new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM

Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability. There are two mainstream quantization schemes for LLMs: coarse-grained (e.g., channel-wise) quantization and fine-grained (e.g., group-wise) quantization. Fine-grained quantization has smaller quantization loss, consequently achieving superior performance. However, when applied to weight-activation quantization, it disrupts continuous integer matrix multiplication, leading to inefficient inference. In this paper, we introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed. DSQ dequantizes the fine-grained INT4 weight into coarse-grained INT8 representation and preform matrix multiplication using INT8 kernels. Besides, we develop a two-phase grid search algorithm to simplify the determination of fine-grained and coarse-grained quantization scales. We also devise a percentile clipping schema for smoothing the activation outliers without the need for complex optimization techniques. Experimental results demonstrate that DGQ consistently outperforms prior methods across various LLM architectures and a wide range of tasks. Remarkably, by our implemented efficient CUTLASS kernel, we achieve 1.12 times memory reduction and 3.24 times speed gains comparing A16W4 implementation. These advancements enable efficient deployment of A8W4 LLMs for real-world applications.

\texttt{Pz Cats}: Photometric redshift catalogs based on DES Y3 BAO sample

The photometric redshift estimation (photo-z) has been developed over the years with various methods. In this work, we analyse four different photo-z estimators using the Dark Energy Survey Y3 BAO Sample: ANNz2, BPZ, ENF, and DNF. Unlike what is usually found in the literature, we investigate the possibility of selecting the best galaxies according to their redshift Probability Distribution Function (PDF). We selected 25,760 galaxies from four different spectroscopic surveys and cross-matched them with the photo-z sample. These galaxies served to understand the redshift bias and its 68th percentile sigma_{68}. We found that within a range of 0.79<z_p<0.85 there is the lowest sigma for all the estimators we analysed. DNF has the biggest absolute value of the bias (sigma), while ENF, ANNz2 and BPZ lose precision for a redshift range below 0.7 and higher than 0.9. If one wants to pick the best galaxies by removing the bins with the worst bias, one will find that ANNz2 is the most robust algorithm for all chosen criteria. When selecting the best PDFs, the resulting sub-samples gave BPZ with more selected objects. ANNz2 shows better precision, ENF has the worst selection of Gaussian PDFs, with very few galaxies left for an LSS study. We also showed that even though the PDFs are smooth, there are catastrophic redshift results. Lastly, DNF is the worst in precision but with sufficient galaxies for cosmological analysis. We also selected galaxies whose PDFs have only secondary peaks not bigger than 30\% of the main peak height, called Small Peaks. For these sub-samples, ANNz2 outperformed the other algorithms. We will make all catalogs publicly available through the package Pz Cats.

SplitQuant: Layer Splitting for Low-Bit Neural Network Quantization

Quantization for deep neural networks (DNNs) is the process of mapping the parameter values of DNNs from original data types to other data types of lower precision to reduce model sizes and make inference faster. Quantization often maps different original values to a single quantized value because the range of the original values is larger than the range of the quantized values. This leads to the degradation of the accuracy of the quantized DNNs. Outliers are a main cause of the degradation of quantization resolution because they enlarge the range of original values. To solve the problem, the percentile method is often used to clip outliers. However, clipping the outliers has another problem of removing the important and strong signals in the DNNs. This paper proposes SplitQuant to keep the outliers and improve the quantization resolution at the same time. SplitQuant narrows down the range of the original values and mitigates the effect of outliers by splitting each quantizable layer into three mathematically equivalent layers and applies different scaling factors. Especially, weights and biases are clustered into lower, middle and upper clusters for optimized split. By preprocessing DNNs with SplitQuant, quantization algorithms can achieve better results. SplitQuant was applied on two BERT-Tiny models and improved the accuracy of INT2 quantization by 3.3%p and 2.1%p, achieving accuracies comparable to those of the original FP32 models.

Kimi k1.5: Scaling Reinforcement Learning with LLMs

Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).