process of generating diverse solutions, is a hallmark of human creativity and problem-solving. For machines, sampling diverse solution trajectories in complex reasoning problems is crucial for robust outcomes, data augmentation, and enhanced model generalization. Large language models (LLMs) often struggle with generating high-quality, diverse reasoning. While supervised fine-tuning helps with quality, it requires extensive supervision data to capture the full diversity of solutions. Alternatively, reinforcement learning methods like PPO aim to find limited highest-reward solutions while neglecting the solution diversity, akin to convergent thinking. To address these limitations, we propose Flow of Reasoning (FoR) -- an efficient LLM training approach enabling diverse reasoning with minimal data. FoR formulates multi-step LLM reasoning as a Markovian flow from an initial state to terminal states. The formulation allows to adapt principled GFlowNet approaches to train the LLM as a policy, which is able to sample multiple reasoning paths with probabilities proportional to the unnormalized reward. Empirical results show that, with limited training data (e.g., 15 examples), FoR can discover diverse high-quality solutions that excel greatly beyond current state-of-the-art methods across three tasks, including embodied reasoning (BlocksWorld), math puzzle solving (Game24), and logical reasoning (PrOntoQA). Code is available at https://github.com/Yu-Fangxu/FoR.

A Definition of Continual Reinforcement Learning

In a standard view of the reinforcement learning problem, an agent's goal is to efficiently identify a policy that maximizes long-term reward. However, this perspective is based on a restricted view of learning as finding a solution, rather than treating learning as endless adaptation. In contrast, continual reinforcement learning refers to the setting in which the best agents never stop learning. Despite the importance of continual reinforcement learning, the community lacks a simple definition of the problem that highlights its commitments and makes its primary concepts precise and clear. To this end, this paper is dedicated to carefully defining the continual reinforcement learning problem. We formalize the notion of agents that "never stop learning" through a new mathematical language for analyzing and cataloging agents. Using this new language, we define a continual learning agent as one that can be understood as carrying out an implicit search process indefinitely, and continual reinforcement learning as the setting in which the best agents are all continual learning agents. We provide two motivating examples, illustrating that traditional views of multi-task reinforcement learning and continual supervised learning are special cases of our definition. Collectively, these definitions and perspectives formalize many intuitive concepts at the heart of learning, and open new research pathways surrounding continual learning agents.

MindSearch: Mimicking Human Minds Elicits Deep AI Searcher

Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.

B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests

Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.

CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models

Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence, capable of processing and understanding extensive human knowledge to enhance problem-solving across various domains. This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines, where such solutions are crucial for advancing theoretical and practical applications. We propose a novel framework that utilizes LLMs in an evolutionary search methodology, augmented by a dynamic knowledge library that integrates and refines insights in an open-ended manner. This approach aims to tackle the dual challenges of efficiently navigating complex symbolic representation spaces and leveraging both existing and newly generated knowledge to foster open-ended innovation. By enabling LLMs to interact with and expand upon a knowledge library, we facilitate the continuous generation of novel solutions in diverse forms such as language, code, and mathematical expressions. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing AI in the perpetual pursuit of scientific and engineering breakthroughs. We have open-sourced our code and data, please visit https://github.com/pgg3/CoEvo for more information.