1 Hypernuclear event detection in the nuclear emulsion with Monte Carlo simulation and machine learning This study developed a novel method for detecting hypernuclear events recorded in nuclear emulsion sheets using machine learning techniques. The artificial neural network-based object detection model was trained on surrogate images created through Monte Carlo simulations and image-style transformations using generative adversarial networks. The performance of the proposed model was evaluated using alpha-decay events obtained from the J-PARC E07 emulsion data. The model achieved approximately twice the detection efficiency of conventional image processing and reduced the time spent on manual visual inspection by approximately 1/17. The established method was successfully applied to the detection of hypernuclear events. This approach is a state-of-the-art tool for discovering rare events recorded in nuclear emulsion sheets without any real data for training. 21 authors ยท May 1, 2023