Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImage Synthesis with Graph Conditioning: CLIP-Guided Diffusion Models for Scene Graphs
Advancements in generative models have sparked significant interest in generating images while adhering to specific structural guidelines. Scene graph to image generation is one such task of generating images which are consistent with the given scene graph. However, the complexity of visual scenes poses a challenge in accurately aligning objects based on specified relations within the scene graph. Existing methods approach this task by first predicting a scene layout and generating images from these layouts using adversarial training. In this work, we introduce a novel approach to generate images from scene graphs which eliminates the need of predicting intermediate layouts. We leverage pre-trained text-to-image diffusion models and CLIP guidance to translate graph knowledge into images. Towards this, we first pre-train our graph encoder to align graph features with CLIP features of corresponding images using a GAN based training. Further, we fuse the graph features with CLIP embedding of object labels present in the given scene graph to create a graph consistent CLIP guided conditioning signal. In the conditioning input, object embeddings provide coarse structure of the image and graph features provide structural alignment based on relationships among objects. Finally, we fine tune a pre-trained diffusion model with the graph consistent conditioning signal with reconstruction and CLIP alignment loss. Elaborate experiments reveal that our method outperforms existing methods on standard benchmarks of COCO-stuff and Visual Genome dataset.
SceneGenie: Scene Graph Guided Diffusion Models for Image Synthesis
Text-conditioned image generation has made significant progress in recent years with generative adversarial networks and more recently, diffusion models. While diffusion models conditioned on text prompts have produced impressive and high-quality images, accurately representing complex text prompts such as the number of instances of a specific object remains challenging. To address this limitation, we propose a novel guidance approach for the sampling process in the diffusion model that leverages bounding box and segmentation map information at inference time without additional training data. Through a novel loss in the sampling process, our approach guides the model with semantic features from CLIP embeddings and enforces geometric constraints, leading to high-resolution images that accurately represent the scene. To obtain bounding box and segmentation map information, we structure the text prompt as a scene graph and enrich the nodes with CLIP embeddings. Our proposed model achieves state-of-the-art performance on two public benchmarks for image generation from scene graphs, surpassing both scene graph to image and text-based diffusion models in various metrics. Our results demonstrate the effectiveness of incorporating bounding box and segmentation map guidance in the diffusion model sampling process for more accurate text-to-image generation.
Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation
Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and VQA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics, which is adaptable to any QG/A frameworks. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.
SkySenseGPT: A Fine-Grained Instruction Tuning Dataset and Model for Remote Sensing Vision-Language Understanding
Remote Sensing Large Multi-Modal Models (RSLMMs) are developing rapidly and showcase significant capabilities in remote sensing imagery (RSI) comprehension. However, due to the limitations of existing datasets, RSLMMs have shortcomings in understanding the rich semantic relations among objects in complex remote sensing scenes. To unlock RSLMMs' complex comprehension ability, we propose a large-scale instruction tuning dataset FIT-RS, containing 1,800,851 instruction samples. FIT-RS covers common interpretation tasks and innovatively introduces several complex comprehension tasks of escalating difficulty, ranging from relation reasoning to image-level scene graph generation. Based on FIT-RS, we build the FIT-RSFG benchmark. Furthermore, we establish a new benchmark to evaluate the fine-grained relation comprehension capabilities of LMMs, named FIT-RSRC. Based on combined instruction data, we propose SkySenseGPT, which achieves outstanding performance on both public datasets and FIT-RSFG, surpassing existing RSLMMs. We hope the FIT-RS dataset can enhance the relation comprehension capability of RSLMMs and provide a large-scale fine-grained data source for the remote sensing community. The dataset will be available at https://github.com/Luo-Z13/SkySenseGPT
Interleaved Scene Graph for Interleaved Text-and-Image Generation Assessment
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal Structured Representations
Large-scale vision-language pre-training has achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require structured representations, i.e., representations of objects, attributes, and relations. As illustrated in Fig.~reffig:case (a), the models cannot make a distinction between ``An astronaut rides a horse" and ``A horse rides an astronaut". This is because they fail to fully leverage structured knowledge when learning representations in multi-modal scenarios. In this paper, we present an end-to-end framework Structure-CLIP, which integrates Scene Graph Knowledge (SGK) to enhance multi-modal structured representations. Firstly, we use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations. Moreover, a Knowledge-Enhance Encoder (KEE) is proposed to leverage SGK as input to further enhance structured representations. To verify the effectiveness of the proposed framework, we pre-train our model with the aforementioned approaches and conduct experiments on downstream tasks. Experimental results demonstrate that Structure-CLIP achieves state-of-the-art (SOTA) performance on VG-Attribution and VG-Relation datasets, with 12.5% and 4.1% ahead of the multi-modal SOTA model respectively. Meanwhile, the results on MSCOCO indicate that Structure-CLIP significantly enhances the structured representations while maintaining the ability of general representations. Our code is available at https://github.com/zjukg/Structure-CLIP.
Haystack: A Panoptic Scene Graph Dataset to Evaluate Rare Predicate Classes
Current scene graph datasets suffer from strong long-tail distributions of their predicate classes. Due to a very low number of some predicate classes in the test sets, no reliable metrics can be retrieved for the rarest classes. We construct a new panoptic scene graph dataset and a set of metrics that are designed as a benchmark for the predictive performance especially on rare predicate classes. To construct the new dataset, we propose a model-assisted annotation pipeline that efficiently finds rare predicate classes that are hidden in a large set of images like needles in a haystack. Contrary to prior scene graph datasets, Haystack contains explicit negative annotations, i.e. annotations that a given relation does not have a certain predicate class. Negative annotations are helpful especially in the field of scene graph generation and open up a whole new set of possibilities to improve current scene graph generation models. Haystack is 100% compatible with existing panoptic scene graph datasets and can easily be integrated with existing evaluation pipelines. Our dataset and code can be found here: https://lorjul.github.io/haystack/. It includes annotation files and simple to use scripts and utilities, to help with integrating our dataset in existing work.
VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
The task of 3D semantic scene graph (3DSSG) prediction in the point cloud is challenging since (1) the 3D point cloud only captures geometric structures with limited semantics compared to 2D images, and (2) long-tailed relation distribution inherently hinders the learning of unbiased prediction. Since 2D images provide rich semantics and scene graphs are in nature coped with languages, in this study, we propose Visual-Linguistic Semantics Assisted Training (VL-SAT) scheme that can significantly empower 3DSSG prediction models with discrimination about long-tailed and ambiguous semantic relations. The key idea is to train a powerful multi-modal oracle model to assist the 3D model. This oracle learns reliable structural representations based on semantics from vision, language, and 3D geometry, and its benefits can be heterogeneously passed to the 3D model during the training stage. By effectively utilizing visual-linguistic semantics in training, our VL-SAT can significantly boost common 3DSSG prediction models, such as SGFN and SGGpoint, only with 3D inputs in the inference stage, especially when dealing with tail relation triplets. Comprehensive evaluations and ablation studies on the 3DSSG dataset have validated the effectiveness of the proposed scheme. Code is available at https://github.com/wz7in/CVPR2023-VLSAT.
Specifying Object Attributes and Relations in Interactive Scene Generation
We introduce a method for the generation of images from an input scene graph. The method separates between a layout embedding and an appearance embedding. The dual embedding leads to generated images that better match the scene graph, have higher visual quality, and support more complex scene graphs. In addition, the embedding scheme supports multiple and diverse output images per scene graph, which can be further controlled by the user. We demonstrate two modes of per-object control: (i) importing elements from other images, and (ii) navigation in the object space, by selecting an appearance archetype. Our code is publicly available at https://www.github.com/ashual/scene_generation
Trust but Verify: Programmatic VLM Evaluation in the Wild
Vision-Language Models (VLMs) often generate plausible but incorrect responses to visual queries. However, reliably quantifying the effect of such hallucinations in free-form responses to open-ended queries is challenging as it requires visually verifying each claim within the response. We propose Programmatic VLM Evaluation (PROVE), a new benchmarking paradigm for evaluating VLM responses to open-ended queries. To construct PROVE, we provide a large language model (LLM) with a high-fidelity scene-graph representation constructed from a hyper-detailed image caption, and prompt it to generate diverse question-answer (QA) pairs, as well as programs that can be executed over the scene graph object to verify each QA pair. We thus construct a benchmark of 10.5k challenging but visually grounded QA pairs. Next, to evaluate free-form model responses to queries in PROVE, we propose a programmatic evaluation strategy that measures both the helpfulness and truthfulness of a response within a unified scene graph-based framework. We benchmark the helpfulness-truthfulness trade-offs of a range of VLMs on PROVE, finding that very few are in-fact able to achieve a good balance between the two. Project page: https://prove-explorer.netlify.app/.
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation
Scene graph generation (SGG) aims to predict graph-structured descriptions of input images, in the form of objects and relationships between them. This task is becoming increasingly useful for progress at the interface of vision and language. Here, it is important - yet challenging - to perform well on novel (zero-shot) or rare (few-shot) compositions of objects and relationships. In this paper, we identify two key issues that limit such generalization. Firstly, we show that the standard loss used in this task is unintentionally a function of scene graph density. This leads to the neglect of individual edges in large sparse graphs during training, even though these contain diverse few-shot examples that are important for generalization. Secondly, the frequency of relationships can create a strong bias in this task, such that a blind model predicting the most frequent relationship achieves good performance. Consequently, some state-of-the-art models exploit this bias to improve results. We show that such models can suffer the most in their ability to generalize to rare compositions, evaluating two different models on the Visual Genome dataset and its more recent, improved version, GQA. To address these issues, we introduce a density-normalized edge loss, which provides more than a two-fold improvement in certain generalization metrics. Compared to other works in this direction, our enhancements require only a few lines of code and no added computational cost. We also highlight the difficulty of accurately evaluating models using existing metrics, especially on zero/few shots, and introduce a novel weighted metric.
Symbolic Replay: Scene Graph as Prompt for Continual Learning on VQA Task
VQA is an ambitious task aiming to answer any image-related question. However, in reality, it is hard to build such a system once for all since the needs of users are continuously updated, and the system has to implement new functions. Thus, Continual Learning (CL) ability is a must in developing advanced VQA systems. Recently, a pioneer work split a VQA dataset into disjoint answer sets to study this topic. However, CL on VQA involves not only the expansion of label sets (new Answer sets). It is crucial to study how to answer questions when deploying VQA systems to new environments (new Visual scenes) and how to answer questions requiring new functions (new Question types). Thus, we propose CLOVE, a benchmark for Continual Learning On Visual quEstion answering, which contains scene- and function-incremental settings for the two aforementioned CL scenarios. In terms of methodology, the main difference between CL on VQA and classification is that the former additionally involves expanding and preventing forgetting of reasoning mechanisms, while the latter focusing on class representation. Thus, we propose a real-data-free replay-based method tailored for CL on VQA, named Scene Graph as Prompt for Symbolic Replay. Using a piece of scene graph as a prompt, it replays pseudo scene graphs to represent the past images, along with correlated QA pairs. A unified VQA model is also proposed to utilize the current and replayed data to enhance its QA ability. Finally, experimental results reveal challenges in CLOVE and demonstrate the effectiveness of our method. The dataset and code will be available at https://github.com/showlab/CLVQA.
HiLo: Exploiting High Low Frequency Relations for Unbiased Panoptic Scene Graph Generation
Panoptic Scene Graph generation (PSG) is a recently proposed task in image scene understanding that aims to segment the image and extract triplets of subjects, objects and their relations to build a scene graph. This task is particularly challenging for two reasons. First, it suffers from a long-tail problem in its relation categories, making naive biased methods more inclined to high-frequency relations. Existing unbiased methods tackle the long-tail problem by data/loss rebalancing to favor low-frequency relations. Second, a subject-object pair can have two or more semantically overlapping relations. While existing methods favor one over the other, our proposed HiLo framework lets different network branches specialize on low and high frequency relations, enforce their consistency and fuse the results. To the best of our knowledge we are the first to propose an explicitly unbiased PSG method. In extensive experiments we show that our HiLo framework achieves state-of-the-art results on the PSG task. We also apply our method to the Scene Graph Generation task that predicts boxes instead of masks and see improvements over all baseline methods. Code is available at https://github.com/franciszzj/HiLo.
Weakly Supervised Fine-grained Scene Graph Generation via Large Language Model
Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.
Scene Graph as Pivoting: Inference-time Image-free Unsupervised Multimodal Machine Translation with Visual Scene Hallucination
In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grained vision-language features ensure a holistic understanding of the semantics. To enable pure-text input during inference, we devise a visual scene hallucination mechanism that dynamically generates pseudo visual SG from the given textual SG. Several SG-pivoting based learning objectives are introduced for unsupervised translation training. On the benchmark Multi30K data, our SG-based method outperforms the best-performing baseline by significant BLEU scores on the task and setup, helping yield translations with better completeness, relevance and fluency without relying on paired images. Further in-depth analyses reveal how our model advances in the task setting.
Image Scene Graph Generation (SGG) Benchmark
There is a surge of interest in image scene graph generation (object, attribute and relationship detection) due to the need of building fine-grained image understanding models that go beyond object detection. Due to the lack of a good benchmark, the reported results of different scene graph generation models are not directly comparable, impeding the research progress. We have developed a much-needed scene graph generation benchmark based on the maskrcnn-benchmark and several popular models. This paper presents main features of our benchmark and a comprehensive ablation study of scene graph generation models using the Visual Genome and OpenImages Visual relationship detection datasets. Our codebase is made publicly available at https://github.com/microsoft/scene_graph_benchmark.
STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets <subject, relationship, object> heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size SAI. This paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named STAR (Scene graph generaTion in lArge-size satellite imageRy), encompassing over 210K objects and over 400K triplets. To realize SGG in large-size SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI regarding object detection (OBD), pair pruning and relationship prediction for SGG. We also release a SAI-oriented SGG toolkit with about 30 OBD and 10 SGG methods which need further adaptation by our devised modules on our challenging STAR dataset. The dataset and toolkit are available at: https://linlin-dev.github.io/project/STAR.
SGEdit: Bridging LLM with Text2Image Generative Model for Scene Graph-based Image Editing
Scene graphs offer a structured, hierarchical representation of images, with nodes and edges symbolizing objects and the relationships among them. It can serve as a natural interface for image editing, dramatically improving precision and flexibility. Leveraging this benefit, we introduce a new framework that integrates large language model (LLM) with Text2Image generative model for scene graph-based image editing. This integration enables precise modifications at the object level and creative recomposition of scenes without compromising overall image integrity. Our approach involves two primary stages: 1) Utilizing a LLM-driven scene parser, we construct an image's scene graph, capturing key objects and their interrelationships, as well as parsing fine-grained attributes such as object masks and descriptions. These annotations facilitate concept learning with a fine-tuned diffusion model, representing each object with an optimized token and detailed description prompt. 2) During the image editing phase, a LLM editing controller guides the edits towards specific areas. These edits are then implemented by an attention-modulated diffusion editor, utilizing the fine-tuned model to perform object additions, deletions, replacements, and adjustments. Through extensive experiments, we demonstrate that our framework significantly outperforms existing image editing methods in terms of editing precision and scene aesthetics.
3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera
A comprehensive semantic understanding of a scene is important for many applications - but in what space should diverse semantic information (e.g., objects, scene categories, material types, texture, etc.) be grounded and what should be its structure? Aspiring to have one unified structure that hosts diverse types of semantics, we follow the Scene Graph paradigm in 3D, generating a 3D Scene Graph. Given a 3D mesh and registered panoramic images, we construct a graph that spans the entire building and includes semantics on objects (e.g., class, material, and other attributes), rooms (e.g., scene category, volume, etc.) and cameras (e.g., location, etc.), as well as the relationships among these entities. However, this process is prohibitively labor heavy if done manually. To alleviate this we devise a semi-automatic framework that employs existing detection methods and enhances them using two main constraints: I. framing of query images sampled on panoramas to maximize the performance of 2D detectors, and II. multi-view consistency enforcement across 2D detections that originate in different camera locations.
Scene Graph Generation by Iterative Message Passing
Understanding a visual scene goes beyond recognizing individual objects in isolation. Relationships between objects also constitute rich semantic information about the scene. In this work, we explicitly model the objects and their relationships using scene graphs, a visually-grounded graphical structure of an image. We propose a novel end-to-end model that generates such structured scene representation from an input image. The model solves the scene graph inference problem using standard RNNs and learns to iteratively improves its predictions via message passing. Our joint inference model can take advantage of contextual cues to make better predictions on objects and their relationships. The experiments show that our model significantly outperforms previous methods for generating scene graphs using Visual Genome dataset and inferring support relations with NYU Depth v2 dataset.
Visually-Prompted Language Model for Fine-Grained Scene Graph Generation in an Open World
Scene Graph Generation (SGG) aims to extract <subject, predicate, object> relationships in images for vision understanding. Although recent works have made steady progress on SGG, they still suffer long-tail distribution issues that tail-predicates are more costly to train and hard to distinguish due to a small amount of annotated data compared to frequent predicates. Existing re-balancing strategies try to handle it via prior rules but are still confined to pre-defined conditions, which are not scalable for various models and datasets. In this paper, we propose a Cross-modal prediCate boosting (CaCao) framework, where a visually-prompted language model is learned to generate diverse fine-grained predicates in a low-resource way. The proposed CaCao can be applied in a plug-and-play fashion and automatically strengthen existing SGG to tackle the long-tailed problem. Based on that, we further introduce a novel Entangled cross-modal prompt approach for open-world predicate scene graph generation (Epic), where models can generalize to unseen predicates in a zero-shot manner. Comprehensive experiments on three benchmark datasets show that CaCao consistently boosts the performance of multiple scene graph generation models in a model-agnostic way. Moreover, our Epic achieves competitive performance on open-world predicate prediction. The data and code for this paper are publicly available.
Compositional Feature Augmentation for Unbiased Scene Graph Generation
Scene Graph Generation (SGG) aims to detect all the visual relation triplets <sub, pred, obj> in a given image. With the emergence of various advanced techniques for better utilizing both the intrinsic and extrinsic information in each relation triplet, SGG has achieved great progress over the recent years. However, due to the ubiquitous long-tailed predicate distributions, today's SGG models are still easily biased to the head predicates. Currently, the most prevalent debiasing solutions for SGG are re-balancing methods, e.g., changing the distributions of original training samples. In this paper, we argue that all existing re-balancing strategies fail to increase the diversity of the relation triplet features of each predicate, which is critical for robust SGG. To this end, we propose a novel Compositional Feature Augmentation (CFA) strategy, which is the first unbiased SGG work to mitigate the bias issue from the perspective of increasing the diversity of triplet features. Specifically, we first decompose each relation triplet feature into two components: intrinsic feature and extrinsic feature, which correspond to the intrinsic characteristics and extrinsic contexts of a relation triplet, respectively. Then, we design two different feature augmentation modules to enrich the feature diversity of original relation triplets by replacing or mixing up either their intrinsic or extrinsic features from other samples. Due to its model-agnostic nature, CFA can be seamlessly incorporated into various SGG frameworks. Extensive ablations have shown that CFA achieves a new state-of-the-art performance on the trade-off between different metrics.
OpenPSG: Open-set Panoptic Scene Graph Generation via Large Multimodal Models
Panoptic Scene Graph Generation (PSG) aims to segment objects and recognize their relations, enabling the structured understanding of an image. Previous methods focus on predicting predefined object and relation categories, hence limiting their applications in the open world scenarios. With the rapid development of large multimodal models (LMMs), significant progress has been made in open-set object detection and segmentation, yet open-set relation prediction in PSG remains unexplored. In this paper, we focus on the task of open-set relation prediction integrated with a pretrained open-set panoptic segmentation model to achieve true open-set panoptic scene graph generation (OpenPSG). Our OpenPSG leverages LMMs to achieve open-set relation prediction in an autoregressive manner. We introduce a relation query transformer to efficiently extract visual features of object pairs and estimate the existence of relations between them. The latter can enhance the prediction efficiency by filtering irrelevant pairs. Finally, we design the generation and judgement instructions to perform open-set relation prediction in PSG autoregressively. To our knowledge, we are the first to propose the open-set PSG task. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-set relation prediction and panoptic scene graph generation. Code is available at https://github.com/franciszzj/OpenPSG.
Multiview Scene Graph
A proper scene representation is central to the pursuit of spatial intelligence where agents can robustly reconstruct and efficiently understand 3D scenes. A scene representation is either metric, such as landmark maps in 3D reconstruction, 3D bounding boxes in object detection, or voxel grids in occupancy prediction, or topological, such as pose graphs with loop closures in SLAM or visibility graphs in SfM. In this work, we propose to build Multiview Scene Graphs (MSG) from unposed images, representing a scene topologically with interconnected place and object nodes. The task of building MSG is challenging for existing representation learning methods since it needs to jointly address both visual place recognition, object detection, and object association from images with limited fields of view and potentially large viewpoint changes. To evaluate any method tackling this task, we developed an MSG dataset and annotation based on a public 3D dataset. We also propose an evaluation metric based on the intersection-over-union score of MSG edges. Moreover, we develop a novel baseline method built on mainstream pretrained vision models, combining visual place recognition and object association into one Transformer decoder architecture. Experiments demonstrate our method has superior performance compared to existing relevant baselines.
Joint Generative Modeling of Scene Graphs and Images via Diffusion Models
In this paper, we present a novel generative task: joint scene graph - image generation. While previous works have explored image generation conditioned on scene graphs or layouts, our task is distinctive and important as it involves generating scene graphs themselves unconditionally from noise, enabling efficient and interpretable control for image generation. Our task is challenging, requiring the generation of plausible scene graphs with heterogeneous attributes for nodes (objects) and edges (relations among objects), including continuous object bounding boxes and discrete object and relation categories. We introduce a novel diffusion model, DiffuseSG, that jointly models the adjacency matrix along with heterogeneous node and edge attributes. We explore various types of encodings for the categorical data, relaxing it into a continuous space. With a graph transformer being the denoiser, DiffuseSG successively denoises the scene graph representation in a continuous space and discretizes the final representation to generate the clean scene graph. Additionally, we introduce an IoU regularization to enhance the empirical performance. Our model significantly outperforms existing methods in scene graph generation on the Visual Genome and COCO-Stuff datasets, both on standard and newly introduced metrics that better capture the problem complexity. Moreover, we demonstrate the additional benefits of our model in two downstream applications: 1) excelling in a series of scene graph completion tasks, and 2) improving scene graph detection models by using extra training samples generated from DiffuseSG.
VLPrompt: Vision-Language Prompting for Panoptic Scene Graph Generation
Panoptic Scene Graph Generation (PSG) aims at achieving a comprehensive image understanding by simultaneously segmenting objects and predicting relations among objects. However, the long-tail problem among relations leads to unsatisfactory results in real-world applications. Prior methods predominantly rely on vision information or utilize limited language information, such as object or relation names, thereby overlooking the utility of language information. Leveraging the recent progress in Large Language Models (LLMs), we propose to use language information to assist relation prediction, particularly for rare relations. To this end, we propose the Vision-Language Prompting (VLPrompt) model, which acquires vision information from images and language information from LLMs. Then, through a prompter network based on attention mechanism, it achieves precise relation prediction. Our extensive experiments show that VLPrompt significantly outperforms previous state-of-the-art methods on the PSG dataset, proving the effectiveness of incorporating language information and alleviating the long-tail problem of relations.
Panoptic Scene Graph Generation
Existing research addresses scene graph generation (SGG) -- a critical technology for scene understanding in images -- from a detection perspective, i.e., objects are detected using bounding boxes followed by prediction of their pairwise relationships. We argue that such a paradigm causes several problems that impede the progress of the field. For instance, bounding box-based labels in current datasets usually contain redundant classes like hairs, and leave out background information that is crucial to the understanding of context. In this work, we introduce panoptic scene graph generation (PSG), a new problem task that requires the model to generate a more comprehensive scene graph representation based on panoptic segmentations rather than rigid bounding boxes. A high-quality PSG dataset, which contains 49k well-annotated overlapping images from COCO and Visual Genome, is created for the community to keep track of its progress. For benchmarking, we build four two-stage baselines, which are modified from classic methods in SGG, and two one-stage baselines called PSGTR and PSGFormer, which are based on the efficient Transformer-based detector, i.e., DETR. While PSGTR uses a set of queries to directly learn triplets, PSGFormer separately models the objects and relations in the form of queries from two Transformer decoders, followed by a prompting-like relation-object matching mechanism. In the end, we share insights on open challenges and future directions.
Adaptive Self-training Framework for Fine-grained Scene Graph Generation
Scene graph generation (SGG) models have suffered from inherent problems regarding the benchmark datasets such as the long-tailed predicate distribution and missing annotation problems. In this work, we aim to alleviate the long-tailed problem of SGG by utilizing unannotated triplets. To this end, we introduce a Self-Training framework for SGG (ST-SGG) that assigns pseudo-labels for unannotated triplets based on which the SGG models are trained. While there has been significant progress in self-training for image recognition, designing a self-training framework for the SGG task is more challenging due to its inherent nature such as the semantic ambiguity and the long-tailed distribution of predicate classes. Hence, we propose a novel pseudo-labeling technique for SGG, called Class-specific Adaptive Thresholding with Momentum (CATM), which is a model-agnostic framework that can be applied to any existing SGG models. Furthermore, we devise a graph structure learner (GSL) that is beneficial when adopting our proposed self-training framework to the state-of-the-art message-passing neural network (MPNN)-based SGG models. Our extensive experiments verify the effectiveness of ST-SGG on various SGG models, particularly in enhancing the performance on fine-grained predicate classes.
CAST: Component-Aligned 3D Scene Reconstruction from an RGB Image
Recovering high-quality 3D scenes from a single RGB image is a challenging task in computer graphics. Current methods often struggle with domain-specific limitations or low-quality object generation. To address these, we propose CAST (Component-Aligned 3D Scene Reconstruction from a Single RGB Image), a novel method for 3D scene reconstruction and recovery. CAST starts by extracting object-level 2D segmentation and relative depth information from the input image, followed by using a GPT-based model to analyze inter-object spatial relationships. This enables the understanding of how objects relate to each other within the scene, ensuring more coherent reconstruction. CAST then employs an occlusion-aware large-scale 3D generation model to independently generate each object's full geometry, using MAE and point cloud conditioning to mitigate the effects of occlusions and partial object information, ensuring accurate alignment with the source image's geometry and texture. To align each object with the scene, the alignment generation model computes the necessary transformations, allowing the generated meshes to be accurately placed and integrated into the scene's point cloud. Finally, CAST incorporates a physics-aware correction step that leverages a fine-grained relation graph to generate a constraint graph. This graph guides the optimization of object poses, ensuring physical consistency and spatial coherence. By utilizing Signed Distance Fields (SDF), the model effectively addresses issues such as occlusions, object penetration, and floating objects, ensuring that the generated scene accurately reflects real-world physical interactions. CAST can be leveraged in robotics, enabling efficient real-to-simulation workflows and providing realistic, scalable simulation environments for robotic systems.
RLIPv2: Fast Scaling of Relational Language-Image Pre-training
Relational Language-Image Pre-training (RLIP) aims to align vision representations with relational texts, thereby advancing the capability of relational reasoning in computer vision tasks. However, hindered by the slow convergence of RLIPv1 architecture and the limited availability of existing scene graph data, scaling RLIPv1 is challenging. In this paper, we propose RLIPv2, a fast converging model that enables the scaling of relational pre-training to large-scale pseudo-labelled scene graph data. To enable fast scaling, RLIPv2 introduces Asymmetric Language-Image Fusion (ALIF), a mechanism that facilitates earlier and deeper gated cross-modal fusion with sparsified language encoding layers. ALIF leads to comparable or better performance than RLIPv1 in a fraction of the time for pre-training and fine-tuning. To obtain scene graph data at scale, we extend object detection datasets with free-form relation labels by introducing a captioner (e.g., BLIP) and a designed Relation Tagger. The Relation Tagger assigns BLIP-generated relation texts to region pairs, thus enabling larger-scale relational pre-training. Through extensive experiments conducted on Human-Object Interaction Detection and Scene Graph Generation, RLIPv2 shows state-of-the-art performance on three benchmarks under fully-finetuning, few-shot and zero-shot settings. Notably, the largest RLIPv2 achieves 23.29mAP on HICO-DET without any fine-tuning, yields 32.22mAP with just 1% data and yields 45.09mAP with 100% data. Code and models are publicly available at https://github.com/JacobYuan7/RLIPv2.
DisPositioNet: Disentangled Pose and Identity in Semantic Image Manipulation
Graph representation of objects and their relations in a scene, known as a scene graph, provides a precise and discernible interface to manipulate a scene by modifying the nodes or the edges in the graph. Although existing works have shown promising results in modifying the placement and pose of objects, scene manipulation often leads to losing some visual characteristics like the appearance or identity of objects. In this work, we propose DisPositioNet, a model that learns a disentangled representation for each object for the task of image manipulation using scene graphs in a self-supervised manner. Our framework enables the disentanglement of the variational latent embeddings as well as the feature representation in the graph. In addition to producing more realistic images due to the decomposition of features like pose and identity, our method takes advantage of the probabilistic sampling in the intermediate features to generate more diverse images in object replacement or addition tasks. The results of our experiments show that disentangling the feature representations in the latent manifold of the model outperforms the previous works qualitatively and quantitatively on two public benchmarks. Project Page: https://scenegenie.github.io/DispositioNet/
Transformer-based Image Generation from Scene Graphs
Graph-structured scene descriptions can be efficiently used in generative models to control the composition of the generated image. Previous approaches are based on the combination of graph convolutional networks and adversarial methods for layout prediction and image generation, respectively. In this work, we show how employing multi-head attention to encode the graph information, as well as using a transformer-based model in the latent space for image generation can improve the quality of the sampled data, without the need to employ adversarial models with the subsequent advantage in terms of training stability. The proposed approach, specifically, is entirely based on transformer architectures both for encoding scene graphs into intermediate object layouts and for decoding these layouts into images, passing through a lower dimensional space learned by a vector-quantized variational autoencoder. Our approach shows an improved image quality with respect to state-of-the-art methods as well as a higher degree of diversity among multiple generations from the same scene graph. We evaluate our approach on three public datasets: Visual Genome, COCO, and CLEVR. We achieve an Inception Score of 13.7 and 12.8, and an FID of 52.3 and 60.3, on COCO and Visual Genome, respectively. We perform ablation studies on our contributions to assess the impact of each component. Code is available at https://github.com/perceivelab/trf-sg2im
Target-oriented Sentiment Classification with Sequential Cross-modal Semantic Graph
Multi-modal aspect-based sentiment classification (MABSC) is task of classifying the sentiment of a target entity mentioned in a sentence and an image. However, previous methods failed to account for the fine-grained semantic association between the image and the text, which resulted in limited identification of fine-grained image aspects and opinions. To address these limitations, in this paper we propose a new approach called SeqCSG, which enhances the encoder-decoder sentiment classification framework using sequential cross-modal semantic graphs. SeqCSG utilizes image captions and scene graphs to extract both global and local fine-grained image information and considers them as elements of the cross-modal semantic graph along with tokens from tweets. The sequential cross-modal semantic graph is represented as a sequence with a multi-modal adjacency matrix indicating relationships between elements. Experimental results show that the approach outperforms existing methods and achieves state-of-the-art performance on two standard datasets. Further analysis has demonstrated that the model can implicitly learn the correlation between fine-grained information of the image and the text with the given target. Our code is available at https://github.com/zjukg/SeqCSG.
Semantic Image Manipulation Using Scene Graphs
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs
As pretrained text-to-image diffusion models become increasingly powerful, recent efforts have been made to distill knowledge from these text-to-image pretrained models for optimizing a text-guided 3D model. Most of the existing methods generate a holistic 3D model from a plain text input. This can be problematic when the text describes a complex scene with multiple objects, because the vectorized text embeddings are inherently unable to capture a complex description with multiple entities and relationships. Holistic 3D modeling of the entire scene further prevents accurate grounding of text entities and concepts. To address this limitation, we propose GraphDreamer, a novel framework to generate compositional 3D scenes from scene graphs, where objects are represented as nodes and their interactions as edges. By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model and is able to fully disentangle different objects without image-level supervision. To facilitate modeling of object-wise relationships, we use signed distance fields as representation and impose a constraint to avoid inter-penetration of objects. To avoid manual scene graph creation, we design a text prompt for ChatGPT to generate scene graphs based on text inputs. We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer in generating high-fidelity compositional 3D scenes with disentangled object entities.
Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering
Multimodal large language models (MLLMs), such as GPT-4o, Gemini, LLaVA, and Flamingo, have made significant progress in integrating visual and textual modalities, excelling in tasks like visual question answering (VQA), image captioning, and content retrieval. They can generate coherent and contextually relevant descriptions of images. However, they still face challenges in accurately identifying and counting objects and determining their spatial locations, particularly in complex scenes with overlapping or small objects. To address these limitations, we propose a novel framework based on multimodal retrieval-augmented generation (RAG), which introduces structured scene graphs to enhance object recognition, relationship identification, and spatial understanding within images. Our framework improves the MLLM's capacity to handle tasks requiring precise visual descriptions, especially in scenarios with challenging perspectives, such as aerial views or scenes with dense object arrangements. Finally, we conduct extensive experiments on the VG-150 dataset that focuses on first-person visual understanding and the AUG dataset that involves aerial imagery. The results show that our approach consistently outperforms existing MLLMs in VQA tasks, which stands out in recognizing, localizing, and quantifying objects in different spatial contexts and provides more accurate visual descriptions.
SceneGraphLoc: Cross-Modal Coarse Visual Localization on 3D Scene Graphs
We introduce a novel problem, i.e., the localization of an input image within a multi-modal reference map represented by a database of 3D scene graphs. These graphs comprise multiple modalities, including object-level point clouds, images, attributes, and relationships between objects, offering a lightweight and efficient alternative to conventional methods that rely on extensive image databases. Given the available modalities, the proposed method SceneGraphLoc learns a fixed-sized embedding for each node (i.e., representing an object instance) in the scene graph, enabling effective matching with the objects visible in the input query image. This strategy significantly outperforms other cross-modal methods, even without incorporating images into the map embeddings. When images are leveraged, SceneGraphLoc achieves performance close to that of state-of-the-art techniques depending on large image databases, while requiring three orders-of-magnitude less storage and operating orders-of-magnitude faster. The code will be made public.
COVR: A test-bed for Visually Grounded Compositional Generalization with real images
While interest in models that generalize at test time to new compositions has risen in recent years, benchmarks in the visually-grounded domain have thus far been restricted to synthetic images. In this work, we propose COVR, a new test-bed for visually-grounded compositional generalization with real images. To create COVR, we use real images annotated with scene graphs, and propose an almost fully automatic procedure for generating question-answer pairs along with a set of context images. COVR focuses on questions that require complex reasoning, including higher-order operations such as quantification and aggregation. Due to the automatic generation process, COVR facilitates the creation of compositional splits, where models at test time need to generalize to new concepts and compositions in a zero- or few-shot setting. We construct compositional splits using COVR and demonstrate a myriad of cases where state-of-the-art pre-trained language-and-vision models struggle to compositionally generalize.
LAION-SG: An Enhanced Large-Scale Dataset for Training Complex Image-Text Models with Structural Annotations
Recent advances in text-to-image (T2I) generation have shown remarkable success in producing high-quality images from text. However, existing T2I models show decayed performance in compositional image generation involving multiple objects and intricate relationships. We attribute this problem to limitations in existing datasets of image-text pairs, which lack precise inter-object relationship annotations with prompts only. To address this problem, we construct LAION-SG, a large-scale dataset with high-quality structural annotations of scene graphs (SG), which precisely describe attributes and relationships of multiple objects, effectively representing the semantic structure in complex scenes. Based on LAION-SG, we train a new foundation model SDXL-SG to incorporate structural annotation information into the generation process. Extensive experiments show advanced models trained on our LAION-SG boast significant performance improvements in complex scene generation over models on existing datasets. We also introduce CompSG-Bench, a benchmark that evaluates models on compositional image generation, establishing a new standard for this domain.
ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models
With the rise of multimodal applications, instruction data has become critical for training multimodal language models capable of understanding complex image-based queries. Existing practices rely on powerful but costly large language models (LLMs) or multimodal language models (MLMs) to produce instruction data. These are often prone to hallucinations, licensing issues and the generation process is often hard to scale and interpret. In this work, we present a programmatic approach that employs scene graphs as symbolic representations of images and human-written programs to systematically synthesize vision-centric instruction data. Our approach ensures the interpretability and controllability of the data generation process and scales efficiently while maintaining factual accuracy. By implementing a suite of 24 single-image, 14 multi-image instruction generators, and a scene graph generation pipeline, we build a scalable, cost-effective system: ProVision which produces diverse question-answer pairs concerning objects, attributes, relations, depth, etc., for any given image. Applied to Visual Genome and DataComp datasets, we generate over 10 million instruction data points, ProVision-10M, and leverage them in both pretraining and instruction tuning stages of MLMs. When adopted in the instruction tuning stage, our single-image instruction data yields up to a 7% improvement on the 2D split and 8% on the 3D split of CVBench, along with a 3% increase in performance on QBench2, RealWorldQA, and MMMU. Our multi-image instruction data leads to an 8% improvement on Mantis-Eval. Incorporation of our data in both pre-training and fine-tuning stages of xGen-MM-4B leads to an averaged improvement of 1.6% across 11 benchmarks.
CLEVR Parser: A Graph Parser Library for Geometric Learning on Language Grounded Image Scenes
The CLEVR dataset has been used extensively in language grounded visual reasoning in Machine Learning (ML) and Natural Language Processing (NLP) domains. We present a graph parser library for CLEVR, that provides functionalities for object-centric attributes and relationships extraction, and construction of structural graph representations for dual modalities. Structural order-invariant representations enable geometric learning and can aid in downstream tasks like language grounding to vision, robotics, compositionality, interpretability, and computational grammar construction. We provide three extensible main components - parser, embedder, and visualizer that can be tailored to suit specific learning setups. We also provide out-of-the-box functionality for seamless integration with popular deep graph neural network (GNN) libraries. Additionally, we discuss downstream usage and applications of the library, and how it accelerates research for the NLP research community.
Graph-based Topology Reasoning for Driving Scenes
Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code is released at https://github.com/OpenDriveLab/TopoNet
The Scene Language: Representing Scenes with Programs, Words, and Embeddings
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
Towards Open-vocabulary Scene Graph Generation with Prompt-based Finetuning
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image. The prevailing SGG methods require all object classes to be given in the training set. Such a closed setting limits the practical application of SGG. In this paper, we introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes but is required to infer relations for unseen target object classes. To this end, we propose a two-step method that firstly pre-trains on large amounts of coarse-grained region-caption data and then leverages two prompt-based techniques to finetune the pre-trained model without updating its parameters. Moreover, our method can support inference over completely unseen object classes, which existing methods are incapable of handling. On extensive experiments on three benchmark datasets, Visual Genome, GQA, and Open-Image, our method significantly outperforms recent, strong SGG methods on the setting of Ov-SGG, as well as on the conventional closed SGG.
LLaVA-SpaceSGG: Visual Instruct Tuning for Open-vocabulary Scene Graph Generation with Enhanced Spatial Relations
Scene Graph Generation (SGG) converts visual scenes into structured graph representations, providing deeper scene understanding for complex vision tasks. However, existing SGG models often overlook essential spatial relationships and struggle with generalization in open-vocabulary contexts. To address these limitations, we propose LLaVA-SpaceSGG, a multimodal large language model (MLLM) designed for open-vocabulary SGG with enhanced spatial relation modeling. To train it, we collect the SGG instruction-tuning dataset, named SpaceSGG. This dataset is constructed by combining publicly available datasets and synthesizing data using open-source models within our data construction pipeline. It combines object locations, object relations, and depth information, resulting in three data formats: spatial SGG description, question-answering, and conversation. To enhance the transfer of MLLMs' inherent capabilities to the SGG task, we introduce a two-stage training paradigm. Experiments show that LLaVA-SpaceSGG outperforms other open-vocabulary SGG methods, boosting recall by 8.6% and mean recall by 28.4% compared to the baseline. Our codebase, dataset, and trained models are publicly accessible on GitHub at the following URL: https://github.com/Endlinc/LLaVA-SpaceSGG.
3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans
We present a unified representation for actionable spatial perception: 3D Dynamic Scene Graphs. Scene graphs are directed graphs where nodes represent entities in the scene (e.g. objects, walls, rooms), and edges represent relations (e.g. inclusion, adjacency) among nodes. Dynamic scene graphs (DSGs) extend this notion to represent dynamic scenes with moving agents (e.g. humans, robots), and to include actionable information that supports planning and decision-making (e.g. spatio-temporal relations, topology at different levels of abstraction). Our second contribution is to provide the first fully automatic Spatial PerceptIon eNgine(SPIN) to build a DSG from visual-inertial data. We integrate state-of-the-art techniques for object and human detection and pose estimation, and we describe how to robustly infer object, robot, and human nodes in crowded scenes. To the best of our knowledge, this is the first paper that reconciles visual-inertial SLAM and dense human mesh tracking. Moreover, we provide algorithms to obtain hierarchical representations of indoor environments (e.g. places, structures, rooms) and their relations. Our third contribution is to demonstrate the proposed spatial perception engine in a photo-realistic Unity-based simulator, where we assess its robustness and expressiveness. Finally, we discuss the implications of our proposal on modern robotics applications. 3D Dynamic Scene Graphs can have a profound impact on planning and decision-making, human-robot interaction, long-term autonomy, and scene prediction. A video abstract is available at https://youtu.be/SWbofjhyPzI
Generative Compositional Augmentations for Scene Graph Prediction
Inferring objects and their relationships from an image in the form of a scene graph is useful in many applications at the intersection of vision and language. We consider a challenging problem of compositional generalization that emerges in this task due to a long tail data distribution. Current scene graph generation models are trained on a tiny fraction of the distribution corresponding to the most frequent compositions, e.g. <cup, on, table>. However, test images might contain zero- and few-shot compositions of objects and relationships, e.g. <cup, on, surfboard>. Despite each of the object categories and the predicate (e.g. 'on') being frequent in the training data, the models often fail to properly understand such unseen or rare compositions. To improve generalization, it is natural to attempt increasing the diversity of the training distribution. However, in the graph domain this is non-trivial. To that end, we propose a method to synthesize rare yet plausible scene graphs by perturbing real ones. We then propose and empirically study a model based on conditional generative adversarial networks (GANs) that allows us to generate visual features of perturbed scene graphs and learn from them in a joint fashion. When evaluated on the Visual Genome dataset, our approach yields marginal, but consistent improvements in zero- and few-shot metrics. We analyze the limitations of our approach indicating promising directions for future research.
Expanding Scene Graph Boundaries: Fully Open-vocabulary Scene Graph Generation via Visual-Concept Alignment and Retention
Scene Graph Generation (SGG) offers a structured representation critical in many computer vision applications. Traditional SGG approaches, however, are limited by a closed-set assumption, restricting their ability to recognize only predefined object and relation categories. To overcome this, we categorize SGG scenarios into four distinct settings based on the node and edge: Closed-set SGG, Open Vocabulary (object) Detection-based SGG (OvD-SGG), Open Vocabulary Relation-based SGG (OvR-SGG), and Open Vocabulary Detection + Relation-based SGG (OvD+R-SGG). While object-centric open vocabulary SGG has been studied recently, the more challenging problem of relation-involved open-vocabulary SGG remains relatively unexplored. To fill this gap, we propose a unified framework named OvSGTR towards fully open vocabulary SGG from a holistic view. The proposed framework is an end-toend transformer architecture, which learns a visual-concept alignment for both nodes and edges, enabling the model to recognize unseen categories. For the more challenging settings of relation-involved open vocabulary SGG, the proposed approach integrates relation-aware pre-training utilizing image-caption data and retains visual-concept alignment through knowledge distillation. Comprehensive experimental results on the Visual Genome benchmark demonstrate the effectiveness and superiority of the proposed framework.
End-to-End Optimization of Scene Layout
We propose an end-to-end variational generative model for scene layout synthesis conditioned on scene graphs. Unlike unconditional scene layout generation, we use scene graphs as an abstract but general representation to guide the synthesis of diverse scene layouts that satisfy relationships included in the scene graph. This gives rise to more flexible control over the synthesis process, allowing various forms of inputs such as scene layouts extracted from sentences or inferred from a single color image. Using our conditional layout synthesizer, we can generate various layouts that share the same structure of the input example. In addition to this conditional generation design, we also integrate a differentiable rendering module that enables layout refinement using only 2D projections of the scene. Given a depth and a semantics map, the differentiable rendering module enables optimizing over the synthesized layout to fit the given input in an analysis-by-synthesis fashion. Experiments suggest that our model achieves higher accuracy and diversity in conditional scene synthesis and allows exemplar-based scene generation from various input forms.
MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
3D Scene Diffusion Guidance using Scene Graphs
Guided synthesis of high-quality 3D scenes is a challenging task. Diffusion models have shown promise in generating diverse data, including 3D scenes. However, current methods rely directly on text embeddings for controlling the generation, limiting the incorporation of complex spatial relationships between objects. We propose a novel approach for 3D scene diffusion guidance using scene graphs. To leverage the relative spatial information the scene graphs provide, we make use of relational graph convolutional blocks within our denoising network. We show that our approach significantly improves the alignment between scene description and generated scene.
InstructG2I: Synthesizing Images from Multimodal Attributed Graphs
In this paper, we approach an overlooked yet critical task Graph2Image: generating images from multimodal attributed graphs (MMAGs). This task poses significant challenges due to the explosion in graph size, dependencies among graph entities, and the need for controllability in graph conditions. To address these challenges, we propose a graph context-conditioned diffusion model called InstructG2I. InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling by combining personalized page rank and re-ranking based on vision-language features. Then, a Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process of diffusion. Finally, we propose graph classifier-free guidance, enabling controllable generation by varying the strength of graph guidance and multiple connected edges to a node. Extensive experiments conducted on three datasets from different domains demonstrate the effectiveness and controllability of our approach. The code is available at https://github.com/PeterGriffinJin/InstructG2I.
Semantic Diversity-aware Prototype-based Learning for Unbiased Scene Graph Generation
The scene graph generation (SGG) task involves detecting objects within an image and predicting predicates that represent the relationships between the objects. However, in SGG benchmark datasets, each subject-object pair is annotated with a single predicate even though a single predicate may exhibit diverse semantics (i.e., semantic diversity), existing SGG models are trained to predict the one and only predicate for each pair. This in turn results in the SGG models to overlook the semantic diversity that may exist in a predicate, thus leading to biased predictions. In this paper, we propose a novel model-agnostic Semantic Diversity-aware Prototype-based Learning (DPL) framework that enables unbiased predictions based on the understanding of the semantic diversity of predicates. Specifically, DPL learns the regions in the semantic space covered by each predicate to distinguish among the various different semantics that a single predicate can represent. Extensive experiments demonstrate that our proposed model-agnostic DPL framework brings significant performance improvement on existing SGG models, and also effectively understands the semantic diversity of predicates.
Context Canvas: Enhancing Text-to-Image Diffusion Models with Knowledge Graph-Based RAG
We introduce a novel approach to enhance the capabilities of text-to-image models by incorporating a graph-based RAG. Our system dynamically retrieves detailed character information and relational data from the knowledge graph, enabling the generation of visually accurate and contextually rich images. This capability significantly improves upon the limitations of existing T2I models, which often struggle with the accurate depiction of complex or culturally specific subjects due to dataset constraints. Furthermore, we propose a novel self-correcting mechanism for text-to-image models to ensure consistency and fidelity in visual outputs, leveraging the rich context from the graph to guide corrections. Our qualitative and quantitative experiments demonstrate that Context Canvas significantly enhances the capabilities of popular models such as Flux, Stable Diffusion, and DALL-E, and improves the functionality of ControlNet for fine-grained image editing tasks. To our knowledge, Context Canvas represents the first application of graph-based RAG in enhancing T2I models, representing a significant advancement for producing high-fidelity, context-aware multi-faceted images.
SGAligner : 3D Scene Alignment with Scene Graphs
Building 3D scene graphs has recently emerged as a topic in scene representation for several embodied AI applications to represent the world in a structured and rich manner. With their increased use in solving downstream tasks (eg, navigation and room rearrangement), can we leverage and recycle them for creating 3D maps of environments, a pivotal step in agent operation? We focus on the fundamental problem of aligning pairs of 3D scene graphs whose overlap can range from zero to partial and can contain arbitrary changes. We propose SGAligner, the first method for aligning pairs of 3D scene graphs that is robust to in-the-wild scenarios (ie, unknown overlap -- if any -- and changes in the environment). We get inspired by multi-modality knowledge graphs and use contrastive learning to learn a joint, multi-modal embedding space. We evaluate on the 3RScan dataset and further showcase that our method can be used for estimating the transformation between pairs of 3D scenes. Since benchmarks for these tasks are missing, we create them on this dataset. The code, benchmark, and trained models are available on the project website.
Learning to generate line drawings that convey geometry and semantics
This paper presents an unpaired method for creating line drawings from photographs. Current methods often rely on high quality paired datasets to generate line drawings. However, these datasets often have limitations due to the subjects of the drawings belonging to a specific domain, or in the amount of data collected. Although recent work in unsupervised image-to-image translation has shown much progress, the latest methods still struggle to generate compelling line drawings. We observe that line drawings are encodings of scene information and seek to convey 3D shape and semantic meaning. We build these observations into a set of objectives and train an image translation to map photographs into line drawings. We introduce a geometry loss which predicts depth information from the image features of a line drawing, and a semantic loss which matches the CLIP features of a line drawing with its corresponding photograph. Our approach outperforms state-of-the-art unpaired image translation and line drawing generation methods on creating line drawings from arbitrary photographs. For code and demo visit our webpage carolineec.github.io/informative_drawings
Synthesizing Artistic Cinemagraphs from Text
We introduce Artistic Cinemagraph, a fully automated method for creating cinemagraphs from text descriptions - an especially challenging task when prompts feature imaginary elements and artistic styles, given the complexity of interpreting the semantics and motions of these images. Existing single-image animation methods fall short on artistic inputs, and recent text-based video methods frequently introduce temporal inconsistencies, struggling to keep certain regions static. To address these challenges, we propose an idea of synthesizing image twins from a single text prompt - a pair of an artistic image and its pixel-aligned corresponding natural-looking twin. While the artistic image depicts the style and appearance detailed in our text prompt, the realistic counterpart greatly simplifies layout and motion analysis. Leveraging existing natural image and video datasets, we can accurately segment the realistic image and predict plausible motion given the semantic information. The predicted motion can then be transferred to the artistic image to create the final cinemagraph. Our method outperforms existing approaches in creating cinemagraphs for natural landscapes as well as artistic and other-worldly scenes, as validated by automated metrics and user studies. Finally, we demonstrate two extensions: animating existing paintings and controlling motion directions using text.
EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion
We present EchoScene, an interactive and controllable generative model that generates 3D indoor scenes on scene graphs. EchoScene leverages a dual-branch diffusion model that dynamically adapts to scene graphs. Existing methods struggle to handle scene graphs due to varying numbers of nodes, multiple edge combinations, and manipulator-induced node-edge operations. EchoScene overcomes this by associating each node with a denoising process and enables collaborative information exchange, enhancing controllable and consistent generation aware of global constraints. This is achieved through an information echo scheme in both shape and layout branches. At every denoising step, all processes share their denoising data with an information exchange unit that combines these updates using graph convolution. The scheme ensures that the denoising processes are influenced by a holistic understanding of the scene graph, facilitating the generation of globally coherent scenes. The resulting scenes can be manipulated during inference by editing the input scene graph and sampling the noise in the diffusion model. Extensive experiments validate our approach, which maintains scene controllability and surpasses previous methods in generation fidelity. Moreover, the generated scenes are of high quality and thus directly compatible with off-the-shelf texture generation. Code and trained models are open-sourced.
3DGraphLLM: Combining Semantic Graphs and Large Language Models for 3D Scene Understanding
A 3D scene graph represents a compact scene model, storing information about the objects and the semantic relationships between them, making its use promising for robotic tasks. When interacting with a user, an embodied intelligent agent should be capable of responding to various queries about the scene formulated in natural language. Large Language Models (LLMs) are beneficial solutions for user-robot interaction due to their natural language understanding and reasoning abilities. Recent methods for creating learnable representations of 3D scenes have demonstrated the potential to improve the quality of LLMs responses by adapting to the 3D world. However, the existing methods do not explicitly utilize information about the semantic relationships between objects, limiting themselves to information about their coordinates. In this work, we propose a method 3DGraphLLM for constructing a learnable representation of a 3D scene graph. The learnable representation is used as input for LLMs to perform 3D vision-language tasks. In our experiments on popular ScanRefer, RIORefer, Multi3DRefer, ScanQA, Sqa3D, and Scan2cap datasets, we demonstrate the advantage of this approach over baseline methods that do not use information about the semantic relationships between objects. The code is publicly available at https://github.com/CognitiveAISystems/3DGraphLLM.
Environment-Invariant Curriculum Relation Learning for Fine-Grained Scene Graph Generation
The scene graph generation (SGG) task is designed to identify the predicates based on the subject-object pairs.However,existing datasets generally include two imbalance cases: one is the class imbalance from the predicted predicates and another is the context imbalance from the given subject-object pairs, which presents significant challenges for SGG. Most existing methods focus on the imbalance of the predicted predicate while ignoring the imbalance of the subject-object pairs, which could not achieve satisfactory results. To address the two imbalance cases, we propose a novel Environment Invariant Curriculum Relation learning (EICR) method, which can be applied in a plug-and-play fashion to existing SGG methods. Concretely, to remove the imbalance of the subject-object pairs, we first construct different distribution environments for the subject-object pairs and learn a model invariant to the environment changes. Then, we construct a class-balanced curriculum learning strategy to balance the different environments to remove the predicate imbalance. Comprehensive experiments conducted on VG and GQA datasets demonstrate that our EICR framework can be taken as a general strategy for various SGG models, and achieve significant improvements.
4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models
Existing dynamic scene generation methods mostly rely on distilling knowledge from pre-trained 3D generative models, which are typically fine-tuned on synthetic object datasets. As a result, the generated scenes are often object-centric and lack photorealism. To address these limitations, we introduce a novel pipeline designed for photorealistic text-to-4D scene generation, discarding the dependency on multi-view generative models and instead fully utilizing video generative models trained on diverse real-world datasets. Our method begins by generating a reference video using the video generation model. We then learn the canonical 3D representation of the video using a freeze-time video, delicately generated from the reference video. To handle inconsistencies in the freeze-time video, we jointly learn a per-frame deformation to model these imperfections. We then learn the temporal deformation based on the canonical representation to capture dynamic interactions in the reference video. The pipeline facilitates the generation of dynamic scenes with enhanced photorealism and structural integrity, viewable from multiple perspectives, thereby setting a new standard in 4D scene generation.
Sketch-Guided Scene Image Generation
Text-to-image models are showcasing the impressive ability to create high-quality and diverse generative images. Nevertheless, the transition from freehand sketches to complex scene images remains challenging using diffusion models. In this study, we propose a novel sketch-guided scene image generation framework, decomposing the task of scene image scene generation from sketch inputs into object-level cross-domain generation and scene-level image construction. We employ pre-trained diffusion models to convert each single object drawing into an image of the object, inferring additional details while maintaining the sparse sketch structure. In order to maintain the conceptual fidelity of the foreground during scene generation, we invert the visual features of object images into identity embeddings for scene generation. In scene-level image construction, we generate the latent representation of the scene image using the separated background prompts, and then blend the generated foreground objects according to the layout of the sketch input. To ensure the foreground objects' details remain unchanged while naturally composing the scene image, we infer the scene image on the blended latent representation using a global prompt that includes the trained identity tokens. Through qualitative and quantitative experiments, we demonstrate the ability of the proposed approach to generate scene images from hand-drawn sketches surpasses the state-of-the-art approaches.
Prototype-based Embedding Network for Scene Graph Generation
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category, e.g., "man-eating-pizza, giraffe-eating-leaf", and the severe inter-class similarity between different classes, e.g., "man-holding-plate, man-eating-pizza", in model's latent space. The above challenges prevent current SGG methods from acquiring robust features for reliable relation prediction. In this paper, we claim that the predicate's category-inherent semantics can serve as class-wise prototypes in the semantic space for relieving the challenges. To the end, we propose the Prototype-based Embedding Network (PE-Net), which models entities/predicates with prototype-aligned compact and distinctive representations and thereby establishes matching between entity pairs and predicates in a common embedding space for relation recognition. Moreover, Prototype-guided Learning (PL) is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching caused by the predicate's semantic overlap. Extensive experiments demonstrate that our method gains superior relation recognition capability on SGG, achieving new state-of-the-art performances on both Visual Genome and Open Images datasets.
ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning
For robots to perform a wide variety of tasks, they require a 3D representation of the world that is semantically rich, yet compact and efficient for task-driven perception and planning. Recent approaches have attempted to leverage features from large vision-language models to encode semantics in 3D representations. However, these approaches tend to produce maps with per-point feature vectors, which do not scale well in larger environments, nor do they contain semantic spatial relationships between entities in the environment, which are useful for downstream planning. In this work, we propose ConceptGraphs, an open-vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association. The resulting representations generalize to novel semantic classes, without the need to collect large 3D datasets or finetune models. We demonstrate the utility of this representation through a number of downstream planning tasks that are specified through abstract (language) prompts and require complex reasoning over spatial and semantic concepts. (Project page: https://concept-graphs.github.io/ Explainer video: https://youtu.be/mRhNkQwRYnc )
SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model
We introduce SceneScript, a method that directly produces full scene models as a sequence of structured language commands using an autoregressive, token-based approach. Our proposed scene representation is inspired by recent successes in transformers & LLMs, and departs from more traditional methods which commonly describe scenes as meshes, voxel grids, point clouds or radiance fields. Our method infers the set of structured language commands directly from encoded visual data using a scene language encoder-decoder architecture. To train SceneScript, we generate and release a large-scale synthetic dataset called Aria Synthetic Environments consisting of 100k high-quality in-door scenes, with photorealistic and ground-truth annotated renders of egocentric scene walkthroughs. Our method gives state-of-the art results in architectural layout estimation, and competitive results in 3D object detection. Lastly, we explore an advantage for SceneScript, which is the ability to readily adapt to new commands via simple additions to the structured language, which we illustrate for tasks such as coarse 3D object part reconstruction.
Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
Modeling Dynamic Environments with Scene Graph Memory
Embodied AI agents that search for objects in large environments such as households often need to make efficient decisions by predicting object locations based on partial information. We pose this as a new type of link prediction problem: link prediction on partially observable dynamic graphs. Our graph is a representation of a scene in which rooms and objects are nodes, and their relationships are encoded in the edges; only parts of the changing graph are known to the agent at each timestep. This partial observability poses a challenge to existing link prediction approaches, which we address. We propose a novel state representation -- Scene Graph Memory (SGM) -- with captures the agent's accumulated set of observations, as well as a neural net architecture called a Node Edge Predictor (NEP) that extracts information from the SGM to search efficiently. We evaluate our method in the Dynamic House Simulator, a new benchmark that creates diverse dynamic graphs following the semantic patterns typically seen at homes, and show that NEP can be trained to predict the locations of objects in a variety of environments with diverse object movement dynamics, outperforming baselines both in terms of new scene adaptability and overall accuracy. The codebase and more can be found at https://www.scenegraphmemory.com.
ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph
We propose a knowledge-enhanced approach, ERNIE-ViL, which incorporates structured knowledge obtained from scene graphs to learn joint representations of vision-language. ERNIE-ViL tries to build the detailed semantic connections (objects, attributes of objects and relationships between objects) across vision and language, which are essential to vision-language cross-modal tasks. Utilizing scene graphs of visual scenes, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction tasks in the pre-training phase. Specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can learn the joint representations characterizing the alignments of the detailed semantics across vision and language. After pre-training on large scale image-text aligned datasets, we validate the effectiveness of ERNIE-ViL on 5 cross-modal downstream tasks. ERNIE-ViL achieves state-of-the-art performances on all these tasks and ranks the first place on the VCR leaderboard with an absolute improvement of 3.7%.
Generating Visual Spatial Description via Holistic 3D Scene Understanding
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene features for VSD. With an external 3D scene extractor, we obtain the 3D objects and scene features for input images, based on which we construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes. Besides, we propose a scene subgraph selecting mechanism, sampling topologically-diverse subgraphs from Go3D-S2G, where the diverse local structure features are navigated to yield spatially-diversified text generation. Experimental results on two VSD datasets demonstrate that our framework outperforms the baselines significantly, especially improving on the cases with complex visual spatial relations. Meanwhile, our method can produce more spatially-diversified generation. Code is available at https://github.com/zhaoyucs/VSD.
Generative Powers of Ten
We present a method that uses a text-to-image model to generate consistent content across multiple image scales, enabling extreme semantic zooms into a scene, e.g., ranging from a wide-angle landscape view of a forest to a macro shot of an insect sitting on one of the tree branches. We achieve this through a joint multi-scale diffusion sampling approach that encourages consistency across different scales while preserving the integrity of each individual sampling process. Since each generated scale is guided by a different text prompt, our method enables deeper levels of zoom than traditional super-resolution methods that may struggle to create new contextual structure at vastly different scales. We compare our method qualitatively with alternative techniques in image super-resolution and outpainting, and show that our method is most effective at generating consistent multi-scale content.
Transitive Invariance for Self-supervised Visual Representation Learning
Learning visual representations with self-supervised learning has become popular in computer vision. The idea is to design auxiliary tasks where labels are free to obtain. Most of these tasks end up providing data to learn specific kinds of invariance useful for recognition. In this paper, we propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance variations (viewpoint, pose, deformations, illumination, etc). Instead of combining two approaches with multi-task learning, we argue to organize and reason the data with multiple variations. Specifically, we propose to generate a graph with millions of objects mined from hundreds of thousands of videos. The objects are connected by two types of edges which correspond to two types of invariance: "different instances but a similar viewpoint and category" and "different viewpoints of the same instance". By applying simple transitivity on the graph with these edges, we can obtain pairs of images exhibiting richer visual invariance. We use this data to train a Triplet-Siamese network with VGG16 as the base architecture and apply the learned representations to different recognition tasks. For object detection, we achieve 63.2% mAP on PASCAL VOC 2007 using Fast R-CNN (compare to 67.3% with ImageNet pre-training). For the challenging COCO dataset, our method is surprisingly close (23.5%) to the ImageNet-supervised counterpart (24.4%) using the Faster R-CNN framework. We also show that our network can perform significantly better than the ImageNet network in the surface normal estimation task.
SceneCraft: An LLM Agent for Synthesizing 3D Scene as Blender Code
This paper introduces SceneCraft, a Large Language Model (LLM) Agent converting text descriptions into Blender-executable Python scripts which render complex scenes with up to a hundred 3D assets. This process requires complex spatial planning and arrangement. We tackle these challenges through a combination of advanced abstraction, strategic planning, and library learning. SceneCraft first models a scene graph as a blueprint, detailing the spatial relationships among assets in the scene. SceneCraft then writes Python scripts based on this graph, translating relationships into numerical constraints for asset layout. Next, SceneCraft leverages the perceptual strengths of vision-language foundation models like GPT-V to analyze rendered images and iteratively refine the scene. On top of this process, SceneCraft features a library learning mechanism that compiles common script functions into a reusable library, facilitating continuous self-improvement without expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft surpasses existing LLM-based agents in rendering complex scenes, as shown by its adherence to constraints and favorable human assessments. We also showcase the broader application potential of SceneCraft by reconstructing detailed 3D scenes from the Sintel movie and guiding a video generative model with generated scenes as intermediary control signal.
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G: X rightarrow Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F: Y rightarrow X and introduce a cycle consistency loss to push F(G(X)) approx X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.
DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting
The increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360^{circ} scene generation pipeline that facilitates the creation of comprehensive 360^{circ} scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary "flat" (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360^{circ} perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/
OCR-VQGAN: Taming Text-within-Image Generation
Synthetic image generation has recently experienced significant improvements in domains such as natural image or art generation. However, the problem of figure and diagram generation remains unexplored. A challenging aspect of generating figures and diagrams is effectively rendering readable texts within the images. To alleviate this problem, we present OCR-VQGAN, an image encoder, and decoder that leverages OCR pre-trained features to optimize a text perceptual loss, encouraging the architecture to preserve high-fidelity text and diagram structure. To explore our approach, we introduce the Paper2Fig100k dataset, with over 100k images of figures and texts from research papers. The figures show architecture diagrams and methodologies of articles available at arXiv.org from fields like artificial intelligence and computer vision. Figures usually include text and discrete objects, e.g., boxes in a diagram, with lines and arrows that connect them. We demonstrate the effectiveness of OCR-VQGAN by conducting several experiments on the task of figure reconstruction. Additionally, we explore the qualitative and quantitative impact of weighting different perceptual metrics in the overall loss function. We release code, models, and dataset at https://github.com/joanrod/ocr-vqgan.
InstructScene: Instruction-Driven 3D Indoor Scene Synthesis with Semantic Graph Prior
Comprehending natural language instructions is a charming property for 3D indoor scene synthesis systems. Existing methods directly model object joint distributions and express object relations implicitly within a scene, thereby hindering the controllability of generation. We introduce InstructScene, a novel generative framework that integrates a semantic graph prior and a layout decoder to improve controllability and fidelity for 3D scene synthesis. The proposed semantic graph prior jointly learns scene appearances and layout distributions, exhibiting versatility across various downstream tasks in a zero-shot manner. To facilitate the benchmarking for text-driven 3D scene synthesis, we curate a high-quality dataset of scene-instruction pairs with large language and multimodal models. Extensive experimental results reveal that the proposed method surpasses existing state-of-the-art approaches by a large margin. Thorough ablation studies confirm the efficacy of crucial design components. Project page: https://chenguolin.github.io/projects/InstructScene.
Neural Motifs: Scene Graph Parsing with Global Context
We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.
Robust Graph Structure Learning via Multiple Statistical Tests
Graph structure learning aims to learn connectivity in a graph from data. It is particularly important for many computer vision related tasks since no explicit graph structure is available for images for most cases. A natural way to construct a graph among images is to treat each image as a node and assign pairwise image similarities as weights to corresponding edges. It is well known that pairwise similarities between images are sensitive to the noise in feature representations, leading to unreliable graph structures. We address this problem from the viewpoint of statistical tests. By viewing the feature vector of each node as an independent sample, the decision of whether creating an edge between two nodes based on their similarity in feature representation can be thought as a {it single} statistical test. To improve the robustness in the decision of creating an edge, multiple samples are drawn and integrated by {it multiple} statistical tests to generate a more reliable similarity measure, consequentially more reliable graph structure. The corresponding elegant matrix form named B-Attention is designed for efficiency. The effectiveness of multiple tests for graph structure learning is verified both theoretically and empirically on multiple clustering and ReID benchmark datasets. Source codes are available at https://github.com/Thomas-wyh/B-Attention.
Tackling the Challenges in Scene Graph Generation with Local-to-Global Interactions
In this work, we seek new insights into the underlying challenges of the Scene Graph Generation (SGG) task. Quantitative and qualitative analysis of the Visual Genome dataset implies -- 1) Ambiguity: even if inter-object relationship contains the same object (or predicate), they may not be visually or semantically similar, 2) Asymmetry: despite the nature of the relationship that embodied the direction, it was not well addressed in previous studies, and 3) Higher-order contexts: leveraging the identities of certain graph elements can help to generate accurate scene graphs. Motivated by the analysis, we design a novel SGG framework, Local-to-Global Interaction Networks (LOGIN). Locally, interactions extract the essence between three instances of subject, object, and background, while baking direction awareness into the network by explicitly constraining the input order of subject and object. Globally, interactions encode the contexts between every graph component (i.e., nodes and edges). Finally, Attract & Repel loss is utilized to fine-tune the distribution of predicate embeddings. By design, our framework enables predicting the scene graph in a bottom-up manner, leveraging the possible complementariness. To quantify how much LOGIN is aware of relational direction, a new diagnostic task called Bidirectional Relationship Classification (BRC) is also proposed. Experimental results demonstrate that LOGIN can successfully distinguish relational direction than existing methods (in BRC task), while showing state-of-the-art results on the Visual Genome benchmark (in SGG task).
SceneWiz3D: Towards Text-guided 3D Scene Composition
We are witnessing significant breakthroughs in the technology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation: explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incorporate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes.
SLayR: Scene Layout Generation with Rectified Flow
We introduce SLayR, Scene Layout Generation with Rectified flow. State-of-the-art text-to-image models achieve impressive results. However, they generate images end-to-end, exposing no fine-grained control over the process. SLayR presents a novel transformer-based rectified flow model for layout generation over a token space that can be decoded into bounding boxes and corresponding labels, which can then be transformed into images using existing models. We show that established metrics for generated images are inconclusive for evaluating their underlying scene layout, and introduce a new benchmark suite, including a carefully designed repeatable human-evaluation procedure that assesses the plausibility and variety of generated layouts. In contrast to previous works, which perform well in either high variety or plausibility, we show that our approach performs well on both of these axes at the same time. It is also at least 5x times smaller in the number of parameters and 37% faster than the baselines. Our complete text-to-image pipeline demonstrates the added benefits of an interpretable and editable intermediate representation.
Alfie: Democratising RGBA Image Generation With No $$$
Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields
Tremendous progress in deep generative models has led to photorealistic image synthesis. While achieving compelling results, most approaches operate in the two-dimensional image domain, ignoring the three-dimensional nature of our world. Several recent works therefore propose generative models which are 3D-aware, i.e., scenes are modeled in 3D and then rendered differentiably to the image plane. This leads to impressive 3D consistency, but incorporating such a bias comes at a price: the camera needs to be modeled as well. Current approaches assume fixed intrinsics and a predefined prior over camera pose ranges. As a result, parameter tuning is typically required for real-world data, and results degrade if the data distribution is not matched. Our key hypothesis is that learning a camera generator jointly with the image generator leads to a more principled approach to 3D-aware image synthesis. Further, we propose to decompose the scene into a background and foreground model, leading to more efficient and disentangled scene representations. While training from raw, unposed image collections, we learn a 3D- and camera-aware generative model which faithfully recovers not only the image but also the camera data distribution. At test time, our model generates images with explicit control over the camera as well as the shape and appearance of the scene.
A Fair Ranking and New Model for Panoptic Scene Graph Generation
In panoptic scene graph generation (PSGG), models retrieve interactions between objects in an image which are grounded by panoptic segmentation masks. Previous evaluations on panoptic scene graphs have been subject to an erroneous evaluation protocol where multiple masks for the same object can lead to multiple relation distributions per mask-mask pair. This can be exploited to increase the final score. We correct this flaw and provide a fair ranking over a wide range of existing PSGG models. The observed scores for existing methods increase by up to 7.4 mR@50 for all two-stage methods, while dropping by up to 19.3 mR@50 for all one-stage methods, highlighting the importance of a correct evaluation. Contrary to recent publications, we show that existing two-stage methods are competitive to one-stage methods. Building on this, we introduce the Decoupled SceneFormer (DSFormer), a novel two-stage model that outperforms all existing scene graph models by a large margin of +11 mR@50 and +10 mNgR@50 on the corrected evaluation, thus setting a new SOTA. As a core design principle, DSFormer encodes subject and object masks directly into feature space.
3D Scene Graph Guided Vision-Language Pre-training
3D vision-language (VL) reasoning has gained significant attention due to its potential to bridge the 3D physical world with natural language descriptions. Existing approaches typically follow task-specific, highly specialized paradigms. Therefore, these methods focus on a limited range of reasoning sub-tasks and rely heavily on the hand-crafted modules and auxiliary losses. This highlights the need for a simpler, unified and general-purpose model. In this paper, we leverage the inherent connection between 3D scene graphs and natural language, proposing a 3D scene graph-guided vision-language pre-training (VLP) framework. Our approach utilizes modality encoders, graph convolutional layers and cross-attention layers to learn universal representations that adapt to a variety of 3D VL reasoning tasks, thereby eliminating the need for task-specific designs. The pre-training objectives include: 1) Scene graph-guided contrastive learning, which leverages the strong correlation between 3D scene graphs and natural language to align 3D objects with textual features at various fine-grained levels; and 2) Masked modality learning, which uses cross-modality information to reconstruct masked words and 3D objects. Instead of directly reconstructing the 3D point clouds of masked objects, we use position clues to predict their semantic categories. Extensive experiments demonstrate that our pre-training model, when fine-tuned on several downstream tasks, achieves performance comparable to or better than existing methods in tasks such as 3D visual grounding, 3D dense captioning, and 3D question answering.
Panoptic Video Scene Graph Generation
Towards building comprehensive real-world visual perception systems, we propose and study a new problem called panoptic scene graph generation (PVSG). PVSG relates to the existing video scene graph generation (VidSGG) problem, which focuses on temporal interactions between humans and objects grounded with bounding boxes in videos. However, the limitation of bounding boxes in detecting non-rigid objects and backgrounds often causes VidSGG to miss key details crucial for comprehensive video understanding. In contrast, PVSG requires nodes in scene graphs to be grounded by more precise, pixel-level segmentation masks, which facilitate holistic scene understanding. To advance research in this new area, we contribute the PVSG dataset, which consists of 400 videos (289 third-person + 111 egocentric videos) with a total of 150K frames labeled with panoptic segmentation masks as well as fine, temporal scene graphs. We also provide a variety of baseline methods and share useful design practices for future work.
Scaling Face Interaction Graph Networks to Real World Scenes
Accurately simulating real world object dynamics is essential for various applications such as robotics, engineering, graphics, and design. To better capture complex real dynamics such as contact and friction, learned simulators based on graph networks have recently shown great promise. However, applying these learned simulators to real scenes comes with two major challenges: first, scaling learned simulators to handle the complexity of real world scenes which can involve hundreds of objects each with complicated 3D shapes, and second, handling inputs from perception rather than 3D state information. Here we introduce a method which substantially reduces the memory required to run graph-based learned simulators. Based on this memory-efficient simulation model, we then present a perceptual interface in the form of editable NeRFs which can convert real-world scenes into a structured representation that can be processed by graph network simulator. We show that our method uses substantially less memory than previous graph-based simulators while retaining their accuracy, and that the simulators learned in synthetic environments can be applied to real world scenes captured from multiple camera angles. This paves the way for expanding the application of learned simulators to settings where only perceptual information is available at inference time.
Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions
Humans describe complex scenes with compositionality, using simple text descriptions enriched with links and relationships. While vision-language research has aimed to develop models with compositional understanding capabilities, this is not reflected yet in existing datasets which, for the most part, still use plain text to describe images. In this work, we propose a new annotation strategy, graph-based captioning (GBC) that describes an image using a labelled graph structure, with nodes of various types. The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities. Since all GBC nodes hold plain text descriptions, GBC retains the flexibility found in natural language, but can also encode hierarchical information in its edges. We demonstrate that GBC can be produced automatically, using off-the-shelf multimodal LLMs and open-vocabulary detection models, by building a new dataset, GBC10M, gathering GBC annotations for about 10M images of the CC12M dataset. We use GBC10M to showcase the wealth of node captions uncovered by GBC, as measured with CLIP training. We show that using GBC nodes' annotations -- notably those stored in composition and relation nodes -- results in significant performance boost on downstream models when compared to other dataset formats. To further explore the opportunities provided by GBC, we also propose a new attention mechanism that can leverage the entire GBC graph, with encouraging experimental results that show the extra benefits of incorporating the graph structure. Our datasets are released at https://huggingface.co/graph-based-captions.
Vision Relation Transformer for Unbiased Scene Graph Generation
Recent years have seen a growing interest in Scene Graph Generation (SGG), a comprehensive visual scene understanding task that aims to predict entity relationships using a relation encoder-decoder pipeline stacked on top of an object encoder-decoder backbone. Unfortunately, current SGG methods suffer from an information loss regarding the entities local-level cues during the relation encoding process. To mitigate this, we introduce the Vision rElation TransfOrmer (VETO), consisting of a novel local-level entity relation encoder. We further observe that many existing SGG methods claim to be unbiased, but are still biased towards either head or tail classes. To overcome this bias, we introduce a Mutually Exclusive ExperT (MEET) learning strategy that captures important relation features without bias towards head or tail classes. Experimental results on the VG and GQA datasets demonstrate that VETO + MEET boosts the predictive performance by up to 47 percentage over the state of the art while being 10 times smaller.
Segment Anything Model for Road Network Graph Extraction
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense semantic segmentation task, leveraging the inherent strengths of SAM. The image encoder of SAM is fine-tuned to produce probability masks for roads and intersections, from which the graph vertices are extracted via simple non-maximum suppression. To predict graph topology, we designed a lightweight transformer-based graph neural network, which leverages the SAM image embeddings to estimate the edge existence probabilities between vertices. Our approach directly predicts the graph vertices and edges for large regions without expensive and complex post-processing heuristics, and is capable of building complete road network graphs spanning multiple square kilometers in a matter of seconds. With its simple, straightforward, and minimalist design, SAM-Road achieves comparable accuracy with the state-of-the-art method RNGDet++, while being 40 times faster on the City-scale dataset. We thus demonstrate the power of a foundational vision model when applied to a graph learning task. The code is available at https://github.com/htcr/sam_road.
Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images using a View-based Representation
We infer and generate three-dimensional (3D) scene information from a single input image and without supervision. This problem is under-explored, with most prior work relying on supervision from, e.g., 3D ground-truth, multiple images of a scene, image silhouettes or key-points. We propose Pix2Shape, an approach to solve this problem with four components: (i) an encoder that infers the latent 3D representation from an image, (ii) a decoder that generates an explicit 2.5D surfel-based reconstruction of a scene from the latent code (iii) a differentiable renderer that synthesizes a 2D image from the surfel representation, and (iv) a critic network trained to discriminate between images generated by the decoder-renderer and those from a training distribution. Pix2Shape can generate complex 3D scenes that scale with the view-dependent on-screen resolution, unlike representations that capture world-space resolution, i.e., voxels or meshes. We show that Pix2Shape learns a consistent scene representation in its encoded latent space and that the decoder can then be applied to this latent representation in order to synthesize the scene from a novel viewpoint. We evaluate Pix2Shape with experiments on the ShapeNet dataset as well as on a novel benchmark we developed, called 3D-IQTT, to evaluate models based on their ability to enable 3d spatial reasoning. Qualitative and quantitative evaluation demonstrate Pix2Shape's ability to solve scene reconstruction, generation, and understanding tasks.
TSIT: A Simple and Versatile Framework for Image-to-Image Translation
We introduce a simple and versatile framework for image-to-image translation. We unearth the importance of normalization layers, and provide a carefully designed two-stream generative model with newly proposed feature transformations in a coarse-to-fine fashion. This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network, permitting our method to scale to various tasks in both unsupervised and supervised settings. No additional constraints (e.g., cycle consistency) are needed, contributing to a very clean and simple method. Multi-modal image synthesis with arbitrary style control is made possible. A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.
Detecting Objects with Context-Likelihood Graphs and Graph Refinement
The goal of this paper is to detect objects by exploiting their interrelationships. Contrary to existing methods, which learn objects and relations separately, our key idea is to learn the object-relation distribution jointly. We first propose a novel way of creating a graphical representation of an image from inter-object relation priors and initial class predictions, we call a context-likelihood graph. We then learn the joint distribution with an energy-based modeling technique which allows to sample and refine the context-likelihood graph iteratively for a given image. Our formulation of jointly learning the distribution enables us to generate a more accurate graph representation of an image which leads to a better object detection performance. We demonstrate the benefits of our context-likelihood graph formulation and the energy-based graph refinement via experiments on the Visual Genome and MS-COCO datasets where we achieve a consistent improvement over object detectors like DETR and Faster-RCNN, as well as alternative methods modeling object interrelationships separately. Our method is detector agnostic, end-to-end trainable, and especially beneficial for rare object classes.
LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
Scene Coordinate Reconstruction: Posing of Image Collections via Incremental Learning of a Relocalizer
We address the task of estimating camera parameters from a set of images depicting a scene. Popular feature-based structure-from-motion (SfM) tools solve this task by incremental reconstruction: they repeat triangulation of sparse 3D points and registration of more camera views to the sparse point cloud. We re-interpret incremental structure-from-motion as an iterated application and refinement of a visual relocalizer, that is, of a method that registers new views to the current state of the reconstruction. This perspective allows us to investigate alternative visual relocalizers that are not rooted in local feature matching. We show that scene coordinate regression, a learning-based relocalization approach, allows us to build implicit, neural scene representations from unposed images. Different from other learning-based reconstruction methods, we do not require pose priors nor sequential inputs, and we optimize efficiently over thousands of images. Our method, ACE0 (ACE Zero), estimates camera poses to an accuracy comparable to feature-based SfM, as demonstrated by novel view synthesis. Project page: https://nianticlabs.github.io/acezero/
PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions
This paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard
ObjectMate: A Recurrence Prior for Object Insertion and Subject-Driven Generation
This paper introduces a tuning-free method for both object insertion and subject-driven generation. The task involves composing an object, given multiple views, into a scene specified by either an image or text. Existing methods struggle to fully meet the task's challenging objectives: (i) seamlessly composing the object into the scene with photorealistic pose and lighting, and (ii) preserving the object's identity. We hypothesize that achieving these goals requires large scale supervision, but manually collecting sufficient data is simply too expensive. The key observation in this paper is that many mass-produced objects recur across multiple images of large unlabeled datasets, in different scenes, poses, and lighting conditions. We use this observation to create massive supervision by retrieving sets of diverse views of the same object. This powerful paired dataset enables us to train a straightforward text-to-image diffusion architecture to map the object and scene descriptions to the composited image. We compare our method, ObjectMate, with state-of-the-art methods for object insertion and subject-driven generation, using a single or multiple references. Empirically, ObjectMate achieves superior identity preservation and more photorealistic composition. Differently from many other multi-reference methods, ObjectMate does not require slow test-time tuning.
AutoLink: Self-supervised Learning of Human Skeletons and Object Outlines by Linking Keypoints
Structured representations such as keypoints are widely used in pose transfer, conditional image generation, animation, and 3D reconstruction. However, their supervised learning requires expensive annotation for each target domain. We propose a self-supervised method that learns to disentangle object structure from the appearance with a graph of 2D keypoints linked by straight edges. Both the keypoint location and their pairwise edge weights are learned, given only a collection of images depicting the same object class. The resulting graph is interpretable, for example, AutoLink recovers the human skeleton topology when applied to images showing people. Our key ingredients are i) an encoder that predicts keypoint locations in an input image, ii) a shared graph as a latent variable that links the same pairs of keypoints in every image, iii) an intermediate edge map that combines the latent graph edge weights and keypoint locations in a soft, differentiable manner, and iv) an inpainting objective on randomly masked images. Although simpler, AutoLink outperforms existing self-supervised methods on the established keypoint and pose estimation benchmarks and paves the way for structure-conditioned generative models on more diverse datasets. Project website: https://xingzhehe.github.io/autolink/.
Space-Time Correspondence as a Contrastive Random Walk
This paper proposes a simple self-supervised approach for learning a representation for visual correspondence from raw video. We cast correspondence as prediction of links in a space-time graph constructed from video. In this graph, the nodes are patches sampled from each frame, and nodes adjacent in time can share a directed edge. We learn a representation in which pairwise similarity defines transition probability of a random walk, so that long-range correspondence is computed as a walk along the graph. We optimize the representation to place high probability along paths of similarity. Targets for learning are formed without supervision, by cycle-consistency: the objective is to maximize the likelihood of returning to the initial node when walking along a graph constructed from a palindrome of frames. Thus, a single path-level constraint implicitly supervises chains of intermediate comparisons. When used as a similarity metric without adaptation, the learned representation outperforms the self-supervised state-of-the-art on label propagation tasks involving objects, semantic parts, and pose. Moreover, we demonstrate that a technique we call edge dropout, as well as self-supervised adaptation at test-time, further improve transfer for object-centric correspondence.
Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images with Vision Language Models
In the field of computer graphics, the use of vector graphics, particularly Scalable Vector Graphics (SVG), represents a notable development from traditional pixel-based imagery. SVGs, with their XML-based format, are distinct in their ability to directly and explicitly represent visual elements such as shape, color, and path. This direct representation facilitates a more accurate and logical depiction of graphical elements, enhancing reasoning and interpretability. Recognizing the potential of SVGs, the machine learning community has introduced multiple methods for image vectorization. However, transforming images into SVG format while retaining the relational properties and context of the original scene remains a key challenge. Most vectorization methods often yield SVGs that are overly complex and not easily interpretable. In response to this challenge, we introduce our method, Simple-SVG-Generation (S2VG2). Our method focuses on producing SVGs that are both accurate and simple, aligning with human readability and understanding. With simple images, we evaluate our method with reasoning tasks together with advanced language models, the results show a clear improvement over previous SVG generation methods. We also conducted surveys for human evaluation on the readability of our generated SVGs, the results also favor our methods.
PaintScene4D: Consistent 4D Scene Generation from Text Prompts
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
TopNet: Transformer-based Object Placement Network for Image Compositing
We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.
Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Recent text-to-image generation methods provide a simple yet exciting conversion capability between text and image domains. While these methods have incrementally improved the generated image fidelity and text relevancy, several pivotal gaps remain unanswered, limiting applicability and quality. We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene, (ii) introducing elements that substantially improve the tokenization process by employing domain-specific knowledge over key image regions (faces and salient objects), and (iii) adapting classifier-free guidance for the transformer use case. Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels, significantly improving visual quality. Through scene controllability, we introduce several new capabilities: (i) Scene editing, (ii) text editing with anchor scenes, (iii) overcoming out-of-distribution text prompts, and (iv) story illustration generation, as demonstrated in the story we wrote.
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
Image-to-Image Translation with Conditional Adversarial Networks
We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.
Semantic Understanding of Scenes through the ADE20K Dataset
Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the community's efforts in data collection, there are still few image datasets covering a wide range of scenes and object categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A generic network design called Cascade Segmentation Module is then proposed to enable the segmentation networks to parse a scene into stuff, objects, and object parts in a cascade. We evaluate the proposed module integrated within two existing semantic segmentation networks, yielding significant improvements for scene parsing. We further show that the scene parsing networks trained on ADE20K can be applied to a wide variety of scenes and objects.
SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image
Recent novel view synthesis methods obtain promising results for relatively small scenes, e.g., indoor environments and scenes with a few objects, but tend to fail for unbounded outdoor scenes with a single image as input. In this paper, we introduce SAMPLING, a Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image based on improved multiplane images (MPI). Observing that depth distribution varies significantly for unbounded outdoor scenes, we employ an adaptive-bins strategy for MPI to arrange planes in accordance with each scene image. To represent intricate geometry and multi-scale details, we further introduce a hierarchical refinement branch, which results in high-quality synthesized novel views. Our method demonstrates considerable performance gains in synthesizing large-scale unbounded outdoor scenes using a single image on the KITTI dataset and generalizes well to the unseen Tanks and Temples dataset.The code and models will soon be made available.
Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
Denoising Diffusion via Image-Based Rendering
Generating 3D scenes is a challenging open problem, which requires synthesizing plausible content that is fully consistent in 3D space. While recent methods such as neural radiance fields excel at view synthesis and 3D reconstruction, they cannot synthesize plausible details in unobserved regions since they lack a generative capability. Conversely, existing generative methods are typically not capable of reconstructing detailed, large-scale scenes in the wild, as they use limited-capacity 3D scene representations, require aligned camera poses, or rely on additional regularizers. In this work, we introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes. To achieve this, we make three contributions. First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes, dynamically allocating more capacity as needed to capture details visible in each image. Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images without the need for any additional supervision signal such as masks or depths. This supports 3D reconstruction and generation in a unified architecture. Third, we develop a principled approach to avoid trivial 3D solutions when integrating the image-based rendering with the diffusion model, by dropping out representations of some images. We evaluate the model on several challenging datasets of real and synthetic images, and demonstrate superior results on generation, novel view synthesis and 3D reconstruction.
PLA: Language-Driven Open-Vocabulary 3D Scene Understanding
Open-vocabulary scene understanding aims to localize and recognize unseen categories beyond the annotated label space. The recent breakthrough of 2D open-vocabulary perception is largely driven by Internet-scale paired image-text data with rich vocabulary concepts. However, this success cannot be directly transferred to 3D scenarios due to the inaccessibility of large-scale 3D-text pairs. To this end, we propose to distill knowledge encoded in pre-trained vision-language (VL) foundation models through captioning multi-view images from 3D, which allows explicitly associating 3D and semantic-rich captions. Further, to foster coarse-to-fine visual-semantic representation learning from captions, we design hierarchical 3D-caption pairs, leveraging geometric constraints between 3D scenes and multi-view images. Finally, by employing contrastive learning, the model learns language-aware embeddings that connect 3D and text for open-vocabulary tasks. Our method not only remarkably outperforms baseline methods by 25.8% sim 44.7% hIoU and 14.5% sim 50.4% hAP_{50} in open-vocabulary semantic and instance segmentation, but also shows robust transferability on challenging zero-shot domain transfer tasks. See the project website at https://dingry.github.io/projects/PLA.
Re-Thinking Inverse Graphics With Large Language Models
Inverse graphics -- the task of inverting an image into physical variables that, when rendered, enable reproduction of the observed scene -- is a fundamental challenge in computer vision and graphics. Disentangling an image into its constituent elements, such as the shape, color, and material properties of the objects of the 3D scene that produced it, requires a comprehensive understanding of the environment. This requirement limits the ability of existing carefully engineered approaches to generalize across domains. Inspired by the zero-shot ability of large language models (LLMs) to generalize to novel contexts, we investigate the possibility of leveraging the broad world knowledge encoded in such models in solving inverse-graphics problems. To this end, we propose the Inverse-Graphics Large Language Model (IG-LLM), an inverse-graphics framework centered around an LLM, that autoregressively decodes a visual embedding into a structured, compositional 3D-scene representation. We incorporate a frozen pre-trained visual encoder and a continuous numeric head to enable end-to-end training. Through our investigation, we demonstrate the potential of LLMs to facilitate inverse graphics through next-token prediction, without the use of image-space supervision. Our analysis opens up new possibilities for precise spatial reasoning about images that exploit the visual knowledge of LLMs. We will release our code and data to ensure the reproducibility of our investigation and to facilitate future research at https://ig-llm.is.tue.mpg.de/
Generating 3D-Consistent Videos from Unposed Internet Photos
We address the problem of generating videos from unposed internet photos. A handful of input images serve as keyframes, and our model interpolates between them to simulate a path moving between the cameras. Given random images, a model's ability to capture underlying geometry, recognize scene identity, and relate frames in terms of camera position and orientation reflects a fundamental understanding of 3D structure and scene layout. However, existing video models such as Luma Dream Machine fail at this task. We design a self-supervised method that takes advantage of the consistency of videos and variability of multiview internet photos to train a scalable, 3D-aware video model without any 3D annotations such as camera parameters. We validate that our method outperforms all baselines in terms of geometric and appearance consistency. We also show our model benefits applications that enable camera control, such as 3D Gaussian Splatting. Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
CLIPascene: Scene Sketching with Different Types and Levels of Abstraction
In this paper, we present a method for converting a given scene image into a sketch using different types and multiple levels of abstraction. We distinguish between two types of abstraction. The first considers the fidelity of the sketch, varying its representation from a more precise portrayal of the input to a looser depiction. The second is defined by the visual simplicity of the sketch, moving from a detailed depiction to a sparse sketch. Using an explicit disentanglement into two abstraction axes -- and multiple levels for each one -- provides users additional control over selecting the desired sketch based on their personal goals and preferences. To form a sketch at a given level of fidelity and simplification, we train two MLP networks. The first network learns the desired placement of strokes, while the second network learns to gradually remove strokes from the sketch without harming its recognizability and semantics. Our approach is able to generate sketches of complex scenes including those with complex backgrounds (e.g., natural and urban settings) and subjects (e.g., animals and people) while depicting gradual abstractions of the input scene in terms of fidelity and simplicity.
Generative Modeling of Graphs via Joint Diffusion of Node and Edge Attributes
Graph generation is integral to various engineering and scientific disciplines. Nevertheless, existing methodologies tend to overlook the generation of edge attributes. However, we identify critical applications where edge attributes are essential, making prior methods potentially unsuitable in such contexts. Moreover, while trivial adaptations are available, empirical investigations reveal their limited efficacy as they do not properly model the interplay among graph components. To address this, we propose a joint score-based model of nodes and edges for graph generation that considers all graph components. Our approach offers two key novelties: (i) node and edge attributes are combined in an attention module that generates samples based on the two ingredients; and (ii) node, edge and adjacency information are mutually dependent during the graph diffusion process. We evaluate our method on challenging benchmarks involving real-world and synthetic datasets in which edge features are crucial. Additionally, we introduce a new synthetic dataset that incorporates edge values. Furthermore, we propose a novel application that greatly benefits from the method due to its nature: the generation of traffic scenes represented as graphs. Our method outperforms other graph generation methods, demonstrating a significant advantage in edge-related measures.
Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting
3D scene generation has quickly become a challenging new research direction, fueled by consistent improvements of 2D generative diffusion models. Most prior work in this area generates scenes by iteratively stitching newly generated frames with existing geometry. These works often depend on pre-trained monocular depth estimators to lift the generated images into 3D, fusing them with the existing scene representation. These approaches are then often evaluated via a text metric, measuring the similarity between the generated images and a given text prompt. In this work, we make two fundamental contributions to the field of 3D scene generation. First, we note that lifting images to 3D with a monocular depth estimation model is suboptimal as it ignores the geometry of the existing scene. We thus introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process, resulting in improved geometric coherence of the scene. Second, we introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry, and thus measures the quality of the structure of the scene.
Visual Text Generation in the Wild
Recently, with the rapid advancements of generative models, the field of visual text generation has witnessed significant progress. However, it is still challenging to render high-quality text images in real-world scenarios, as three critical criteria should be satisfied: (1) Fidelity: the generated text images should be photo-realistic and the contents are expected to be the same as specified in the given conditions; (2) Reasonability: the regions and contents of the generated text should cohere with the scene; (3) Utility: the generated text images can facilitate related tasks (e.g., text detection and recognition). Upon investigation, we find that existing methods, either rendering-based or diffusion-based, can hardly meet all these aspects simultaneously, limiting their application range. Therefore, we propose in this paper a visual text generator (termed SceneVTG), which can produce high-quality text images in the wild. Following a two-stage paradigm, SceneVTG leverages a Multimodal Large Language Model to recommend reasonable text regions and contents across multiple scales and levels, which are used by a conditional diffusion model as conditions to generate text images. Extensive experiments demonstrate that the proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability. Besides, the generated images provide superior utility for tasks involving text detection and text recognition. Code and datasets are available at AdvancedLiterateMachinery.
MaPa: Text-driven Photorealistic Material Painting for 3D Shapes
This paper aims to generate materials for 3D meshes from text descriptions. Unlike existing methods that synthesize texture maps, we propose to generate segment-wise procedural material graphs as the appearance representation, which supports high-quality rendering and provides substantial flexibility in editing. Instead of relying on extensive paired data, i.e., 3D meshes with material graphs and corresponding text descriptions, to train a material graph generative model, we propose to leverage the pre-trained 2D diffusion model as a bridge to connect the text and material graphs. Specifically, our approach decomposes a shape into a set of segments and designs a segment-controlled diffusion model to synthesize 2D images that are aligned with mesh parts. Based on generated images, we initialize parameters of material graphs and fine-tune them through the differentiable rendering module to produce materials in accordance with the textual description. Extensive experiments demonstrate the superior performance of our framework in photorealism, resolution, and editability over existing methods. Project page: https://zhanghe3z.github.io/MaPa/
Generating Images from Captions with Attention
Motivated by the recent progress in generative models, we introduce a model that generates images from natural language descriptions. The proposed model iteratively draws patches on a canvas, while attending to the relevant words in the description. After training on Microsoft COCO, we compare our model with several baseline generative models on image generation and retrieval tasks. We demonstrate that our model produces higher quality samples than other approaches and generates images with novel scene compositions corresponding to previously unseen captions in the dataset.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis
Existing text-to-image generation approaches have set high standards for photorealism and text-image correspondence, largely benefiting from web-scale text-image datasets, which can include up to 5~billion pairs. However, text-to-image generation models trained on domain-specific datasets, such as urban scenes, medical images, and faces, still suffer from low text-image correspondence due to the lack of text-image pairs. Additionally, collecting billions of text-image pairs for a specific domain can be time-consuming and costly. Thus, ensuring high text-image correspondence without relying on web-scale text-image datasets remains a challenging task. In this paper, we present a novel approach for enhancing text-image correspondence by leveraging available semantic layouts. Specifically, we propose a Gaussian-categorical diffusion process that simultaneously generates both images and corresponding layout pairs. Our experiments reveal that we can guide text-to-image generation models to be aware of the semantics of different image regions, by training the model to generate semantic labels for each pixel. We demonstrate that our approach achieves higher text-image correspondence compared to existing text-to-image generation approaches in the Multi-Modal CelebA-HQ and the Cityscapes dataset, where text-image pairs are scarce. Codes are available in this https://pmh9960.github.io/research/GCDP
AutomaTikZ: Text-Guided Synthesis of Scientific Vector Graphics with TikZ
Generating bitmap graphics from text has gained considerable attention, yet for scientific figures, vector graphics are often preferred. Given that vector graphics are typically encoded using low-level graphics primitives, generating them directly is difficult. To address this, we propose the use of TikZ, a well-known abstract graphics language that can be compiled to vector graphics, as an intermediate representation of scientific figures. TikZ offers human-oriented, high-level commands, thereby facilitating conditional language modeling with any large language model. To this end, we introduce DaTikZ the first large-scale TikZ dataset, consisting of 120k TikZ drawings aligned with captions. We fine-tune LLaMA on DaTikZ, as well as our new model CLiMA, which augments LLaMA with multimodal CLIP embeddings. In both human and automatic evaluation, CLiMA and LLaMA outperform commercial GPT-4 and Claude 2 in terms of similarity to human-created figures, with CLiMA additionally improving text-image alignment. Our detailed analysis shows that all models generalize well and are not susceptible to memorization. GPT-4 and Claude 2, however, tend to generate more simplistic figures compared to both humans and our models. We make our framework, AutomaTikZ, along with model weights and datasets, publicly available.
Scaling Autoregressive Models for Content-Rich Text-to-Image Generation
We present the Pathways Autoregressive Text-to-Image (Parti) model, which generates high-fidelity photorealistic images and supports content-rich synthesis involving complex compositions and world knowledge. Parti treats text-to-image generation as a sequence-to-sequence modeling problem, akin to machine translation, with sequences of image tokens as the target outputs rather than text tokens in another language. This strategy can naturally tap into the rich body of prior work on large language models, which have seen continued advances in capabilities and performance through scaling data and model sizes. Our approach is simple: First, Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens. Second, we achieve consistent quality improvements by scaling the encoder-decoder Transformer model up to 20B parameters, with a new state-of-the-art zero-shot FID score of 7.23 and finetuned FID score of 3.22 on MS-COCO. Our detailed analysis on Localized Narratives as well as PartiPrompts (P2), a new holistic benchmark of over 1600 English prompts, demonstrate the effectiveness of Parti across a wide variety of categories and difficulty aspects. We also explore and highlight limitations of our models in order to define and exemplify key areas of focus for further improvements. See https://parti.research.google/ for high-resolution images.
Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models
Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.
RoNet: Rotation-oriented Continuous Image Translation
The generation of smooth and continuous images between domains has recently drawn much attention in image-to-image (I2I) translation. Linear relationship acts as the basic assumption in most existing approaches, while applied to different aspects including features, models or labels. However, the linear assumption is hard to conform with the element dimension increases and suffers from the limit that having to obtain both ends of the line. In this paper, we propose a novel rotation-oriented solution and model the continuous generation with an in-plane rotation over the style representation of an image, achieving a network named RoNet. A rotation module is implanted in the generation network to automatically learn the proper plane while disentangling the content and the style of an image. To encourage realistic texture, we also design a patch-based semantic style loss that learns the different styles of the similar object in different domains. We conduct experiments on forest scenes (where the complex texture makes the generation very challenging), faces, streetscapes and the iphone2dslr task. The results validate the superiority of our method in terms of visual quality and continuity.
MIDI: Multi-Instance Diffusion for Single Image to 3D Scene Generation
This paper introduces MIDI, a novel paradigm for compositional 3D scene generation from a single image. Unlike existing methods that rely on reconstruction or retrieval techniques or recent approaches that employ multi-stage object-by-object generation, MIDI extends pre-trained image-to-3D object generation models to multi-instance diffusion models, enabling the simultaneous generation of multiple 3D instances with accurate spatial relationships and high generalizability. At its core, MIDI incorporates a novel multi-instance attention mechanism, that effectively captures inter-object interactions and spatial coherence directly within the generation process, without the need for complex multi-step processes. The method utilizes partial object images and global scene context as inputs, directly modeling object completion during 3D generation. During training, we effectively supervise the interactions between 3D instances using a limited amount of scene-level data, while incorporating single-object data for regularization, thereby maintaining the pre-trained generalization ability. MIDI demonstrates state-of-the-art performance in image-to-scene generation, validated through evaluations on synthetic data, real-world scene data, and stylized scene images generated by text-to-image diffusion models.
Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives
Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW .
3DEgo: 3D Editing on the Go!
We introduce 3DEgo to address a novel problem of directly synthesizing photorealistic 3D scenes from monocular videos guided by textual prompts. Conventional methods construct a text-conditioned 3D scene through a three-stage process, involving pose estimation using Structure-from-Motion (SfM) libraries like COLMAP, initializing the 3D model with unedited images, and iteratively updating the dataset with edited images to achieve a 3D scene with text fidelity. Our framework streamlines the conventional multi-stage 3D editing process into a single-stage workflow by overcoming the reliance on COLMAP and eliminating the cost of model initialization. We apply a diffusion model to edit video frames prior to 3D scene creation by incorporating our designed noise blender module for enhancing multi-view editing consistency, a step that does not require additional training or fine-tuning of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to create 3D scenes from the multi-view consistent edited frames, capitalizing on the inherent temporal continuity and explicit point cloud data. 3DEgo demonstrates remarkable editing precision, speed, and adaptability across a variety of video sources, as validated by extensive evaluations on six datasets, including our own prepared GS25 dataset. Project Page: https://3dego.github.io/
Map-free Visual Relocalization: Metric Pose Relative to a Single Image
Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization, i.e., using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.
Novel View Synthesis with Pixel-Space Diffusion Models
Synthesizing a novel view from a single input image is a challenging task. Traditionally, this task was approached by estimating scene depth, warping, and inpainting, with machine learning models enabling parts of the pipeline. More recently, generative models are being increasingly employed in novel view synthesis (NVS), often encompassing the entire end-to-end system. In this work, we adapt a modern diffusion model architecture for end-to-end NVS in the pixel space, substantially outperforming previous state-of-the-art (SOTA) techniques. We explore different ways to encode geometric information into the network. Our experiments show that while these methods may enhance performance, their impact is minor compared to utilizing improved generative models. Moreover, we introduce a novel NVS training scheme that utilizes single-view datasets, capitalizing on their relative abundance compared to their multi-view counterparts. This leads to improved generalization capabilities to scenes with out-of-domain content.
BeyondScene: Higher-Resolution Human-Centric Scene Generation With Pretrained Diffusion
Generating higher-resolution human-centric scenes with details and controls remains a challenge for existing text-to-image diffusion models. This challenge stems from limited training image size, text encoder capacity (limited tokens), and the inherent difficulty of generating complex scenes involving multiple humans. While current methods attempted to address training size limit only, they often yielded human-centric scenes with severe artifacts. We propose BeyondScene, a novel framework that overcomes prior limitations, generating exquisite higher-resolution (over 8K) human-centric scenes with exceptional text-image correspondence and naturalness using existing pretrained diffusion models. BeyondScene employs a staged and hierarchical approach to initially generate a detailed base image focusing on crucial elements in instance creation for multiple humans and detailed descriptions beyond token limit of diffusion model, and then to seamlessly convert the base image to a higher-resolution output, exceeding training image size and incorporating details aware of text and instances via our novel instance-aware hierarchical enlargement process that consists of our proposed high-frequency injected forward diffusion and adaptive joint diffusion. BeyondScene surpasses existing methods in terms of correspondence with detailed text descriptions and naturalness, paving the way for advanced applications in higher-resolution human-centric scene creation beyond the capacity of pretrained diffusion models without costly retraining. Project page: https://janeyeon.github.io/beyond-scene.
DreamScene: 3D Gaussian-based Text-to-3D Scene Generation via Formation Pattern Sampling
Text-to-3D scene generation holds immense potential for the gaming, film, and architecture sectors. Despite significant progress, existing methods struggle with maintaining high quality, consistency, and editing flexibility. In this paper, we propose DreamScene, a 3D Gaussian-based novel text-to-3D scene generation framework, to tackle the aforementioned three challenges mainly via two strategies. First, DreamScene employs Formation Pattern Sampling (FPS), a multi-timestep sampling strategy guided by the formation patterns of 3D objects, to form fast, semantically rich, and high-quality representations. FPS uses 3D Gaussian filtering for optimization stability, and leverages reconstruction techniques to generate plausible textures. Second, DreamScene employs a progressive three-stage camera sampling strategy, specifically designed for both indoor and outdoor settings, to effectively ensure object-environment integration and scene-wide 3D consistency. Last, DreamScene enhances scene editing flexibility by integrating objects and environments, enabling targeted adjustments. Extensive experiments validate DreamScene's superiority over current state-of-the-art techniques, heralding its wide-ranging potential for diverse applications. Code and demos will be released at https://dreamscene-project.github.io .
Break-A-Scene: Extracting Multiple Concepts from a Single Image
Text-to-image model personalization aims to introduce a user-provided concept to the model, allowing its synthesis in diverse contexts. However, current methods primarily focus on the case of learning a single concept from multiple images with variations in backgrounds and poses, and struggle when adapted to a different scenario. In this work, we introduce the task of textual scene decomposition: given a single image of a scene that may contain several concepts, we aim to extract a distinct text token for each concept, enabling fine-grained control over the generated scenes. To this end, we propose augmenting the input image with masks that indicate the presence of target concepts. These masks can be provided by the user or generated automatically by a pre-trained segmentation model. We then present a novel two-phase customization process that optimizes a set of dedicated textual embeddings (handles), as well as the model weights, striking a delicate balance between accurately capturing the concepts and avoiding overfitting. We employ a masked diffusion loss to enable handles to generate their assigned concepts, complemented by a novel loss on cross-attention maps to prevent entanglement. We also introduce union-sampling, a training strategy aimed to improve the ability of combining multiple concepts in generated images. We use several automatic metrics to quantitatively compare our method against several baselines, and further affirm the results using a user study. Finally, we showcase several applications of our method. Project page is available at: https://omriavrahami.com/break-a-scene/
Patch-based 3D Natural Scene Generation from a Single Example
We target a 3D generative model for general natural scenes that are typically unique and intricate. Lacking the necessary volumes of training data, along with the difficulties of having ad hoc designs in presence of varying scene characteristics, renders existing setups intractable. Inspired by classical patch-based image models, we advocate for synthesizing 3D scenes at the patch level, given a single example. At the core of this work lies important algorithmic designs w.r.t the scene representation and generative patch nearest-neighbor module, that address unique challenges arising from lifting classical 2D patch-based framework to 3D generation. These design choices, on a collective level, contribute to a robust, effective, and efficient model that can generate high-quality general natural scenes with both realistic geometric structure and visual appearance, in large quantities and varieties, as demonstrated upon a variety of exemplar scenes.
3D-aware Conditional Image Synthesis
We propose pix2pix3D, a 3D-aware conditional generative model for controllable photorealistic image synthesis. Given a 2D label map, such as a segmentation or edge map, our model learns to synthesize a corresponding image from different viewpoints. To enable explicit 3D user control, we extend conditional generative models with neural radiance fields. Given widely-available monocular images and label map pairs, our model learns to assign a label to every 3D point in addition to color and density, which enables it to render the image and pixel-aligned label map simultaneously. Finally, we build an interactive system that allows users to edit the label map from any viewpoint and generate outputs accordingly.
Toon3D: Seeing Cartoons from a New Perspective
In this work, we recover the underlying 3D structure of non-geometrically consistent scenes. We focus our analysis on hand-drawn images from cartoons and anime. Many cartoons are created by artists without a 3D rendering engine, which means that any new image of a scene is hand-drawn. The hand-drawn images are usually faithful representations of the world, but only in a qualitative sense, since it is difficult for humans to draw multiple perspectives of an object or scene 3D consistently. Nevertheless, people can easily perceive 3D scenes from inconsistent inputs! In this work, we correct for 2D drawing inconsistencies to recover a plausible 3D structure such that the newly warped drawings are consistent with each other. Our pipeline consists of a user-friendly annotation tool, camera pose estimation, and image deformation to recover a dense structure. Our method warps images to obey a perspective camera model, enabling our aligned results to be plugged into novel-view synthesis reconstruction methods to experience cartoons from viewpoints never drawn before. Our project page is https://toon3d.studio/.
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
Extraction of building footprint polygons from remotely sensed data is essential for several urban understanding tasks such as reconstruction, navigation, and mapping. Despite significant progress in the area, extracting accurate polygonal building footprints remains an open problem. In this paper, we introduce Pix2Poly, an attention-based end-to-end trainable and differentiable deep neural network capable of directly generating explicit high-quality building footprints in a ring graph format. Pix2Poly employs a generative encoder-decoder transformer to produce a sequence of graph vertex tokens whose connectivity information is learned by an optimal matching network. Compared to previous graph learning methods, ours is a truly end-to-end trainable approach that extracts high-quality building footprints and road networks without requiring complicated, computationally intensive raster loss functions and intricate training pipelines. Upon evaluating Pix2Poly on several complex and challenging datasets, we report that Pix2Poly outperforms state-of-the-art methods in several vector shape quality metrics while being an entirely explicit method. Our code is available at https://github.com/yeshwanth95/Pix2Poly.
Urban Architect: Steerable 3D Urban Scene Generation with Layout Prior
Text-to-3D generation has achieved remarkable success via large-scale text-to-image diffusion models. Nevertheless, there is no paradigm for scaling up the methodology to urban scale. Urban scenes, characterized by numerous elements, intricate arrangement relationships, and vast scale, present a formidable barrier to the interpretability of ambiguous textual descriptions for effective model optimization. In this work, we surmount the limitations by introducing a compositional 3D layout representation into text-to-3D paradigm, serving as an additional prior. It comprises a set of semantic primitives with simple geometric structures and explicit arrangement relationships, complementing textual descriptions and enabling steerable generation. Upon this, we propose two modifications -- (1) We introduce Layout-Guided Variational Score Distillation to address model optimization inadequacies. It conditions the score distillation sampling process with geometric and semantic constraints of 3D layouts. (2) To handle the unbounded nature of urban scenes, we represent 3D scene with a Scalable Hash Grid structure, incrementally adapting to the growing scale of urban scenes. Extensive experiments substantiate the capability of our framework to scale text-to-3D generation to large-scale urban scenes that cover over 1000m driving distance for the first time. We also present various scene editing demonstrations, showing the powers of steerable urban scene generation. Website: https://urbanarchitect.github.io.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
Compositional Scene Representation Learning via Reconstruction: A Survey
Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.
Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models
We introduce Playground v3 (PGv3), our latest text-to-image model that achieves state-of-the-art (SoTA) performance across multiple testing benchmarks, excels in graphic design abilities and introduces new capabilities. Unlike traditional text-to-image generative models that rely on pre-trained language models like T5 or CLIP text encoders, our approach fully integrates Large Language Models (LLMs) with a novel structure that leverages text conditions exclusively from a decoder-only LLM. Additionally, to enhance image captioning quality-we developed an in-house captioner, capable of generating captions with varying levels of detail, enriching the diversity of text structures. We also introduce a new benchmark CapsBench to evaluate detailed image captioning performance. Experimental results demonstrate that PGv3 excels in text prompt adherence, complex reasoning, and accurate text rendering. User preference studies indicate the super-human graphic design ability of our model for common design applications, such as stickers, posters, and logo designs. Furthermore, PGv3 introduces new capabilities, including precise RGB color control and robust multilingual understanding.
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
RUST: Latent Neural Scene Representations from Unposed Imagery
Inferring the structure of 3D scenes from 2D observations is a fundamental challenge in computer vision. Recently popularized approaches based on neural scene representations have achieved tremendous impact and have been applied across a variety of applications. One of the major remaining challenges in this space is training a single model which can provide latent representations which effectively generalize beyond a single scene. Scene Representation Transformer (SRT) has shown promise in this direction, but scaling it to a larger set of diverse scenes is challenging and necessitates accurately posed ground truth data. To address this problem, we propose RUST (Really Unposed Scene representation Transformer), a pose-free approach to novel view synthesis trained on RGB images alone. Our main insight is that one can train a Pose Encoder that peeks at the target image and learns a latent pose embedding which is used by the decoder for view synthesis. We perform an empirical investigation into the learned latent pose structure and show that it allows meaningful test-time camera transformations and accurate explicit pose readouts. Perhaps surprisingly, RUST achieves similar quality as methods which have access to perfect camera pose, thereby unlocking the potential for large-scale training of amortized neural scene representations.
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Conditional 360-degree Image Synthesis for Immersive Indoor Scene Decoration
In this paper, we address the problem of conditional scene decoration for 360-degree images. Our method takes a 360-degree background photograph of an indoor scene and generates decorated images of the same scene in the panorama view. To do this, we develop a 360-aware object layout generator that learns latent object vectors in the 360-degree view to enable a variety of furniture arrangements for an input 360-degree background image. We use this object layout to condition a generative adversarial network to synthesize images of an input scene. To further reinforce the generation capability of our model, we develop a simple yet effective scene emptier that removes the generated furniture and produces an emptied scene for our model to learn a cyclic constraint. We train the model on the Structure3D dataset and show that our model can generate diverse decorations with controllable object layout. Our method achieves state-of-the-art performance on the Structure3D dataset and generalizes well to the Zillow indoor scene dataset. Our user study confirms the immersive experiences provided by the realistic image quality and furniture layout in our generation results. Our implementation will be made available.
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor Points
Establishing dense correspondence between two images is a fundamental computer vision problem, which is typically tackled by matching local feature descriptors. However, without global awareness, such local features are often insufficient for disambiguating similar regions. And computing the pairwise feature correlation across images is both computation-expensive and memory-intensive. To make the local features aware of the global context and improve their matching accuracy, we introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points. Specifically, we first propose a graph structure that utilizes anchor points to provide sparse but reliable prior on inter- and intra-image context and propagates them to all image points via directed edges. We also design a graph-structured network to broadcast multi-level contexts via light-weighted message-passing layers and generate high-resolution feature maps at low memory cost. Finally, based on the predicted feature maps, we introduce a coarse-to-fine framework for accurate correspondence prediction using cycle consistency. Our feature descriptors capture both local and global information, thus enabling a continuous feature field for querying arbitrary points at high resolution. Through comprehensive ablative experiments and evaluations on large-scale indoor and outdoor datasets, we demonstrate that our method advances the state-of-the-art of correspondence learning on most benchmarks.
Multi-Curve Translator for High-Resolution Photorealistic Image Translation
The dominant image-to-image translation methods are based on fully convolutional networks, which extract and translate an image's features and then reconstruct the image. However, they have unacceptable computational costs when working with high-resolution images. To this end, we present the Multi-Curve Translator (MCT), which not only predicts the translated pixels for the corresponding input pixels but also for their neighboring pixels. And if a high-resolution image is downsampled to its low-resolution version, the lost pixels are the remaining pixels' neighboring pixels. So MCT makes it possible to feed the network only the downsampled image to perform the mapping for the full-resolution image, which can dramatically lower the computational cost. Besides, MCT is a plug-in approach that utilizes existing base models and requires only replacing their output layers. Experiments demonstrate that the MCT variants can process 4K images in real-time and achieve comparable or even better performance than the base models on various photorealistic image-to-image translation tasks.
3D Photography using Context-aware Layered Depth Inpainting
We propose a method for converting a single RGB-D input image into a 3D photo - a multi-layer representation for novel view synthesis that contains hallucinated color and depth structures in regions occluded in the original view. We use a Layered Depth Image with explicit pixel connectivity as underlying representation, and present a learning-based inpainting model that synthesizes new local color-and-depth content into the occluded region in a spatial context-aware manner. The resulting 3D photos can be efficiently rendered with motion parallax using standard graphics engines. We validate the effectiveness of our method on a wide range of challenging everyday scenes and show fewer artifacts compared with the state of the arts.
Painting 3D Nature in 2D: View Synthesis of Natural Scenes from a Single Semantic Mask
We introduce a novel approach that takes a single semantic mask as input to synthesize multi-view consistent color images of natural scenes, trained with a collection of single images from the Internet. Prior works on 3D-aware image synthesis either require multi-view supervision or learning category-level prior for specific classes of objects, which can hardly work for natural scenes. Our key idea to solve this challenging problem is to use a semantic field as the intermediate representation, which is easier to reconstruct from an input semantic mask and then translate to a radiance field with the assistance of off-the-shelf semantic image synthesis models. Experiments show that our method outperforms baseline methods and produces photorealistic, multi-view consistent videos of a variety of natural scenes.
Automatic Generation of Contrast Sets from Scene Graphs: Probing the Compositional Consistency of GQA
Recent works have shown that supervised models often exploit data artifacts to achieve good test scores while their performance severely degrades on samples outside their training distribution. Contrast sets (Gardneret al., 2020) quantify this phenomenon by perturbing test samples in a minimal way such that the output label is modified. While most contrast sets were created manually, requiring intensive annotation effort, we present a novel method which leverages rich semantic input representation to automatically generate contrast sets for the visual question answering task. Our method computes the answer of perturbed questions, thus vastly reducing annotation cost and enabling thorough evaluation of models' performance on various semantic aspects (e.g., spatial or relational reasoning). We demonstrate the effectiveness of our approach on the GQA dataset and its semantic scene graph image representation. We find that, despite GQA's compositionality and carefully balanced label distribution, two high-performing models drop 13-17% in accuracy compared to the original test set. Finally, we show that our automatic perturbation can be applied to the training set to mitigate the degradation in performance, opening the door to more robust models.
Generating Physically-Consistent Satellite Imagery for Climate Visualizations
Deep generative vision models are now able to synthesize realistic-looking satellite imagery. But, the possibility of hallucinations prevents their adoption for risk-sensitive applications, such as generating materials for communicating climate change. To demonstrate this issue, we train a generative adversarial network (pix2pixHD) to create synthetic satellite imagery of future flooding and reforestation events. We find that a pure deep learning-based model can generate photorealistic flood visualizations but hallucinates floods at locations that were not susceptible to flooding. To address this issue, we propose to condition and evaluate generative vision models on segmentation maps of physics-based flood models. We show that our physics-conditioned model outperforms the pure deep learning-based model and a handcrafted baseline. We evaluate the generalization capability of our method to different remote sensing data and different climate-related events (reforestation). We publish our code and dataset which includes the data for a third case study of melting Arctic sea ice and >30,000 labeled HD image triplets -- or the equivalent of 5.5 million images at 128x128 pixels -- for segmentation guided image-to-image translation in Earth observation. Code and data is available at https://github.com/blutjens/eie-earth-public.
SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections
In this work, we present SceneDreamer, an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our approach begins with an efficient bird's-eye-view (BEV) representation generated from simplex noise, which includes a height field for surface elevation and a semantic field for detailed scene semantics. This BEV scene representation enables 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Moreover, we propose a novel generative neural hash grid to parameterize the latent space based on 3D positions and scene semantics, aiming to encode generalizable features across various scenes. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds.
From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos
Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world and has been an active area of research in computer vision, graphics, and robotics. Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects. However, applying a similar approach to real-world objects and scenes is difficult due to a lack of large-scale data. Videos are a potential source for real-world 3D data, but finding diverse yet corresponding views of the same content has shown to be difficult at scale. Furthermore, standard videos come with fixed viewpoints, determined at the time of capture. This restricts the ability to access scenes from a variety of more diverse and potentially useful perspectives. We argue that large scale 360 videos can address these limitations to provide: scalable corresponding frames from diverse views. In this paper, we introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale. We train our diffusion-based model, Odin, on 360-1M. Empowered by the largest real-world, multi-view dataset to date, Odin is able to freely generate novel views of real-world scenes. Unlike previous methods, Odin can move the camera through the environment, enabling the model to infer the geometry and layout of the scene. Additionally, we show improved performance on standard novel view synthesis and 3D reconstruction benchmarks.
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Object categories are typically organized into a multi-granularity taxonomic hierarchy. When classifying categories at different hierarchy levels, traditional uni-modal approaches focus primarily on image features, revealing limitations in complex scenarios. Recent studies integrating Vision-Language Models (VLMs) with class hierarchies have shown promise, yet they fall short of fully exploiting the hierarchical relationships. These efforts are constrained by their inability to perform effectively across varied granularity of categories. To tackle this issue, we propose a novel framework (HGCLIP) that effectively combines CLIP with a deeper exploitation of the Hierarchical class structure via Graph representation learning. We explore constructing the class hierarchy into a graph, with its nodes representing the textual or image features of each category. After passing through a graph encoder, the textual features incorporate hierarchical structure information, while the image features emphasize class-aware features derived from prototypes through the attention mechanism. Our approach demonstrates significant improvements on 11 diverse visual recognition benchmarks. Our codes are fully available at https://github.com/richard-peng-xia/HGCLIP.
FigGen: Text to Scientific Figure Generation
The generative modeling landscape has experienced tremendous growth in recent years, particularly in generating natural images and art. Recent techniques have shown impressive potential in creating complex visual compositions while delivering impressive realism and quality. However, state-of-the-art methods have been focusing on the narrow domain of natural images, while other distributions remain unexplored. In this paper, we introduce the problem of text-to-figure generation, that is creating scientific figures of papers from text descriptions. We present FigGen, a diffusion-based approach for text-to-figure as well as the main challenges of the proposed task. Code and models are available at https://github.com/joanrod/figure-diffusion
Layout2Scene: 3D Semantic Layout Guided Scene Generation via Geometry and Appearance Diffusion Priors
3D scene generation conditioned on text prompts has significantly progressed due to the development of 2D diffusion generation models. However, the textual description of 3D scenes is inherently inaccurate and lacks fine-grained control during training, leading to implausible scene generation. As an intuitive and feasible solution, the 3D layout allows for precise specification of object locations within the scene. To this end, we present a text-to-scene generation method (namely, Layout2Scene) using additional semantic layout as the prompt to inject precise control of 3D object positions. Specifically, we first introduce a scene hybrid representation to decouple objects and backgrounds, which is initialized via a pre-trained text-to-3D model. Then, we propose a two-stage scheme to optimize the geometry and appearance of the initialized scene separately. To fully leverage 2D diffusion priors in geometry and appearance generation, we introduce a semantic-guided geometry diffusion model and a semantic-geometry guided diffusion model which are finetuned on a scene dataset. Extensive experiments demonstrate that our method can generate more plausible and realistic scenes as compared to state-of-the-art approaches. Furthermore, the generated scene allows for flexible yet precise editing, thereby facilitating multiple downstream applications.
Scene Co-pilot: Procedural Text to Video Generation with Human in the Loop
Video generation has achieved impressive quality, but it still suffers from artifacts such as temporal inconsistency and violation of physical laws. Leveraging 3D scenes can fundamentally resolve these issues by providing precise control over scene entities. To facilitate the easy generation of diverse photorealistic scenes, we propose Scene Copilot, a framework combining large language models (LLMs) with a procedural 3D scene generator. Specifically, Scene Copilot consists of Scene Codex, BlenderGPT, and Human in the loop. Scene Codex is designed to translate textual user input into commands understandable by the 3D scene generator. BlenderGPT provides users with an intuitive and direct way to precisely control the generated 3D scene and the final output video. Furthermore, users can utilize Blender UI to receive instant visual feedback. Additionally, we have curated a procedural dataset of objects in code format to further enhance our system's capabilities. Each component works seamlessly together to support users in generating desired 3D scenes. Extensive experiments demonstrate the capability of our framework in customizing 3D scenes and video generation.
Semantic-Aware Scene Recognition
Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on four publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at https://github.com/vpulab/Semantic-Aware-Scene-Recognition
Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE
As Artificial Intelligence Generated Content (AIGC) advances, a variety of methods have been developed to generate text, images, videos, and 3D objects from single or multimodal inputs, contributing efforts to emulate human-like cognitive content creation. However, generating realistic large-scale scenes from a single input presents a challenge due to the complexities involved in ensuring consistency across extrapolated views generated by models. Benefiting from recent video generation models and implicit neural representations, we propose Scene123, a 3D scene generation model, that not only ensures realism and diversity through the video generation framework but also uses implicit neural fields combined with Masked Autoencoders (MAE) to effectively ensures the consistency of unseen areas across views. Specifically, we initially warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model. However, these filled images usually fail to maintain view consistency, thus we utilize the produced views to optimize a neural radiance field, enhancing geometric consistency. Moreover, to further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model. Extensive experiments demonstrate that our method can generate realistic and consistent scenes from a single prompt. Both qualitative and quantitative results indicate that our approach surpasses existing state-of-the-art methods. We show encourage video examples at https://yiyingyang12.github.io/Scene123.github.io/.
An Object is Worth 64x64 Pixels: Generating 3D Object via Image Diffusion
We introduce a new approach for generating realistic 3D models with UV maps through a representation termed "Object Images." This approach encapsulates surface geometry, appearance, and patch structures within a 64x64 pixel image, effectively converting complex 3D shapes into a more manageable 2D format. By doing so, we address the challenges of both geometric and semantic irregularity inherent in polygonal meshes. This method allows us to use image generation models, such as Diffusion Transformers, directly for 3D shape generation. Evaluated on the ABO dataset, our generated shapes with patch structures achieve point cloud FID comparable to recent 3D generative models, while naturally supporting PBR material generation.