Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all.
Quantum-Inspired Machine Learning for Molecular Docking
Molecular docking is an important tool for structure-based drug design, accelerating the efficiency of drug development. Complex and dynamic binding processes between proteins and small molecules require searching and sampling over a wide spatial range. Traditional docking by searching for possible binding sites and conformations is computationally complex and results poorly under blind docking. Quantum-inspired algorithms combining quantum properties and annealing show great advantages in solving combinatorial optimization problems. Inspired by this, we achieve an improved in blind docking by using quantum-inspired combined with gradients learned by deep learning in the encoded molecular space. Numerical simulation shows that our method outperforms traditional docking algorithms and deep learning-based algorithms over 10\%. Compared to the current state-of-the-art deep learning-based docking algorithm DiffDock, the success rate of Top-1 (RMSD<2) achieves an improvement from 33\% to 35\% in our same setup. In particular, a 6\% improvement is realized in the high-precision region(RMSD<1) on molecules data unseen in DiffDock, which demonstrates the well-generalized of our method.
Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are big(mathcal{O}big(frac 1nbig),,, mathcal{O}big(1{min{m,n}}big)big)-DP under some reasonable restrictions, where m and n are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
Automated Quantum Circuit Design with Nested Monte Carlo Tree Search
Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions and have found a myriad of applications in the last few years. Despite the adaptability and simplicity, their scalability and the selection of suitable ans\"atzs remain key challenges. In this work, we report an algorithmic framework based on nested Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed bandit (CMAB) model for the automated design of quantum circuits. Through numerical experiments, we demonstrated our algorithm applied to various kinds of problems, including the ground energy problem in quantum chemistry, quantum optimisation on a graph, solving systems of linear equations, and finding encoding circuit for quantum error detection codes. Compared to the existing approaches, the results indicate that our circuit design algorithm can explore larger search spaces and optimise quantum circuits for larger systems, showing both versatility and scalability.
Quantum Diffusion Models
We propose a quantum version of a generative diffusion model. In this algorithm, artificial neural networks are replaced with parameterized quantum circuits, in order to directly generate quantum states. We present both a full quantum and a latent quantum version of the algorithm; we also present a conditioned version of these models. The models' performances have been evaluated using quantitative metrics complemented by qualitative assessments. An implementation of a simplified version of the algorithm has been executed on real NISQ quantum hardware.
Scalable quantum neural networks by few quantum resources
This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
Bootstrap Embedding on a Quantum Computer
We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match -- at little additional computational cost -- full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching.
QuantumLLMInstruct: A 500k LLM Instruction-Tuning Dataset with Problem-Solution Pairs for Quantum Computing
We present QuantumLLMInstruct (QLMMI), an innovative dataset featuring over 500,000 meticulously curated instruction-following problem-solution pairs designed specifically for quantum computing - the largest and most comprehensive dataset of its kind. Originating from over 90 primary seed domains and encompassing hundreds of subdomains autonomously generated by LLMs, QLMMI marks a transformative step in the diversity and richness of quantum computing datasets. Designed for instruction fine-tuning, QLMMI seeks to significantly improve LLM performance in addressing complex quantum computing challenges across a wide range of quantum physics topics. While Large Language Models (LLMs) have propelled advancements in computational science with datasets like Omni-MATH and OpenMathInstruct, these primarily target Olympiad-level mathematics, leaving quantum computing largely unexplored. The creation of QLMMI follows a rigorous four-stage methodology. Initially, foundational problems are developed using predefined templates, focusing on critical areas such as synthetic Hamiltonians, QASM code generation, Jordan-Wigner transformations, and Trotter-Suzuki quantum circuit decompositions. Next, detailed and domain-specific solutions are crafted to ensure accuracy and relevance. In the third stage, the dataset is enriched through advanced reasoning techniques, including Chain-of-Thought (CoT) and Task-Oriented Reasoning and Action (ToRA), which enhance problem-solution diversity while adhering to strict mathematical standards. Lastly, a zero-shot Judge LLM performs self-assessments to validate the dataset's quality and reliability, minimizing human oversight requirements.
Quantum Multi-Model Fitting
Geometric model fitting is a challenging but fundamental computer vision problem. Recently, quantum optimization has been shown to enhance robust fitting for the case of a single model, while leaving the question of multi-model fitting open. In response to this challenge, this paper shows that the latter case can significantly benefit from quantum hardware and proposes the first quantum approach to multi-model fitting (MMF). We formulate MMF as a problem that can be efficiently sampled by modern adiabatic quantum computers without the relaxation of the objective function. We also propose an iterative and decomposed version of our method, which supports real-world-sized problems. The experimental evaluation demonstrates promising results on a variety of datasets. The source code is available at: https://github.com/FarinaMatteo/qmmf.
Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers
When applying quantum computing to machine learning tasks, one of the first considerations is the design of the quantum machine learning model itself. Conventionally, the design of quantum machine learning algorithms relies on the ``quantisation" of classical learning algorithms, such as using quantum linear algebra to implement important subroutines of classical algorithms, if not the entire algorithm, seeking to achieve quantum advantage through possible run-time accelerations brought by quantum computing. However, recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning [1]. Research also has been undertaken to exploit properties that are unique to quantum systems, such as quantum contextuality, to better design quantum machine learning models [2]. In this paper, we take an alternative approach by incorporating the heuristics and empirical evidences from the design of classical deep learning algorithms to the design of quantum neural networks. We first construct a model based on the data reuploading circuit [3] with the quantum Hamiltonian data embedding unitary [4]. Through numerical experiments on images datasets, including the famous MNIST and FashionMNIST datasets, we demonstrate that our model outperforms the quantum convolutional neural network (QCNN)[5] by a large margin (up to over 40% on MNIST test set). Based on the model design process and numerical results, we then laid out six principles for designing quantum machine learning models, especially quantum neural networks.
Quantum Policy Iteration via Amplitude Estimation and Grover Search -- Towards Quantum Advantage for Reinforcement Learning
We present a full implementation and simulation of a novel quantum reinforcement learning method. Our work is a detailed and formal proof of concept for how quantum algorithms can be used to solve reinforcement learning problems and shows that, given access to error-free, efficient quantum realizations of the agent and environment, quantum methods can yield provable improvements over classical Monte-Carlo based methods in terms of sample complexity. Our approach shows in detail how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme. We first develop quantum policy evaluation (QPE) which is quadratically more efficient compared to an analogous classical Monte Carlo estimation and is based on a quantum mechanical realization of a finite Markov decision process (MDP). Building on QPE, we derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached. Finally, we present an implementation of our algorithm for a two-armed bandit MDP which we then simulate.
Quantum Denoising Diffusion Models
In recent years, machine learning models like DALL-E, Craiyon, and Stable Diffusion have gained significant attention for their ability to generate high-resolution images from concise descriptions. Concurrently, quantum computing is showing promising advances, especially with quantum machine learning which capitalizes on quantum mechanics to meet the increasing computational requirements of traditional machine learning algorithms. This paper explores the integration of quantum machine learning and variational quantum circuits to augment the efficacy of diffusion-based image generation models. Specifically, we address two challenges of classical diffusion models: their low sampling speed and the extensive parameter requirements. We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts using MNIST digits, Fashion MNIST, and CIFAR-10. Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR. Moreover, we introduce a consistency model unitary single sampling architecture that combines the diffusion procedure into a single step, enabling a fast one-step image generation.
Multi-state quantum simulations via model-space quantum imaginary time evolution
We introduce the framework of model space into quantum imaginary time evolution (QITE) to enable stable estimation of ground and excited states using a quantum computer. Model-space QITE (MSQITE) propagates a model space to the exact one by retaining its orthogonality, and hence is able to describe multiple states simultaneously. The quantum Lanczos (QLanczos) algorithm is extended to MSQITE to accelerate the convergence. The present scheme is found to outperform both the standard QLanczos and the recently proposed folded-spectrum QITE in simulating excited states. Moreover, we demonstrate that spin contamination can be effectively removed by shifting the imaginary time propagator, and thus excited states with a particular spin quantum number are efficiently captured without falling into the different spin states that have lower energies. We also investigate how different levels of the unitary approximation employed in MSQITE can affect the results. The effectiveness of the algorithm over QITE is demonstrated by noise simulations for the H4 model system.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
Efficient Quantum Algorithms for Quantum Optimal Control
In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time T, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.
Error Correction of Quantum Algorithms: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing
The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indispensable for quantum computation. While current error-correcting strategies focus on correcting errors in quantum states or quantum gates, these fine-grained error-correction methods can incur significant overhead for quantum algorithms of increasing complexity. We present a first step in achieving error correction at the level of quantum algorithms by combining a unified perspective on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or over-rotation of the signal processing operator parameterized by epsilon < 1 is introduced. It is shown that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by coherently appending a noisy `recovery QSP.' Furthermore, it is found that a recovery QSP of length O(2^k c^{k^2} d) is sufficient to correct any length-d QSP with c unique phases to k^{th}-order in error epsilon. Allowing an additional assumption, a lower bound of Omega(cd) is shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error correction method is applied to Grover's fixed-point search algorithm as a demonstration.
Quantum Generative Diffusion Model
This paper introduces the Quantum Generative Diffusion Model (QGDM), a fully quantum-mechanical model for generating quantum state ensembles, inspired by Denoising Diffusion Probabilistic Models. QGDM features a diffusion process that introduces timestep-dependent noise into quantum states, paired with a denoising mechanism trained to reverse this contamination. This model efficiently evolves a completely mixed state into a target quantum state post-training. Our comparative analysis with Quantum Generative Adversarial Networks demonstrates QGDM's superiority, with fidelity metrics exceeding 0.99 in numerical simulations involving up to 4 qubits. Additionally, we present a Resource-Efficient version of QGDM (RE-QGDM), which minimizes the need for auxiliary qubits while maintaining impressive generative capabilities for tasks involving up to 8 qubits. These results showcase the proposed models' potential for tackling challenging quantum generation problems.
Explicit gate construction of block-encoding for Hamiltonians needed for simulating partial differential equations
Quantum computation is an emerging technology with important potential for solving certain problems pivotal in various scientific and engineering disciplines. This paper introduces an efficient quantum protocol for the explicit construction of the block-encoding for an important class of Hamiltonians. Using the Schrodingerisation technique -- which converts non-conservative PDEs into conservative ones -- this particular class of Hamiltonians is shown to be sufficient for simulating any linear partial differential equations that have coefficients which are polynomial functions. The class of Hamiltonians consist of discretisations of polynomial products and sums of position and momentum operators. This construction is explicit and leverages minimal one- and two-qubit operations. The explicit construction of this block-encoding forms a fundamental building block for constructing the unitary evolution operator for this Hamiltonian. The proposed algorithm exhibits polynomial scaling with respect to the spatial partitioning size, suggesting an exponential speedup over classical finite-difference methods. This work provides an important foundation for building explicit and efficient quantum circuits for solving partial differential equations.
How quantum and evolutionary algorithms can help each other: two examples
We investigate the potential of bio-inspired evolutionary algorithms for designing quantum circuits with specific goals, focusing on two particular tasks. The first one is motivated by the ideas of Artificial Life that are used to reproduce stochastic cellular automata with given rules. We test the robustness of quantum implementations of the cellular automata for different numbers of quantum gates The second task deals with the sampling of quantum circuits that generate highly entangled quantum states, which constitute an important resource for quantum computing. In particular, an evolutionary algorithm is employed to optimize circuits with respect to a fitness function defined with the Mayer-Wallach entanglement measure. We demonstrate that, by balancing the mutation rate between exploration and exploitation, we can find entangling quantum circuits for up to five qubits. We also discuss the trade-off between the number of gates in quantum circuits and the computational costs of finding the gate arrangements leading to a strongly entangled state. Our findings provide additional insight into the trade-off between the complexity of a circuit and its performance, which is an important factor in the design of quantum circuits.
A Grand Unification of Quantum Algorithms
Quantum algorithms offer significant speedups over their classical counterparts for a variety of problems. The strongest arguments for this advantage are borne by algorithms for quantum search, quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of composite quantum algorithms. A number of these quantum algorithms were recently tied together by a novel technique known as the quantum singular value transformation (QSVT), which enables one to perform a polynomial transformation of the singular values of a linear operator embedded in a unitary matrix. In the seminal GSLW'19 paper on QSVT [Gily\'en, Su, Low, and Wiebe, ACM STOC 2019], many algorithms are encompassed, including amplitude amplification, methods for the quantum linear systems problem, and quantum simulation. Here, we provide a pedagogical tutorial through these developments, first illustrating how quantum signal processing may be generalized to the quantum eigenvalue transform, from which QSVT naturally emerges. Paralleling GSLW'19, we then employ QSVT to construct intuitive quantum algorithms for search, phase estimation, and Hamiltonian simulation, and also showcase algorithms for the eigenvalue threshold problem and matrix inversion. This overview illustrates how QSVT is a single framework comprising the three major quantum algorithms, thus suggesting a grand unification of quantum algorithms.
Supervised learning with quantum enhanced feature spaces
Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, so focusing on remote sensing applications, and discuss the bottlenecks of performing these algorithms on currently available open source platforms. Initial results demonstrate feasibility. Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Let the Quantum Creep In: Designing Quantum Neural Network Models by Gradually Swapping Out Classical Components
Artificial Intelligence (AI), with its multiplier effect and wide applications in multiple areas, could potentially be an important application of quantum computing. Since modern AI systems are often built on neural networks, the design of quantum neural networks becomes a key challenge in integrating quantum computing into AI. To provide a more fine-grained characterisation of the impact of quantum components on the performance of neural networks, we propose a framework where classical neural network layers are gradually replaced by quantum layers that have the same type of input and output while keeping the flow of information between layers unchanged, different from most current research in quantum neural network, which favours an end-to-end quantum model. We start with a simple three-layer classical neural network without any normalisation layers or activation functions, and gradually change the classical layers to the corresponding quantum versions. We conduct numerical experiments on image classification datasets such as the MNIST, FashionMNIST and CIFAR-10 datasets to demonstrate the change of performance brought by the systematic introduction of quantum components. Through this framework, our research sheds new light on the design of future quantum neural network models where it could be more favourable to search for methods and frameworks that harness the advantages from both the classical and quantum worlds.
Spacetime Neural Network for High Dimensional Quantum Dynamics
We develop a spacetime neural network method with second order optimization for solving quantum dynamics from the high dimensional Schr\"{o}dinger equation. In contrast to the standard iterative first order optimization and the time-dependent variational principle, our approach utilizes the implicit mid-point method and generates the solution for all spatial and temporal values simultaneously after optimization. We demonstrate the method in the Schr\"{o}dinger equation with a self-normalized autoregressive spacetime neural network construction. Future explorations for solving different high dimensional differential equations are discussed.
Improved FRQI on superconducting processors and its restrictions in the NISQ era
In image processing, the amount of data to be processed grows rapidly, in particular when imaging methods yield images of more than two dimensions or time series of images. Thus, efficient processing is a challenge, as data sizes may push even supercomputers to their limits. Quantum image processing promises to encode images with logarithmically less qubits than classical pixels in the image. In theory, this is a huge progress, but so far not many experiments have been conducted in practice, in particular on real backends. Often, the precise conversion of classical data to quantum states, the exact implementation, and the interpretation of the measurements in the classical context are challenging. We investigate these practical questions in this paper. In particular, we study the feasibility of the Flexible Representation of Quantum Images (FRQI). Furthermore, we check experimentally what is the limit in the current noisy intermediate-scale quantum era, i.e. up to which image size an image can be encoded, both on simulators and on real backends. Finally, we propose a method for simplifying the circuits needed for the FRQI. With our alteration, the number of gates needed, especially of the error-prone controlled-NOT gates, can be reduced. As a consequence, the size of manageable images increases.
Quantum machine learning for image classification
Image classification, a pivotal task in multiple industries, faces computational challenges due to the burgeoning volume of visual data. This research addresses these challenges by introducing two quantum machine learning models that leverage the principles of quantum mechanics for effective computations. Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era, where circuits with a large number of qubits are currently infeasible. This model demonstrated a record-breaking classification accuracy of 99.21% on the full MNIST dataset, surpassing the performance of known quantum-classical models, while having eight times fewer parameters than its classical counterpart. Also, the results of testing this hybrid model on a Medical MNIST (classification accuracy over 99%), and on CIFAR-10 (classification accuracy over 82%), can serve as evidence of the generalizability of the model and highlights the efficiency of quantum layers in distinguishing common features of input data. Our second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process. The model matches the performance of its classical counterpart, having four times fewer trainable parameters, and outperforms a classical model with equal weight parameters. These models represent advancements in quantum machine learning research and illuminate the path towards more accurate image classification systems.
Neural auto-designer for enhanced quantum kernels
Quantum kernels hold great promise for offering computational advantages over classical learners, with the effectiveness of these kernels closely tied to the design of the quantum feature map. However, the challenge of designing effective quantum feature maps for real-world datasets, particularly in the absence of sufficient prior information, remains a significant obstacle. In this study, we present a data-driven approach that automates the design of problem-specific quantum feature maps. Our approach leverages feature-selection techniques to handle high-dimensional data on near-term quantum machines with limited qubits, and incorporates a deep neural predictor to efficiently evaluate the performance of various candidate quantum kernels. Through extensive numerical simulations on different datasets, we demonstrate the superiority of our proposal over prior methods, especially for the capability of eliminating the kernel concentration issue and identifying the feature map with prediction advantages. Our work not only unlocks the potential of quantum kernels for enhancing real-world tasks but also highlights the substantial role of deep learning in advancing quantum machine learning.
Quantum Generative Modeling of Sequential Data with Trainable Token Embedding
Generative models are a class of machine learning models that aim to learn the underlying probability distribution of data. Unlike discriminative models, generative models focus on capturing the data's inherent structure, allowing them to generate new samples that resemble the original data. To fully exploit the potential of modeling probability distributions using quantum physics, a quantum-inspired generative model known as the Born machines have shown great advancements in learning classical and quantum data over matrix product state(MPS) framework. The Born machines support tractable log-likelihood, autoregressive and mask sampling, and have shown outstanding performance in various unsupervised learning tasks. However, much of the current research has been centered on improving the expressive power of MPS, predominantly embedding each token directly by a corresponding tensor index. In this study, we generalize the embedding method into trainable quantum measurement operators that can be simultaneously honed with MPS. Our study indicated that combined with trainable embedding, Born machines can exhibit better performance and learn deeper correlations from the dataset.
Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.
Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss
The problem of minimizing the maximum of N convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring O(Nepsilon^{-2/3} + epsilon^{-8/3}) queries to a first-order oracle to compute an epsilon-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of N convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of O(Nepsilon^{-5/3} + epsilon^{-8/3}). On the other hand, we prove that quantum algorithms must take Omega(Nepsilon^{-2/3}) queries to a first order quantum oracle, showing that our dependence on N is optimal up to poly-logarithmic factors.
The Virtual Quantum Optics Laboratory
We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners.
Optimal fidelity in implementing Grover's search algorithm on open quantum system
We investigate the fidelity of Grover's search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence of its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms and we find that there exists a competition between them, leading to an optimum value of the drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.
Single-shot Quantum Signal Processing Interferometry
Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator's quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era.
Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation
The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.
Fusion-based quantum computation
We introduce fusion-based quantum computing (FBQC) - a model of universal quantum computation in which entangling measurements, called fusions, are performed on the qubits of small constant-sized entangled resource states. We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes. This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics. FBQC can offer significant architectural simplifications, enabling hardware made up of many identical modules, requiring an extremely low depth of operations on each physical qubit and reducing classical processing requirements. We present two pedagogical examples of fault-tolerant schemes constructed in this framework and numerically evaluate their threshold under a hardware agnostic fusion error model including both erasure and Pauli error. We also study an error model of linear optical quantum computing with probabilistic fusion and photon loss. In FBQC the non-determinism of fusion is directly dealt with by the quantum error correction protocol, along with other errors. We find that tailoring the fault-tolerance framework to the physical system allows the scheme to have a higher threshold than schemes reported in literature. We present a ballistic scheme which can tolerate a 10.4% probability of suffering photon loss in each fusion.
Revisiting fixed-point quantum search: proof of the quasi-Chebyshev lemma
The original Grover's algorithm suffers from the souffle problem, which means that the success probability of quantum search decreases dramatically if the iteration time is too small or too large from the right time. To overcome the souffle problem, the fixed-point quantum search with an optimal number of queries was proposed [Phys. Rev. Lett. 113, 210501 (2014)], which always finds a marked state with a high probability when a lower bound of the proportion of marked states is given. The fixed-point quantum search relies on a key lemma regarding the explicit formula of recursive quasi-Chebyshev polynomials, but its proof is not given explicitly. In this work, we give a detailed proof of this lemma, thus providing a sound foundation for the correctness of the fixed-point quantum search. This lemma may be of independent interest as well, since it expands the mathematical form of the recursive relation of Chebyshev polynomials of the first kind, and it also constitutes a key component in overcoming the souffle problem of quantum walk-based search algorithms, for example, robust quantum walk search on complete bipartite graphs [Phys. Rev. A 106, 052207 (2022)]. Hopefully, more applications of the lemma will be found in the future.
An Artificial Neuron Implemented on an Actual Quantum Processor
Artificial neural networks are the heart of machine learning algorithms and artificial intelligence protocols. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt's `perceptron', but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a perceptron, which shows exponential advantage in encoding resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives remarkably good answers against the expected results. We show that this quantum model of a perceptron can be used as an elementary nonlinear classifier of simple patterns, as a first step towards practical training of artificial quantum neural networks to be efficiently implemented on near-term quantum processing hardware.
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learning when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural networks, a recent line of works proposes to study over-parameterized QNNs by examining a quantum version of tangent kernels. In this work, we study the dynamics of QNNs and show that contrary to popular belief it is qualitatively different from that of any kernel regression: due to the unitarity of quantum operations, there is a non-negligible deviation from the tangent kernel regression derived at the random initialization. As a result of the deviation, we prove the at-most sublinear convergence for QNNs with Pauli measurements, which is beyond the explanatory power of any kernel regression dynamics. We then present the actual dynamics of QNNs in the limit of over-parameterization. The new dynamics capture the change of convergence rate during training and implies that the range of measurements is crucial to the fast QNN convergence.
SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.
Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions
Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
Quantum algorithm for solving linear systems of equations
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. We consider the case where one doesn't need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse, N by N and has condition number kappa, classical algorithms can find x and estimate x'Mx in O(N sqrt(kappa)) time. Here, we exhibit a quantum algorithm for this task that runs in poly(log N, kappa) time, an exponential improvement over the best classical algorithm.
Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing
The emerging field of quantum computing has shown it might change how we process information by using the unique principles of quantum mechanics. As researchers continue to push the boundaries of quantum technologies to unprecedented levels, distributed quantum computing raises as an obvious path to explore with the aim of boosting the computational power of current quantum systems. This paper presents a comprehensive survey of the current state of the art in the distributed quantum computing field, exploring its foundational principles, landscape of achievements, challenges, and promising directions for further research. From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing, making it an attractive approach to address the limitations of classical computing. Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau phenomenon. In this perspective article, we face the increasingly loud elephant in the room and ask a question that has been hinted at by many but not explicitly addressed: Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We present strong evidence that commonly used models with provable absence of barren plateaus are also classically simulable, provided that one can collect some classical data from quantum devices during an initial data acquisition phase. This follows from the observation that barren plateaus result from a curse of dimensionality, and that current approaches for solving them end up encoding the problem into some small, classically simulable, subspaces. Thus, while stressing quantum computers can be essential for collecting data, our analysis sheds serious doubt on the non-classicality of the information processing capabilities of parametrized quantum circuits for barren plateau-free landscapes. We end by discussing caveats in our arguments, the role of smart initializations and the possibility of provably superpolynomial, or simply practical, advantages from running parametrized quantum circuits.
Quantum circuit synthesis with diffusion models
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
In this research, we explore the integration of quantum computing with classical machine learning for image classification tasks, specifically focusing on the MNIST dataset. We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms. The process begins with preprocessing the MNIST dataset, normalizing the pixel values, and reshaping the images into vectors. An autoencoder compresses these 784-dimensional vectors into a 64-dimensional latent space, effectively reducing the data's dimensionality while preserving essential features. These compressed features are then processed using a quantum circuit implemented on a 5-qubit system. The quantum circuit applies rotation gates based on the feature values, followed by Hadamard and CNOT gates to entangle the qubits, and measurements are taken to generate quantum outcomes. These outcomes serve as input for a classical neural network designed to classify the MNIST digits. The classical neural network comprises multiple dense layers with batch normalization and dropout to enhance generalization and performance. We evaluate the performance of this hybrid model and compare it with a purely classical approach. The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features. This research highlights the potential of quantum computing in machine learning, though further optimization and advanced quantum algorithms are necessary to achieve superior performance.
Modeling stochastic eye tracking data: A comparison of quantum generative adversarial networks and Markov models
We explore the use of quantum generative adversarial networks QGANs for modeling eye movement velocity data. We assess whether the advanced computational capabilities of QGANs can enhance the modeling of complex stochastic distribution beyond the traditional mathematical models, particularly the Markov model. The findings indicate that while QGANs demonstrate potential in approximating complex distributions, the Markov model consistently outperforms in accurately replicating the real data distribution. This comparison underlines the challenges and avenues for refinement in time series data generation using quantum computing techniques. It emphasizes the need for further optimization of quantum models to better align with real-world data characteristics.
On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing Imagery Classification
This article aims to investigate how circuit-based hybrid Quantum Convolutional Neural Networks (QCNNs) can be successfully employed as image classifiers in the context of remote sensing. The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network. The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case, and tested on the EuroSAT dataset used as reference benchmark. The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts. Moreover, investigation of various quantum circuits shows that the ones exploiting quantum entanglement achieve the best classification scores. This study underlines the potentialities of applying quantum computing to an EO case study and provides the theoretical and experimental background for futures investigations.
Practical Benchmarking of Randomized Measurement Methods for Quantum Chemistry Hamiltonians
Many hybrid quantum-classical algorithms for the application of ground state energy estimation in quantum chemistry involve estimating the expectation value of a molecular Hamiltonian with respect to a quantum state through measurements on a quantum device. To guide the selection of measurement methods designed for this observable estimation problem, we propose a benchmark called CSHOREBench (Common States and Hamiltonians for ObseRvable Estimation Benchmark) that assesses the performance of these methods against a set of common molecular Hamiltonians and common states encountered during the runtime of hybrid quantum-classical algorithms. In CSHOREBench, we account for resource utilization of a quantum computer through measurements of a prepared state, and a classical computer through computational runtime spent in proposing measurements and classical post-processing of acquired measurement outcomes. We apply CSHOREBench considering a variety of measurement methods on Hamiltonians of size up to 16 qubits. Our discussion is aided by using the framework of decision diagrams which provides an efficient data structure for various randomized methods and illustrate how to derandomize distributions on decision diagrams. In numerical simulations, we find that the methods of decision diagrams and derandomization are the most preferable. In experiments on IBM quantum devices against small molecules, we observe that decision diagrams reduces the number of measurements made by classical shadows by more than 80%, that made by locally biased classical shadows by around 57%, and consistently require fewer quantum measurements along with lower classical computational runtime than derandomization. Furthermore, CSHOREBench is empirically efficient to run when considering states of random quantum ansatz with fixed depth.
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
Understanding quantum machine learning also requires rethinking generalization
Quantum machine learning models have shown successful generalization performance even when trained with few data. In this work, through systematic randomization experiments, we show that traditional approaches to understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This ability to memorize random data defies current notions of small generalization error, problematizing approaches that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform relatives. We complement our empirical results with a theoretical construction showing that quantum neural networks can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude the possibility of good generalization with few training data but rather rule out any possible guarantees based only on the properties of the model family. These findings expose a fundamental challenge in the conventional understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the design of quantum models for machine learning tasks.
An Introduction to Quantum Computing
Quantum Computing is a new and exciting field at the intersection of mathematics, computer science and physics. It concerns a utilization of quantum mechanics to improve the efficiency of computation. Here we present a gentle introduction to some of the ideas in quantum computing. The paper begins by motivating the central ideas of quantum mechanics and quantum computation with simple toy models. From there we move on to a formal presentation of the small fraction of (finite dimensional) quantum mechanics that we will need for basic quantum computation. Central notions of quantum architecture (qubits and quantum gates) are described. The paper ends with a presentation of one of the simplest quantum algorithms: Deutsch's algorithm. Our presentation demands neither advanced mathematics nor advanced physics.
Quantum Ridgelet Transform: Winning Lottery Ticket of Neural Networks with Quantum Computation
Ridgelet transform has been a fundamental mathematical tool in the theoretical studies of neural networks. However, the practical applicability of ridgelet transform to conducting learning tasks was limited since its numerical implementation by conventional classical computation requires an exponential runtime exp(O(D)) as data dimension D increases. To address this problem, we develop a quantum ridgelet transform (QRT), which implements the ridgelet transform of a quantum state within a linear runtime O(D) of quantum computation. As an application, we also show that one can use QRT as a fundamental subroutine for quantum machine learning (QML) to efficiently find a sparse trainable subnetwork of large shallow wide neural networks without conducting large-scale optimization of the original network. This application discovers an efficient way in this regime to demonstrate the lottery ticket hypothesis on finding such a sparse trainable neural network. These results open an avenue of QML for accelerating learning tasks with commonly used classical neural networks.
Foundations for Near-Term Quantum Natural Language Processing
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality. We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar. Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same advantage. Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned. Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in mainstream AI, by placing linguistic structure at the heart of Wittgenstein's meaning-is-context.
Curriculum reinforcement learning for quantum architecture search under hardware errors
The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable, and the overall performance of the algorithm depends heavily on the initially chosen circuit architecture. Several quantum architecture search (QAS) algorithms have been developed to design useful circuit architectures automatically. In the case of parameter optimization alone, noise effects have been observed to dramatically influence the performance of the optimizer and final outcomes, which is a key line of study. However, the effects of noise on the architecture search, which could be just as critical, are poorly understood. This work addresses this gap by introducing a curriculum-based reinforcement learning QAS (CRLQAS) algorithm designed to tackle challenges in realistic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter circuits, and (iii) a novel variant of simultaneous perturbation stochastic approximation as an optimizer for faster convergence. To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in simulating noisy quantum circuits by employing the Pauli-transfer matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS algorithms across several metrics in both noiseless and noisy environments.
Near-Optimal Quantum Coreset Construction Algorithms for Clustering
k-Clustering in R^d (e.g., k-median and k-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality n, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for k-clustering in R^d with O(nkd^{3/2}) query complexity. Our coreset reduces the input size from n to poly(kepsilon^{-1}d), so that existing alpha-approximation algorithms for clustering can run on top of it and yield (1 + epsilon)alpha-approximation. This eventually yields a quadratic speedup for various k-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make Omega(nk) queries in order to achieve even O(1)-approximation for k-clustering.
Experimental quantum adversarial learning with programmable superconducting qubits
Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 mus, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.
Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning
The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
Variational Quantum Soft Actor-Critic for Robotic Arm Control
Deep Reinforcement Learning is emerging as a promising approach for the continuous control task of robotic arm movement. However, the challenges of learning robust and versatile control capabilities are still far from being resolved for real-world applications, mainly because of two common issues of this learning paradigm: the exploration strategy and the slow learning speed, sometimes known as "the curse of dimensionality". This work aims at exploring and assessing the advantages of the application of Quantum Computing to one of the state-of-art Reinforcement Learning techniques for continuous control - namely Soft Actor-Critic. Specifically, the performance of a Variational Quantum Soft Actor-Critic on the movement of a virtual robotic arm has been investigated by means of digital simulations of quantum circuits. A quantum advantage over the classical algorithm has been found in terms of a significant decrease in the amount of required parameters for satisfactory model training, paving the way for further promising developments.
Experimental Estimation of Quantum State Properties from Classical Shadows
Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements on the number of qubits in the system. However, several ideas were proposed recently for predicting the limited number of features for these states, or estimating the expectation values of operators, without the need for full state reconstruction. These ideas go under the general name of shadow tomography. Here we provide an experimental demonstration of property estimation based on classical shadows proposed in [H.-Y. Huang, R. Kueng, J. Preskill. Nat. Phys. https://doi.org/10.1038/s41567-020-0932-7 (2020)] and study its performance in the quantum optical experiment with high-dimensional spatial states of photons. We show on experimental data how this procedure outperforms conventional state reconstruction in fidelity estimation from a limited number of measurements.
Model-agnostic search for the quasinormal modes of gravitational wave echoes
Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Protocols for creating and distilling multipartite GHZ states with Bell pairs
The distribution of high-quality Greenberger-Horne-Zeilinger (GHZ) states is at the heart of many quantum communication tasks, ranging from extending the baseline of telescopes to secret sharing. They also play an important role in error-correction architectures for distributed quantum computation, where Bell pairs can be leveraged to create an entangled network of quantum computers. We investigate the creation and distillation of GHZ states out of non-perfect Bell pairs over quantum networks. In particular, we introduce a heuristic dynamic programming algorithm to optimize over a large class of protocols that create and purify GHZ states. All protocols considered use a common framework based on measurements of non-local stabilizer operators of the target state (i.e., the GHZ state), where each non-local measurement consumes another (non-perfect) entangled state as a resource. The new protocols outperform previous proposals for scenarios without decoherence and local gate noise. Furthermore, the algorithms can be applied for finding protocols for any number of parties and any number of entangled pairs involved.
Discrete Randomized Smoothing Meets Quantum Computing
Breakthroughs in machine learning (ML) and advances in quantum computing (QC) drive the interdisciplinary field of quantum machine learning to new levels. However, due to the susceptibility of ML models to adversarial attacks, practical use raises safety-critical concerns. Existing Randomized Smoothing (RS) certification methods for classical machine learning models are computationally intensive. In this paper, we propose the combination of QC and the concept of discrete randomized smoothing to speed up the stochastic certification of ML models for discrete data. We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model that are required compared to traditional randomized smoothing techniques. In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
Financial Fraud Detection: A Comparative Study of Quantum Machine Learning Models
In this research, a comparative study of four Quantum Machine Learning (QML) models was conducted for fraud detection in finance. We proved that the Quantum Support Vector Classifier model achieved the highest performance, with F1 scores of 0.98 for fraud and non-fraud classes. Other models like the Variational Quantum Classifier, Estimator Quantum Neural Network (QNN), and Sampler QNN demonstrate promising results, propelling the potential of QML classification for financial applications. While they exhibit certain limitations, the insights attained pave the way for future enhancements and optimisation strategies. However, challenges exist, including the need for more efficient Quantum algorithms and larger and more complex datasets. The article provides solutions to overcome current limitations and contributes new insights to the field of Quantum Machine Learning in fraud detection, with important implications for its future development.
Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation via Neural Networks
In the emergent realm of quantum computing, the Variational Quantum Eigensolver (VQE) stands out as a promising algorithm for solving complex quantum problems, especially in the noisy intermediate-scale quantum (NISQ) era. However, the ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes. This research introduces a novel approach to ameliorate this challenge by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations. By employing the Qiskit framework, we crafted parameterized quantum circuits using the RY-RZ ansatz and examined their behavior under varying levels of depolarizing noise. Our investigations spanned from determining the expectation values of a Hamiltonian, defined as a tensor product of Z operators, under different noise intensities to extracting the ground state energy. To bridge the observed outcomes under noise with the ideal noise-free scenario, we trained a Feed Forward Neural Network on the error probabilities and their associated expectation values. Remarkably, our model proficiently predicted the VQE outcome under hypothetical noise-free conditions. By juxtaposing the simulation results with real quantum device executions, we unveiled the discrepancies induced by noise and showcased the efficacy of our neural network-based ZNE technique in rectifying them. This integrative approach not only paves the way for enhanced accuracy in VQE computations on NISQ devices but also underlines the immense potential of hybrid quantum-classical paradigms in circumventing the challenges posed by quantum noise. Through this research, we envision a future where quantum algorithms can be reliably executed on noisy devices, bringing us one step closer to realizing the full potential of quantum computing.
Quantum Policy Gradient Algorithm with Optimized Action Decoding
Quantum machine learning implemented by variational quantum circuits (VQCs) is considered a promising concept for the noisy intermediate-scale quantum computing era. Focusing on applications in quantum reinforcement learning, we propose a specific action decoding procedure for a quantum policy gradient approach. We introduce a novel quality measure that enables us to optimize the classical post-processing required for action selection, inspired by local and global quantum measurements. The resulting algorithm demonstrates a significant performance improvement in several benchmark environments. With this technique, we successfully execute a full training routine on a 5-qubit hardware device. Our method introduces only negligible classical overhead and has the potential to improve VQC-based algorithms beyond the field of quantum reinforcement learning.
Enhancing a Convolutional Autoencoder with a Quantum Approximate Optimization Algorithm for Image Noise Reduction
Image denoising is essential for removing noise in images caused by electric device malfunctions or other factors during image acquisition. It helps preserve image quality and interpretation. Many convolutional autoencoder algorithms have proven effective in image denoising. Owing to their promising efficiency, quantum computers have gained popularity. This study introduces a quantum convolutional autoencoder (QCAE) method for improved image denoising. This method was developed by substituting the representative latent space of the autoencoder with a quantum circuit. To enhance efficiency, we leveraged the advantages of the quantum approximate optimization algorithm (QAOA)-incorporated parameter-shift rule to identify an optimized cost function, facilitating effective learning from data and gradient computation on an actual quantum computer. The proposed QCAE method outperformed its classical counterpart as it exhibited lower training loss and a higher structural similarity index (SSIM) value. QCAE also outperformed its classical counterpart in denoising the MNIST dataset by up to 40% in terms of SSIM value, confirming its enhanced capabilities in real-world applications. Evaluation of QAOA performance across different circuit configurations and layer variations showed that our technique outperformed other circuit designs by 25% on average.
Predicting Many Properties of a Quantum System from Very Few Measurements
Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order log M measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.
Focus on conceptual ideas in quantum mechanics for teacher training
In this work, we describe strategies and provide case-study activities that can be used to examine the properties of superposition, entanglement, tagging, complementarity, and measurement in quantum curricula geared for teacher training. Having a solid foundation in these conceptual ideas is critical for educators who will be adopting quantum ideas within the classroom. Yet they are some of the most difficult concepts to master. We show how one can systematically develop these conceptual foundations with thought experiments on light and with thought experiments that employ the Stern-Gerlach experiment. We emphasize the importance of computer animations in aiding the instruction on these concepts.
Mitiq: A software package for error mitigation on noisy quantum computers
We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quantum sampling and classical post-processing techniques. Mitiq is an extensible toolkit of different error mitigation methods, including zero-noise extrapolation, probabilistic error cancellation, and Clifford data regression. The library is designed to be compatible with generic backends and interfaces with different quantum software frameworks. We describe Mitiq using code snippets to demonstrate usage and discuss features and contribution guidelines. We present several examples demonstrating error mitigation on IBM and Rigetti superconducting quantum processors as well as on noisy simulators.
Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage
Quantum computers offer a new paradigm of computing with the potential to vastly outperform any imagineable classical computer. This has caused a gold rush towards new quantum algorithms and hardware. In light of the growing expectations and hype surrounding quantum computing we ask the question which are the promising applications to realize quantum advantage. We argue that small data problems and quantum algorithms with super-quadratic speedups are essential to make quantum computers useful in practice. With these guidelines one can separate promising applications for quantum computing from those where classical solutions should be pursued. While most of the proposed quantum algorithms and applications do not achieve the necessary speedups to be considered practical, we already see a huge potential in material science and chemistry. We expect further applications to be developed based on our guidelines.
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench.
KetGPT - Dataset Augmentation of Quantum Circuits using Transformers
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems. Existing datasets, widely utilized in the field, suffer from limitations in size and versatility, leading researchers to employ randomly generated circuits. Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms for which the quantum systems are manufactured. This shortage of `useful' quantum benchmarks poses a challenge to advancing the development and comparison of quantum compilers and hardware. This research aims to enhance the existing quantum circuit datasets by generating what we refer to as `realistic-looking' circuits by employing the Transformer machine learning architecture. For this purpose, we introduce KetGPT, a tool that generates synthetic circuits in OpenQASM language, whose structure is based on quantum circuits derived from existing quantum algorithms and follows the typical patterns of human-written algorithm-based code (e.g., order of gates and qubits). Our three-fold verification process, involving manual inspection and Qiskit framework execution, transformer-based classification, and structural analysis, demonstrates the efficacy of KetGPT in producing large amounts of additional circuits that closely align with algorithm-based structures. Beyond benchmarking, we envision KetGPT contributing substantially to AI-driven quantum compilers and systems.
Topological data analysis on noisy quantum computers
Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data. However, the computational demands of classical algorithms for computing TDA are exorbitant, and quickly become impractical for high-order characteristics. Quantum computers offer the potential of achieving significant speedup for certain computational problems. Indeed, TDA has been purported to be one such problem, yet, quantum computing algorithms proposed for the problem, such as the original Quantum TDA (QTDA) formulation by Lloyd, Garnerone and Zanardi, require fault-tolerance qualifications that are currently unavailable. In this study, we present NISQ-TDA, a fully implemented end-to-end quantum machine learning algorithm needing only a short circuit-depth, that is applicable to high-dimensional classical data, and with provable asymptotic speedup for certain classes of problems. The algorithm neither suffers from the data-loading problem nor does it need to store the input data on the quantum computer explicitly. The algorithm was successfully executed on quantum computing devices, as well as on noisy quantum simulators, applied to small datasets. Preliminary empirical results suggest that the algorithm is robust to noise.
Option Pricing using Quantum Computers
We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.
Tutorial: Remote entanglement protocols for stationary qubits with photonic interfaces
Generating entanglement between distant quantum systems is at the core of quantum networking. In recent years, numerous theoretical protocols for remote entanglement generation have been proposed, of which many have been experimentally realized. Here, we provide a modular theoretical framework to elucidate the general mechanisms of photon-mediated entanglement generation between single spins in atomic or solid-state systems. Our framework categorizes existing protocols at various levels of abstraction and allows for combining the elements of different schemes in new ways. These abstraction layers make it possible to readily compare protocols for different quantum hardware. To enable the practical evaluation of protocols tailored to specific experimental parameters, we have devised numerical simulations based on the framework with our codes available online.
Light Schrödinger Bridge
Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB
ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation
Quantum many-body physics simulation has important impacts on understanding fundamental science and has applications to quantum materials design and quantum technology. However, due to the exponentially growing size of the Hilbert space with respect to the particle number, a direct simulation is intractable. While representing quantum states with tensor networks and neural networks are the two state-of-the-art methods for approximate simulations, each has its own limitations in terms of expressivity and inductive bias. To address these challenges, we develop a novel architecture, Autoregressive Neural TensorNet (ANTN), which bridges tensor networks and autoregressive neural networks. We show that Autoregressive Neural TensorNet parameterizes normalized wavefunctions, allows for exact sampling, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks. We demonstrate our approach on quantum state learning as well as finding the ground state of the challenging 2D J_1-J_2 Heisenberg model with different systems sizes and coupling parameters, outperforming both tensor networks and autoregressive neural networks. Our work opens up new opportunities for scientific simulations of quantum many-body physics and quantum technology.
Evaluating the Performance of Some Local Optimizers for Variational Quantum Classifiers
In this paper, we have studied the performance and role of local optimizers in quantum variational circuits. We studied the performance of the two most popular optimizers and compared their results with some popular classical machine learning algorithms. The classical algorithms we used in our study are support vector machine (SVM), gradient boosting (GB), and random forest (RF). These were compared with a variational quantum classifier (VQC) using two sets of local optimizers viz AQGD and COBYLA. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit was used while for classical machine learning models, sci-kit learn was used. The results show that machine learning on noisy immediate scale quantum machines can produce comparable results as on classical machines. For our experiments, we have used a popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs on using EfficientSU2 variational circuit. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score. In all the cases AQGD optimizer-based model with 100 Epochs performed better than all other models. It produced an accuracy of 77% and an F-Score of 0.785 which were highest across all the trained models.
Comparing coherent and incoherent models for quantum homogenization
Here we investigate the role of quantum interference in the quantum homogenizer, whose convergence properties model a thermalization process. In the original quantum homogenizer protocol, a system qubit converges to the state of identical reservoir qubits through partial-swap interactions, that allow interference between reservoir qubits. We design an alternative, incoherent quantum homogenizer, where each system-reservoir interaction is moderated by a control qubit using a controlled-swap interaction. We show that our incoherent homogenizer satisfies the essential conditions for homogenization, being able to transform a qubit from any state to any other state to arbitrary accuracy, with negligible impact on the reservoir qubits' states. Our results show that the convergence properties of homogenization machines that are important for modelling thermalization are not dependent on coherence between qubits in the homogenization protocol. We then derive bounds on the resources required to re-use the homogenizers for performing state transformations. This demonstrates that both homogenizers are universal for any number of homogenizations, for an increased resource cost.
A parallel Basis Update and Galerkin Integrator for Tree Tensor Networks
Computing the numerical solution to high-dimensional tensor differential equations can lead to prohibitive computational costs and memory requirements. To reduce the memory and computational footprint, dynamical low-rank approximation (DLRA) has proven to be a promising approach. DLRA represents the solution as a low-rank tensor factorization and evolves the resulting low-rank factors in time. A central challenge in DLRA is to find time integration schemes that are robust to the arising small singular values. A robust parallel basis update & Galerkin integrator, which simultaneously evolves all low-rank factors, has recently been derived for matrix differential equations. This work extends the parallel low-rank matrix integrator to Tucker tensors and general tree tensor networks, yielding an algorithm in which all bases and connecting tensors are evolved in parallel over a time step. We formulate the algorithm, provide a robust error bound, and demonstrate the efficiency of the new integrators for problems in quantum many-body physics, uncertainty quantification, and radiative transfer.
Quantum Internet Protocol Stack: a Comprehensive Survey
Classical Internet evolved exceptionally during the last five decades, from a network comprising a few static nodes in the early days to a leviathan interconnecting billions of devices. This has been possible by the separation of concern principle, for which the network functionalities are organized as a stack of layers, each providing some communication functionalities through specific network protocols. In this survey, we aim at highlighting the impossibility of adapting the classical Internet protocol stack to the Quantum Internet, due to the marvels of quantum mechanics. Indeed, the design of the Quantum Internet requires a major paradigm shift of the whole protocol stack for harnessing the peculiarities of quantum entanglement and quantum information. In this context, we first overview the relevant literature about Quantum Internet protocol stack. Then, stemming from this, we sheds the light on the open problems and required efforts toward the design of an effective and complete Quantum Internet protocol stack. To the best of authors' knowledge, a survey of this type is the first of its own. What emerges from this analysis is that the Quantum Internet, though still in its infancy, is a disruptive technology whose design requires an inter-disciplinary effort at the border between quantum physics, computer and telecommunications engineering.
Automated distribution of quantum circuits via hypergraph partitioning
Quantum algorithms are usually described as monolithic circuits, becoming large at modest input size. Near-term quantum architectures can only manage a small number of qubits. We develop an automated method to distribute quantum circuits over multiple agents, minimising quantum communication between them. We reduce the problem to hypergraph partitioning and then solve it with state-of-the-art optimisers. This makes our approach useful in practice, unlike previous methods. Our implementation is evaluated on five quantum circuits of practical relevance.
Exponential speedups for quantum walks in random hierarchical graphs
There are few known exponential speedups for quantum algorithms and these tend to fall into even fewer families. One speedup that has mostly resisted generalization is the use of quantum walks to traverse the welded-tree graph, due to Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman. We show how to generalize this to a large class of hierarchical graphs in which the vertices are grouped into "supervertices" which are arranged according to a d-dimensional lattice. Supervertices can have different sizes, and edges between supervertices correspond to random connections between their constituent vertices. The hitting times of quantum walks on these graphs are related to the localization properties of zero modes in certain disordered tight binding Hamiltonians. The speedups range from superpolynomial to exponential, depending on the underlying dimension and the random graph model. We also provide concrete realizations of these hierarchical graphs, and introduce a general method for constructing graphs with efficient quantum traversal times using graph sparsification.
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bi-level quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system referred to as Quantum Fully Self-Supervised Neural Network (QFS-Net) is presented for automated segmentation of brain MR images. The QFS-Net model comprises a trinity of a layered structure of qutrits inter-connected through parametric Hadamard gates using an 8-connected second-order neighborhood-based topology. The non-linear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counter-propagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on Cancer Imaging Archive (TCIA) data set collected from Nature repository and also compared with state of the art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model. Results shed promising segmented outcome in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Variational Quantum Algorithms for Chemical Simulation and Drug Discovery
Quantum computing has gained a lot of attention recently, and scientists have seen potential applications in this field using quantum computing for Cryptography and Communication to Machine Learning and Healthcare. Protein folding has been one of the most interesting areas to study, and it is also one of the biggest problems of biochemistry. Each protein folds distinctively, and the difficulty of finding its stable shape rapidly increases with an increase in the number of amino acids in the chain. A moderate protein has about 100 amino acids, and the number of combinations one needs to verify to find the stable structure is enormous. At some point, the number of these combinations will be so vast that classical computers cannot even attempt to solve them. In this paper, we examine how this problem can be solved with the help of quantum computing using two different algorithms, Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA), using Qiskit Nature. We compare the results of different quantum hardware and simulators and check how error mitigation affects the performance. Further, we make comparisons with SoTA algorithms and evaluate the reliability of the method.
Quantum simulation of generic spin exchange models in Floquet-engineered Rydberg atom arrays
Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting via Rydberg states - a platform potentially capable of simulating any kind of spin exchange model, albeit with currently unattainable experimental capabilities. Here, we propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control. To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays, using only previously-demonstrated experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a path to investigate a large class of exotic quantum spin models.
SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks
Recent advances in quantum information science enabled the development of quantum communication network prototypes and created an opportunity to study full-stack quantum network architectures. This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator. Our simulator consists of five modules: Hardware models, Entanglement Management protocols, Resource Management, Network Management, and Application. This framework is suitable for simulation of quantum network prototypes that capture the breadth of current and future hardware technologies and protocols. We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories. The simulation capabilities are illustrated in three use cases. We show the dependence of quantum network throughput on several key hardware parameters and study the impact of classical control message latency. We also investigate quantum memory usage efficiency in routers and demonstrate that redistributing memory according to anticipated load increases network capacity by 69.1% and throughput by 6.8%. We design SeQUeNCe to enable comparisons of alternative quantum network technologies, experiment planning, and validation and to aid with new protocol design. We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
Quantum advantage in learning from experiments
Quantum technology has the potential to revolutionize how we acquire and process experimental data to learn about the physical world. An experimental setup that transduces data from a physical system to a stable quantum memory, and processes that data using a quantum computer, could have significant advantages over conventional experiments in which the physical system is measured and the outcomes are processed using a classical computer. We prove that, in various tasks, quantum machines can learn from exponentially fewer experiments than those required in conventional experiments. The exponential advantage holds in predicting properties of physical systems, performing quantum principal component analysis on noisy states, and learning approximate models of physical dynamics. In some tasks, the quantum processing needed to achieve the exponential advantage can be modest; for example, one can simultaneously learn about many noncommuting observables by processing only two copies of the system. Conducting experiments with up to 40 superconducting qubits and 1300 quantum gates, we demonstrate that a substantial quantum advantage can be realized using today's relatively noisy quantum processors. Our results highlight how quantum technology can enable powerful new strategies to learn about nature.
Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling
We give a quantum algorithm for computing an epsilon-approximate Nash equilibrium of a zero-sum game in a m times n payoff matrix with bounded entries. Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time O(m + ncdot epsilon^{-2.5} + epsilon^{-3}) and outputs a classical representation of the epsilon-approximate Nash equilibrium. This improves upon the best prior quantum runtime of O(m + n cdot epsilon^{-3}) obtained by [vAG19] and the classic O((m + n) cdot epsilon^{-2}) runtime due to [GK95] whenever epsilon = Omega((m +n)^{-1}). We obtain this result by designing new quantum data structures for efficiently sampling from a slowly-changing Gibbs distribution.
Impact of Data Augmentation on QCNNs
In recent years, Classical Convolutional Neural Networks (CNNs) have been applied for image recognition successfully. Quantum Convolutional Neural Networks (QCNNs) are proposed as a novel generalization to CNNs by using quantum mechanisms. The quantum mechanisms lead to an efficient training process in QCNNs by reducing the size of input from N to log_2N. This paper implements and compares both CNNs and QCNNs by testing losses and prediction accuracy on three commonly used datasets. The datasets include the MNIST hand-written digits, Fashion MNIST and cat/dog face images. Additionally, data augmentation (DA), a technique commonly used in CNNs to improve the performance of classification by generating similar images based on original inputs, is also implemented in QCNNs. Surprisingly, the results showed that data augmentation didn't improve QCNNs performance. The reasons and logic behind this result are discussed, hoping to expand our understanding of Quantum machine learning theory.
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
Quantum reservoir computing is strongly emerging for sequential and time series data prediction in quantum machine learning. We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals that are efficiently learned with a single linear output layer. We address the need for quantum reservoir tuning with a novel and generally applicable approach to quantum circuit parameterization, in which tunable noise models are programmed to the quantum reservoir circuit to be fully controlled for effective optimization. Our systematic approach also involves reductions in quantum reservoir circuits in the number of qubits and entanglement scheme complexity. We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks that include the Mackey-Glass system for 100 steps ahead in the challenging chaotic regime.
Five open problems in quantum information
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced.
Quantum Long Short-Term Memory
Long short-term memory (LSTM) is a kind of recurrent neural networks (RNN) for sequence and temporal dependency data modeling and its effectiveness has been extensively established. In this work, we propose a hybrid quantum-classical model of LSTM, which we dub QLSTM. We demonstrate that the proposed model successfully learns several kinds of temporal data. In particular, we show that for certain testing cases, this quantum version of LSTM converges faster, or equivalently, reaches a better accuracy, than its classical counterpart. Due to the variational nature of our approach, the requirements on qubit counts and circuit depth are eased, and our work thus paves the way toward implementing machine learning algorithms for sequence modeling on noisy intermediate-scale quantum (NISQ) devices.
Deep-Q Learning with Hybrid Quantum Neural Network on Solving Maze Problems
Quantum computing holds great potential for advancing the limitations of machine learning algorithms to handle higher dimensions of data and reduce overall training parameters in deep learning (DL) models. This study uses a trainable variational quantum circuit (VQC) on a gate-based quantum computing model to investigate the potential for quantum benefit in a model-free reinforcement learning problem. Through a comprehensive investigation and evaluation of the current model and capabilities of quantum computers, we designed and trained a novel hybrid quantum neural network based on the latest Qiskit and PyTorch framework. We compared its performance with a full-classical CNN with and without an incorporated VQC. Our research provides insights into the potential of deep quantum learning to solve a maze problem and, potentially, other reinforcement learning problems. We conclude that reinforcement learning problems can be practical with reasonable training epochs. Moreover, a comparative study of full-classical and hybrid quantum neural networks is discussed to understand these two approaches' performance, advantages, and disadvantages to deep-Q learning problems, especially on larger-scale maze problems larger than 4x4.
Federated learning with distributed fixed design quantum chips and quantum channels
The privacy in classical federated learning can be breached through the use of local gradient results along with engineered queries to the clients. However, quantum communication channels are considered more secure because a measurement on the channel causes a loss of information, which can be detected by the sender. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an N dimensional data vector through a quantum channel requires sending log N entangled qubits, which can potentially provide exponential efficiency if the data vector is utilized as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where the parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.
The Unconventional Photon Blockade
We review the unconventional photon blockade mechanism. This quantum effect remarkably enables a strongly sub-Poissonian light statistics, even from a system characterized by a weak single photon nonlinearity. We revisit the past results, which can be interpreted in terms of quantum interferences or optimal squeezing, and show how recent developments on input-output field mixing can overcome the limitations of the original schemes towards passive and integrable single photon sources. We finally present some valuable alternative schemes for which the unconventional blockade can be directly adapted.
Quantum algorithm for collisionless Boltzmann simulation of self-gravitating systems
The collisionless Boltzmann equation (CBE) is a fundamental equation that governs the dynamics of a broad range of astrophysical systems from space plasma to star clusters and galaxies. It is computationally expensive to integrate the CBE directly in a multi-dimensional phase space, and thus the applications to realistic astrophysical problems have been limited so far. Recently, Todorova & Steijl (2020) proposed an efficient quantum algorithm to solve the CBE with significantly reduced computational complexity. We extend the algorithm to perform quantum simulations of self-gravitating systems, incorporating the method to calculate gravity with the major Fourier modes of the density distribution extracted from the solution-encoding quantum state. Our method improves the dependency of time and space complexities on Nv , the number of grid points in each velocity coordinate, compared to the classical simulation methods. We then conduct some numerical demonstrations of our method. We first run a 1+1 dimensional test calculation of free streaming motion on 64*64 grids using 13 simulated qubits and validate our method. We then perform simulations of Jeans collapse, and compare the result with analytic and linear theory calculations. It will thus allow us to perform large-scale CBE simulations on future quantum computers.
Advances in Quantum Cryptography
Quantum cryptography is arguably the fastest growing area in quantum information science. Novel theoretical protocols are designed on a regular basis, security proofs are constantly improving, and experiments are gradually moving from proof-of-principle lab demonstrations to in-field implementations and technological prototypes. In this review, we provide both a general introduction and a state of the art description of the recent advances in the field, both theoretically and experimentally. We start by reviewing protocols of quantum key distribution based on discrete variable systems. Next we consider aspects of device independence, satellite challenges, and high rate protocols based on continuous variable systems. We will then discuss the ultimate limits of point-to-point private communications and how quantum repeaters and networks may overcome these restrictions. Finally, we will discuss some aspects of quantum cryptography beyond standard quantum key distribution, including quantum data locking and quantum digital signatures.
Quantum circuit synthesis of Bell and GHZ states using projective simulation in the NISQ era
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have been huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits. The agent had the task of creating quantum circuits up to 5 qubits to generate GHZ states in the IBM Tenerife (IBM QX4) quantum processor. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
Learning Distributions over Quantum Measurement Outcomes
Shadow tomography for quantum states provides a sample efficient approach for predicting the properties of quantum systems when the properties are restricted to expectation values of 2-outcome POVMs. However, these shadow tomography procedures yield poor bounds if there are more than 2 outcomes per measurement. In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown d-dimensional quantum state rho and M unknown quantum measurements M_1,...,M_M with Kgeq 2 outcomes, estimating the probability distribution for applying M_i on rho to within total variation distance epsilon. Compared to the special case when K=2, we need to learn unknown distributions instead of values. We develop an online shadow tomography procedure that solves this problem with high success probability requiring O(Klog^2Mlog d/epsilon^4) copies of rho. We further prove an information-theoretic lower bound that at least Omega(min{d^2,K+log M}/epsilon^2) copies of rho are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on M and d and is sample-optimal for the dependence on K.
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92\%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50\% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Programmable Heisenberg interactions between Floquet qubits
The fundamental trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging quantum architectures are designed to achieve high coherence at the expense of having fixed spectra and consequently limited types of controllable interactions. Here, by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the basis for many-body quantum simulation of spin systems, and on the other hand the primitive for an expressive quantum gate set. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to various fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for high-performance quantum information processing. From a broader perspective, our work provides compelling avenues for future exploration of quantum electrodynamics and optimal control using the Floquet framework.
MosaiQ: Quantum Generative Adversarial Networks for Image Generation on NISQ Computers
Quantum machine learning and vision have come to the fore recently, with hardware advances enabling rapid advancement in the capabilities of quantum machines. Recently, quantum image generation has been explored with many potential advantages over non-quantum techniques; however, previous techniques have suffered from poor quality and robustness. To address these problems, we introduce, MosaiQ, a high-quality quantum image generation GAN framework that can be executed on today's Near-term Intermediate Scale Quantum (NISQ) computers.
Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning
The realization of scalable fault-tolerant quantum computing is expected to hinge on quantum error-correcting codes. In the quest for more efficient quantum fault tolerance, a critical code parameter is the weight of measurements that extract information about errors to enable error correction: as higher measurement weights require higher implementation costs and introduce more errors, it is important in code design to optimize measurement weight. This underlies the surging interest in quantum low-density parity-check (qLDPC) codes, the study of which has primarily focused on the asymptotic (large-code-limit) properties. In this work, we introduce a versatile and computationally efficient approach to stabilizer code weight reduction based on reinforcement learning (RL), which produces new low-weight codes that substantially outperform the state of the art in practically relevant parameter regimes, extending significantly beyond previously accessible small distances. For example, our approach demonstrates savings in physical qubit overhead compared to existing results by 1 to 2 orders of magnitude for weight 6 codes and brings the overhead into a feasible range for near-future experiments. We also investigate the interplay between code parameters using our RL framework, offering new insights into the potential efficiency and power of practically viable coding strategies. Overall, our results demonstrate how RL can effectively advance the crucial yet challenging problem of quantum code discovery and thereby facilitate a faster path to the practical implementation of fault-tolerant quantum technologies.
All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks
Variational algorithms require architectures that naturally constrain the optimisation space to run efficiently. In geometric quantum machine learning, one achieves this by encoding group structure into parameterised quantum circuits to include the symmetries of a problem as an inductive bias. However, constructing such circuits is challenging as a concrete guiding principle has yet to emerge. In this paper, we propose the use of spin networks, a form of directed tensor network invariant under a group transformation, to devise SU(2) equivariant quantum circuit ans\"atze -- circuits possessing spin rotation symmetry. By changing to the basis that block diagonalises SU(2) group action, these networks provide a natural building block for constructing parameterised equivariant quantum circuits. We prove that our construction is mathematically equivalent to other known constructions, such as those based on twirling and generalised permutations, but more direct to implement on quantum hardware. The efficacy of our constructed circuits is tested by solving the ground state problem of SU(2) symmetric Heisenberg models on the one-dimensional triangular lattice and on the Kagome lattice. Our results highlight that our equivariant circuits boost the performance of quantum variational algorithms, indicating broader applicability to other real-world problems.
Quantum mechanics with real numbers: entanglement, superselection rules and gauges
We show how imaginary numbers in quantum physics can be eliminated by enlarging the Hilbert Space followed by an imposition of - what effectively amounts to - a superselection rule. We illustrate this procedure with a qubit and apply it to the Mach-Zehnder interferometer. The procedure is somewhat reminiscent of the constrained quantization of the electromagnetic field, where, in order to manifestly comply with relativity, one enlargers the Hilbert Space by quantizing the longitudinal and scalar modes, only to subsequently introduce a constraint to make sure that they are actually not directly observable.
Enhancing Score-Based Sampling Methods with Ensembles
We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences.
An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks
Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.
Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revealed here can be generalized to larger systems and benefit future innovation of efficient molecular light-harvesting materials.
Surface codes: Towards practical large-scale quantum computation
This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement the surface code. We next describe how logical qubits are formed in the surface code array and give numerical estimates of their fault-tolerance. We outline how logical qubits are physically moved on the array, how qubit braid transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe the single-qubit Hadamard, S and T operators, completing the set of required gates for a universal quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include a number of appendices in which we provide supplementary information to the main text.
Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries
This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.
Mean-field underdamped Langevin dynamics and its spacetime discretization
We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation.
Power of sequential protocols in hidden quantum channel discrimination
In many natural and engineered systems, unknown quantum channels act on a subsystem that cannot be directly controlled and measured, but is instead learned through a controllable subsystem that weakly interacts with it. We study quantum channel discrimination (QCD) under these restrictions, which we call hidden system QCD (HQCD). We find that sequential protocols achieve perfect discrimination and saturate the Heisenberg limit. In contrast, depth-1 parallel and multi-shot protocols cannot solve HQCD. This suggests that sequential protocols are superior in experimentally realistic situations.
Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation
We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0.
Quantum limit for two-dimensional resolution of two incoherent optical point sources
We obtain the multiple-parameter quantum Cram\'er-Rao bound for estimating the transverse Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method using fiber coupling can in principle attain the bound regardless of the distance between the two sources.
Quantum-enhanced data classification with a variational entangled sensor network
Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.
Nuclear Structure with Discrete Non-Orthogonal Shell-Model : new frontiers
We present developments and applications for the diagonalization of shell-model hamiltonians in a discrete non-orthogonal basis (DNO-SM). The method, and its actual numerical implementation CARINA, based on mean-field and beyond-mean field techniques has already been applied in previous studies and is focused on basis states selection optimization. The method is benchmarked against a full set of sd shell exact diagonalizations, and is applied for the first time to the heavy deformed ^{254}No nucleus.
Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.
Quantum classical hybrid neural networks for continuous variable prediction
Within this decade, quantum computers are predicted to outperform conventional computers in terms of processing power and have a disruptive effect on a variety of business sectors. It is predicted that the financial sector would be one of the first to benefit from quantum computing both in the short and long terms. In this research work we use Hybrid Quantum Neural networks to present a quantum machine learning approach for Continuous variable prediction.
Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents
We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.
Learning Feynman integrals from differential equations with neural networks
We present a new approach for evaluating Feynman integrals numerically. We apply the recently-proposed framework of physics-informed deep learning to train neural networks to approximate the solution to the differential equations satisfied by the Feynman integrals. This approach relies neither on a canonical form of the differential equations, which is often a bottleneck for the analytical techniques, nor on the availability of a large dataset, and after training yields essentially instantaneous evaluation times. We provide a proof-of-concept implementation within the PyTorch framework, and apply it to a number of one- and two-loop examples, achieving a mean magnitude of relative difference of around 1% at two loops in the physical phase space with network training times on the order of an hour on a laptop GPU.
QUBE: Enhancing Automatic Heuristic Design via Quality-Uncertainty Balanced Evolution
Solving NP-hard problems traditionally relies on heuristics, yet manually designing effective heuristics for complex problems remains a significant challenge. While recent advancements like FunSearch have shown that large language models (LLMs) can be integrated into evolutionary algorithms (EAs) for heuristic design, their potential is hindered by limitations in balancing exploitation and exploration. We introduce Quality-Uncertainty Balanced Evolution (QUBE), a novel approach that enhances LLM+EA methods by redefining the priority criterion within the FunSearch framework. QUBE employs the Quality-Uncertainty Trade-off Criterion (QUTC), based on our proposed Uncertainty-Inclusive Quality metric, to evaluate and guide the evolutionary process. Through extensive experiments on challenging NP-complete problems, QUBE demonstrates significant performance improvements over FunSearch and baseline methods. Our code are available at https://github.com/zzjchen/QUBE\_code.
Taming Landau level mixing in fractional quantum Hall states with deep learning
Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both 1/3 and 2/5 filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Energy-Consumption Advantage of Quantum Computation
Energy consumption in solving computational problems has been gaining growing attention as a part of the performance measures of computers. Quantum computation is known to offer advantages over classical computation in terms of various computational resources; however, its advantage in energy consumption has been challenging to analyze due to the lack of a theoretical foundation to relate the physical notion of energy and the computer-scientific notion of complexity for quantum computation with finite computational resources. To bridge this gap, we introduce a general framework for studying the energy consumption of quantum and classical computation based on a computational model that has been conventionally used for studying query complexity in computational complexity theory. With this framework, we derive an upper bound for the achievable energy consumption of quantum computation. We also develop techniques for proving a nonzero lower bound of energy consumption of classical computation based on the energy-conservation law and Landauer's principle. With these general bounds, we rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation for solving a specific computational problem, Simon's problem. Furthermore, we clarify how to demonstrate this energy-consumption advantage of quantum computation in an experimental setting. These results provide a fundamental framework and techniques to explore the physical meaning of quantum advantage in the query-complexity setting based on energy consumption, opening an alternative way to study the advantages of quantum computation.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Fault-tolerant Preparation of Stabilizer States for Quantum CSS Codes by Classical Error-Correcting Codes
Stabilizer states are extensively studied in quantum information theory for their structures based on the Pauli group. Calderbank-Shor-Steane (CSS) stabilizer states are of particular importance in their application to fault-tolerant quantum computation (FTQC). However, how to fault-tolerantly prepare arbitrary CSS stabilizer states for general CSS stabilizer codes is still unknown, and their preparation can be highly costly in computational resources. In this paper, we show how to prepare a large class of CSS stabilizer states useful for FTQC. We propose distillation protocols using syndrome encoding by classical codes or quantum CSS codes. Along the same lines, we show that classical coding techniques can reduce the ancilla consumption in Steane syndrome extraction by using additional transversal controlled-NOT gates and classical computing power. In the scenario of a fixed ancilla consumption rate, we can increase the frequency of quantum error correction and effectively lower the error rate.