Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTiled Multiplane Images for Practical 3D Photography
The task of synthesizing novel views from a single image has useful applications in virtual reality and mobile computing, and a number of approaches to the problem have been proposed in recent years. A Multiplane Image (MPI) estimates the scene as a stack of RGBA layers, and can model complex appearance effects, anti-alias depth errors and synthesize soft edges better than methods that use textured meshes or layered depth images. And unlike neural radiance fields, an MPI can be efficiently rendered on graphics hardware. However, MPIs are highly redundant and require a large number of depth layers to achieve plausible results. Based on the observation that the depth complexity in local image regions is lower than that over the entire image, we split an MPI into many small, tiled regions, each with only a few depth planes. We call this representation a Tiled Multiplane Image (TMPI). We propose a method for generating a TMPI with adaptive depth planes for single-view 3D photography in the wild. Our synthesized results are comparable to state-of-the-art single-view MPI methods while having lower computational overhead.
Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image
Recent novel view synthesis methods obtain promising results for relatively small scenes, e.g., indoor environments and scenes with a few objects, but tend to fail for unbounded outdoor scenes with a single image as input. In this paper, we introduce SAMPLING, a Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image based on improved multiplane images (MPI). Observing that depth distribution varies significantly for unbounded outdoor scenes, we employ an adaptive-bins strategy for MPI to arrange planes in accordance with each scene image. To represent intricate geometry and multi-scale details, we further introduce a hierarchical refinement branch, which results in high-quality synthesized novel views. Our method demonstrates considerable performance gains in synthesizing large-scale unbounded outdoor scenes using a single image on the KITTI dataset and generalizes well to the unseen Tanks and Temples dataset.The code and models will soon be made available.
NeX: Real-time View Synthesis with Neural Basis Expansion
We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce next-level view-dependent effects -- in real time. Unlike traditional MPI that uses a set of simple RGBalpha planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000times faster rendering time than the state of the art. For real-time demos, visit https://nex-mpi.github.io/
MPI-Flow: Learning Realistic Optical Flow with Multiplane Images
The accuracy of learning-based optical flow estimation models heavily relies on the realism of the training datasets. Current approaches for generating such datasets either employ synthetic data or generate images with limited realism. However, the domain gap of these data with real-world scenes constrains the generalization of the trained model to real-world applications. To address this issue, we investigate generating realistic optical flow datasets from real-world images. Firstly, to generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images. This allows us to generate novel view images that are highly realistic. To generate optical flow maps that correspond accurately to the new image, we calculate the optical flows of each plane using the camera matrix and plane depths. We then project these layered optical flows into the output optical flow map with volume rendering. Secondly, to ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI. This module addresses the deficiency in MPI-based single-view methods, where optical flow is generated only by camera motion and does not account for any object movement. We additionally devise a depth-aware inpainting module to merge new images with dynamic objects and address unnatural motion occlusions. We show the superior performance of our method through extensive experiments on real-world datasets. Moreover, our approach achieves state-of-the-art performance in both unsupervised and supervised training of learning-based models. The code will be made publicly available at: https://github.com/Sharpiless/MPI-Flow.
TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes
MPI derived datatypes are an abstraction that simplifies handling of non-contiguous data in MPI applications. These datatypes are recursively constructed at runtime from primitive Named Types defined in the MPI standard. More recently, the development and deployment of CUDA-aware MPI implementations has encouraged the transition of distributed high-performance MPI codes to use GPUs. Such implementations allow MPI functions to directly operate on GPU buffers, easing integration of GPU compute into MPI codes. This work first presents a novel datatype handling strategy for nested strided datatypes, which finds a middle ground between the specialized or generic handling in prior work. This work also shows that the performance characteristics of non-contiguous data handling can be modeled with empirical system measurements, and used to transparently improve MPI_Send/Recv latency. Finally, despite substantial attention to non-contiguous GPU data and CUDA-aware MPI implementations, good performance cannot be taken for granted. This work demonstrates its contributions through an MPI interposer library, TEMPI. TEMPI can be used with existing MPI deployments without system or application changes. Ultimately, the interposed-library model of this work demonstrates MPI_Pack speedup of up to 242000x and MPI_Send speedup of up to 59000x compared to the MPI implementation deployed on a leadership-class supercomputer. This yields speedup of more than 917x in a 3D halo exchange with 3072 processes.
Parameter-Inverted Image Pyramid Networks
Image pyramids are commonly used in modern computer vision tasks to obtain multi-scale features for precise understanding of images. However, image pyramids process multiple resolutions of images using the same large-scale model, which requires significant computational cost. To overcome this issue, we propose a novel network architecture known as the Parameter-Inverted Image Pyramid Networks (PIIP). Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid, thereby balancing computational efficiency and performance. Specifically, the input to PIIP is a set of multi-scale images, where higher resolution images are processed by smaller networks. We further propose a feature interaction mechanism to allow features of different resolutions to complement each other and effectively integrate information from different spatial scales. Extensive experiments demonstrate that the PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification, compared to traditional image pyramid methods and single-branch networks, while reducing computational cost. Notably, when applying our method on a large-scale vision foundation model InternViT-6B, we improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation. These results validate the effectiveness of the PIIP approach and provide a new technical direction for future vision computing tasks. Our code and models are available at https://github.com/OpenGVLab/PIIP.
Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization
Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization.
Multi-Scale Diffusion: Enhancing Spatial Layout in High-Resolution Panoramic Image Generation
Diffusion models have recently gained recognition for generating diverse and high-quality content, especially in the domain of image synthesis. These models excel not only in creating fixed-size images but also in producing panoramic images. However, existing methods often struggle with spatial layout consistency when producing high-resolution panoramas, due to the lack of guidance of the global image layout. In this paper, we introduce the Multi-Scale Diffusion (MSD) framework, a plug-and-play module that extends the existing panoramic image generation framework to multiple resolution levels. By utilizing gradient descent techniques, our method effectively incorporates structural information from low-resolution images into high-resolution outputs. A comprehensive evaluation of the proposed method was conducted, comparing it with the prior works in qualitative and quantitative dimensions. The evaluation results demonstrate that our method significantly outperforms others in generating coherent high-resolution panoramas.
Lightplane: Highly-Scalable Components for Neural 3D Fields
Contemporary 3D research, particularly in reconstruction and generation, heavily relies on 2D images for inputs or supervision. However, current designs for these 2D-3D mapping are memory-intensive, posing a significant bottleneck for existing methods and hindering new applications. In response, we propose a pair of highly scalable components for 3D neural fields: Lightplane Render and Splatter, which significantly reduce memory usage in 2D-3D mapping. These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs. We demonstrate their utility in various applications, from benefiting single-scene optimization with image-level losses to realizing a versatile pipeline for dramatically scaling 3D reconstruction and generation. Code: https://github.com/facebookresearch/lightplane.
MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion
This paper introduces MVDiffusion, a simple yet effective multi-view image generation method for scenarios where pixel-to-pixel correspondences are available, such as perspective crops from panorama or multi-view images given geometry (depth maps and poses). Unlike prior models that rely on iterative image warping and inpainting, MVDiffusion concurrently generates all images with a global awareness, encompassing high resolution and rich content, effectively addressing the error accumulation prevalent in preceding models. MVDiffusion specifically incorporates a correspondence-aware attention mechanism, enabling effective cross-view interaction. This mechanism underpins three pivotal modules: 1) a generation module that produces low-resolution images while maintaining global correspondence, 2) an interpolation module that densifies spatial coverage between images, and 3) a super-resolution module that upscales into high-resolution outputs. In terms of panoramic imagery, MVDiffusion can generate high-resolution photorealistic images up to 1024times1024 pixels. For geometry-conditioned multi-view image generation, MVDiffusion demonstrates the first method capable of generating a textured map of a scene mesh. The project page is at https://mvdiffusion.github.io.
Generative Multiplane Neural Radiance for 3D-Aware Image Generation
We present a method to efficiently generate 3D-aware high-resolution images that are view-consistent across multiple target views. The proposed multiplane neural radiance model, named GMNR, consists of a novel {\alpha}-guided view-dependent representation ({\alpha}-VdR) module for learning view-dependent information. The {\alpha}-VdR module, faciliated by an {\alpha}-guided pixel sampling technique, computes the view-dependent representation efficiently by learning viewing direction and position coefficients. Moreover, we propose a view-consistency loss to enforce photometric similarity across multiple views. The GMNR model can generate 3D-aware high-resolution images that are viewconsistent across multiple camera poses, while maintaining the computational efficiency in terms of both training and inference time. Experiments on three datasets demonstrate the effectiveness of the proposed modules, leading to favorable results in terms of both generation quality and inference time, compared to existing approaches. Our GMNR model generates 3D-aware images of 1024 X 1024 pixels with 17.6 FPS on a single V100. Code : https://github.com/VIROBO-15/GMNR
Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.
Envision3D: One Image to 3D with Anchor Views Interpolation
We present Envision3D, a novel method for efficiently generating high-quality 3D content from a single image. Recent methods that extract 3D content from multi-view images generated by diffusion models show great potential. However, it is still challenging for diffusion models to generate dense multi-view consistent images, which is crucial for the quality of 3D content extraction. To address this issue, we propose a novel cascade diffusion framework, which decomposes the challenging dense views generation task into two tractable stages, namely anchor views generation and anchor views interpolation. In the first stage, we train the image diffusion model to generate global consistent anchor views conditioning on image-normal pairs. Subsequently, leveraging our video diffusion model fine-tuned on consecutive multi-view images, we conduct interpolation on the previous anchor views to generate extra dense views. This framework yields dense, multi-view consistent images, providing comprehensive 3D information. To further enhance the overall generation quality, we introduce a coarse-to-fine sampling strategy for the reconstruction algorithm to robustly extract textured meshes from the generated dense images. Extensive experiments demonstrate that our method is capable of generating high-quality 3D content in terms of texture and geometry, surpassing previous image-to-3D baseline methods.
Cycle3D: High-quality and Consistent Image-to-3D Generation via Generation-Reconstruction Cycle
Recent 3D large reconstruction models typically employ a two-stage process, including first generate multi-view images by a multi-view diffusion model, and then utilize a feed-forward model to reconstruct images to 3D content.However, multi-view diffusion models often produce low-quality and inconsistent images, adversely affecting the quality of the final 3D reconstruction. To address this issue, we propose a unified 3D generation framework called Cycle3D, which cyclically utilizes a 2D diffusion-based generation module and a feed-forward 3D reconstruction module during the multi-step diffusion process. Concretely, 2D diffusion model is applied for generating high-quality texture, and the reconstruction model guarantees multi-view consistency.Moreover, 2D diffusion model can further control the generated content and inject reference-view information for unseen views, thereby enhancing the diversity and texture consistency of 3D generation during the denoising process. Extensive experiments demonstrate the superior ability of our method to create 3D content with high-quality and consistency compared with state-of-the-art baselines.
EpiDiff: Enhancing Multi-View Synthesis via Localized Epipolar-Constrained Diffusion
Generating multiview images from a single view facilitates the rapid generation of a 3D mesh conditioned on a single image. Recent methods that introduce 3D global representation into diffusion models have shown the potential to generate consistent multiviews, but they have reduced generation speed and face challenges in maintaining generalizability and quality. To address this issue, we propose EpiDiff, a localized interactive multiview diffusion model. At the core of the proposed approach is to insert a lightweight epipolar attention block into the frozen diffusion model, leveraging epipolar constraints to enable cross-view interaction among feature maps of neighboring views. The newly initialized 3D modeling module preserves the original feature distribution of the diffusion model, exhibiting compatibility with a variety of base diffusion models. Experiments show that EpiDiff generates 16 multiview images in just 12 seconds, and it surpasses previous methods in quality evaluation metrics, including PSNR, SSIM and LPIPS. Additionally, EpiDiff can generate a more diverse distribution of views, improving the reconstruction quality from generated multiviews. Please see our project page at https://huanngzh.github.io/EpiDiff/.
GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement
We propose a novel approach for 3D mesh reconstruction from multi-view images. Our method takes inspiration from large reconstruction models like LRM that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images. However, in our method, we introduce several important modifications that allow us to significantly enhance 3D reconstruction quality. First of all, we examine the original LRM architecture and find several shortcomings. Subsequently, we introduce respective modifications to the LRM architecture, which lead to improved multi-view image representation and more computationally efficient training. Second, in order to improve geometry reconstruction and enable supervision at full image resolution, we extract meshes from the NeRF field in a differentiable manner and fine-tune the NeRF model through mesh rendering. These modifications allow us to achieve state-of-the-art performance on both 2D and 3D evaluation metrics, such as a PSNR of 28.67 on Google Scanned Objects (GSO) dataset. Despite these superior results, our feed-forward model still struggles to reconstruct complex textures, such as text and portraits on assets. To address this, we introduce a lightweight per-instance texture refinement procedure. This procedure fine-tunes the triplane representation and the NeRF color estimation model on the mesh surface using the input multi-view images in just 4 seconds. This refinement improves the PSNR to 29.79 and achieves faithful reconstruction of complex textures, such as text. Additionally, our approach enables various downstream applications, including text- or image-to-3D generation.
Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
Ouroboros3D: Image-to-3D Generation via 3D-aware Recursive Diffusion
Existing single image-to-3D creation methods typically involve a two-stage process, first generating multi-view images, and then using these images for 3D reconstruction. However, training these two stages separately leads to significant data bias in the inference phase, thus affecting the quality of reconstructed results. We introduce a unified 3D generation framework, named Ouroboros3D, which integrates diffusion-based multi-view image generation and 3D reconstruction into a recursive diffusion process. In our framework, these two modules are jointly trained through a self-conditioning mechanism, allowing them to adapt to each other's characteristics for robust inference. During the multi-view denoising process, the multi-view diffusion model uses the 3D-aware maps rendered by the reconstruction module at the previous timestep as additional conditions. The recursive diffusion framework with 3D-aware feedback unites the entire process and improves geometric consistency.Experiments show that our framework outperforms separation of these two stages and existing methods that combine them at the inference phase. Project page: https://costwen.github.io/Ouroboros3D/
TriNeRFLet: A Wavelet Based Multiscale Triplane NeRF Representation
In recent years, the neural radiance field (NeRF) model has gained popularity due to its ability to recover complex 3D scenes. Following its success, many approaches proposed different NeRF representations in order to further improve both runtime and performance. One such example is Triplane, in which NeRF is represented using three 2D feature planes. This enables easily using existing 2D neural networks in this framework, e.g., to generate the three planes. Despite its advantage, the triplane representation lagged behind in its 3D recovery quality compared to NeRF solutions. In this work, we propose TriNeRFLet, a 2D wavelet-based multiscale triplane representation for NeRF, which closes the 3D recovery performance gap and is competitive with current state-of-the-art methods. Building upon the triplane framework, we also propose a novel super-resolution (SR) technique that combines a diffusion model with TriNeRFLet for improving NeRF resolution.
HexPlane: A Fast Representation for Dynamic Scenes
Modeling and re-rendering dynamic 3D scenes is a challenging task in 3D vision. Prior approaches build on NeRF and rely on implicit representations. This is slow since it requires many MLP evaluations, constraining real-world applications. We show that dynamic 3D scenes can be explicitly represented by six planes of learned features, leading to an elegant solution we call HexPlane. A HexPlane computes features for points in spacetime by fusing vectors extracted from each plane, which is highly efficient. Pairing a HexPlane with a tiny MLP to regress output colors and training via volume rendering gives impressive results for novel view synthesis on dynamic scenes, matching the image quality of prior work but reducing training time by more than 100times. Extensive ablations confirm our HexPlane design and show that it is robust to different feature fusion mechanisms, coordinate systems, and decoding mechanisms. HexPlane is a simple and effective solution for representing 4D volumes, and we hope they can broadly contribute to modeling spacetime for dynamic 3D scenes.
Direct and Explicit 3D Generation from a Single Image
Current image-to-3D approaches suffer from high computational costs and lack scalability for high-resolution outputs. In contrast, we introduce a novel framework to directly generate explicit surface geometry and texture using multi-view 2D depth and RGB images along with 3D Gaussian features using a repurposed Stable Diffusion model. We introduce a depth branch into U-Net for efficient and high quality multi-view, cross-domain generation and incorporate epipolar attention into the latent-to-pixel decoder for pixel-level multi-view consistency. By back-projecting the generated depth pixels into 3D space, we create a structured 3D representation that can be either rendered via Gaussian splatting or extracted to high-quality meshes, thereby leveraging additional novel view synthesis loss to further improve our performance. Extensive experiments demonstrate that our method surpasses existing baselines in geometry and texture quality while achieving significantly faster generation time.
UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections
Neural 3D scene representations have shown great potential for 3D reconstruction from 2D images. However, reconstructing real-world captures of complex scenes still remains a challenge. Existing generic 3D reconstruction methods often struggle to represent fine geometric details and do not adequately model reflective surfaces of large-scale scenes. Techniques that explicitly focus on reflective surfaces can model complex and detailed reflections by exploiting better reflection parameterizations. However, we observe that these methods are often not robust in real unbounded scenarios where non-reflective as well as reflective components are present. In this work, we propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections. We investigate both view-based as well as reflection-based color prediction parameterization techniques and find that explicitly blending these representations in 3D space enables reconstruction of surfaces that are more geometrically accurate, especially for reflective surfaces. We further combine this representation with a multi-resolution grid backbone that is trained in a coarse-to-fine manner, enabling faster reconstructions than prior methods. Extensive experiments on object-level datasets DTU, Shiny Blender as well as unbounded datasets Mip-NeRF 360 and Ref-NeRF real demonstrate that our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces. Please see our project page at https://fangjinhuawang.github.io/UniSDF.
BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial Imagery
In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.
Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
Despite having tremendous progress in image-to-3D generation, existing methods still struggle to produce multi-view consistent images with high-resolution textures in detail, especially in the paradigm of 2D diffusion that lacks 3D awareness. In this work, we present High-resolution Image-to-3D model (Hi3D), a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation (i.e., orbital video generation). This methodology delves into the underlying temporal consistency knowledge in video diffusion model that generalizes well to geometry consistency across multiple views in 3D generation. Technically, Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior (camera pose condition), yielding multi-view images with low-resolution texture details. A 3D-aware video-to-video refiner is learnt to further scale up the multi-view images with high-resolution texture details. Such high-resolution multi-view images are further augmented with novel views through 3D Gaussian Splatting, which are finally leveraged to obtain high-fidelity meshes via 3D reconstruction. Extensive experiments on both novel view synthesis and single view reconstruction demonstrate that our Hi3D manages to produce superior multi-view consistency images with highly-detailed textures. Source code and data are available at https://github.com/yanghb22-fdu/Hi3D-Official.
3DIS: Depth-Driven Decoupled Instance Synthesis for Text-to-Image Generation
The increasing demand for controllable outputs in text-to-image generation has spurred advancements in multi-instance generation (MIG), allowing users to define both instance layouts and attributes. However, unlike image-conditional generation methods such as ControlNet, MIG techniques have not been widely adopted in state-of-the-art models like SD2 and SDXL, primarily due to the challenge of building robust renderers that simultaneously handle instance positioning and attribute rendering. In this paper, we introduce Depth-Driven Decoupled Instance Synthesis (3DIS), a novel framework that decouples the MIG process into two stages: (i) generating a coarse scene depth map for accurate instance positioning and scene composition, and (ii) rendering fine-grained attributes using pre-trained ControlNet on any foundational model, without additional training. Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-based layouts and employs a finetuning-free method for enhanced instance-level attribute rendering. Extensive experiments on COCO-Position and COCO-MIG benchmarks demonstrate that 3DIS significantly outperforms existing methods in both layout precision and attribute rendering. Notably, 3DIS offers seamless compatibility with diverse foundational models, providing a robust, adaptable solution for advanced multi-instance generation. The code is available at: https://github.com/limuloo/3DIS.
Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image
In this work, we introduce Unique3D, a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images, featuring state-of-the-art generation fidelity and strong generalizability. Previous methods based on Score Distillation Sampling (SDS) can produce diversified 3D results by distilling 3D knowledge from large 2D diffusion models, but they usually suffer from long per-case optimization time with inconsistent issues. Recent works address the problem and generate better 3D results either by finetuning a multi-view diffusion model or training a fast feed-forward model. However, they still lack intricate textures and complex geometries due to inconsistency and limited generated resolution. To simultaneously achieve high fidelity, consistency, and efficiency in single image-to-3D, we propose a novel framework Unique3D that includes a multi-view diffusion model with a corresponding normal diffusion model to generate multi-view images with their normal maps, a multi-level upscale process to progressively improve the resolution of generated orthographic multi-views, as well as an instant and consistent mesh reconstruction algorithm called ISOMER, which fully integrates the color and geometric priors into mesh results. Extensive experiments demonstrate that our Unique3D significantly outperforms other image-to-3D baselines in terms of geometric and textural details.
MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow
We present MOFA, an open-source generative AI (GenAI) plus simulation workflow for high-throughput generation of metal-organic frameworks (MOFs) on large-scale high-performance computing (HPC) systems. MOFA addresses key challenges in integrating GPU-accelerated computing for GPU-intensive GenAI tasks, including distributed training and inference, alongside CPU- and GPU-optimized tasks for screening and filtering AI-generated MOFs using molecular dynamics, density functional theory, and Monte Carlo simulations. These heterogeneous tasks are unified within an online learning framework that optimizes the utilization of available CPU and GPU resources across HPC systems. Performance metrics from a 450-node (14,400 AMD Zen 3 CPUs + 1800 NVIDIA A100 GPUs) supercomputer run demonstrate that MOFA achieves high-throughput generation of novel MOF structures, with CO_2 adsorption capacities ranking among the top 10 in the hypothetical MOF (hMOF) dataset. Furthermore, the production of high-quality MOFs exhibits a linear relationship with the number of nodes utilized. The modular architecture of MOFA will facilitate its integration into other scientific applications that dynamically combine GenAI with large-scale simulations.
3DIS-FLUX: simple and efficient multi-instance generation with DiT rendering
The growing demand for controllable outputs in text-to-image generation has driven significant advancements in multi-instance generation (MIG), enabling users to define both instance layouts and attributes. Currently, the state-of-the-art methods in MIG are primarily adapter-based. However, these methods necessitate retraining a new adapter each time a more advanced model is released, resulting in significant resource consumption. A methodology named Depth-Driven Decoupled Instance Synthesis (3DIS) has been introduced, which decouples MIG into two distinct phases: 1) depth-based scene construction and 2) detail rendering with widely pre-trained depth control models. The 3DIS method requires adapter training solely during the scene construction phase, while enabling various models to perform training-free detail rendering. Initially, 3DIS focused on rendering techniques utilizing U-Net architectures such as SD1.5, SD2, and SDXL, without exploring the potential of recent DiT-based models like FLUX. In this paper, we present 3DIS-FLUX, an extension of the 3DIS framework that integrates the FLUX model for enhanced rendering capabilities. Specifically, we employ the FLUX.1-Depth-dev model for depth map controlled image generation and introduce a detail renderer that manipulates the Attention Mask in FLUX's Joint Attention mechanism based on layout information. This approach allows for the precise rendering of fine-grained attributes of each instance. Our experimental results indicate that 3DIS-FLUX, leveraging the FLUX model, outperforms the original 3DIS method, which utilized SD2 and SDXL, and surpasses current state-of-the-art adapter-based methods in terms of both performance and image quality. Project Page: https://limuloo.github.io/3DIS/.
DMV3D: Denoising Multi-View Diffusion using 3D Large Reconstruction Model
We propose DMV3D, a novel 3D generation approach that uses a transformer-based 3D large reconstruction model to denoise multi-view diffusion. Our reconstruction model incorporates a triplane NeRF representation and can denoise noisy multi-view images via NeRF reconstruction and rendering, achieving single-stage 3D generation in sim30s on single A100 GPU. We train DMV3D on large-scale multi-view image datasets of highly diverse objects using only image reconstruction losses, without accessing 3D assets. We demonstrate state-of-the-art results for the single-image reconstruction problem where probabilistic modeling of unseen object parts is required for generating diverse reconstructions with sharp textures. We also show high-quality text-to-3D generation results outperforming previous 3D diffusion models. Our project website is at: https://justimyhxu.github.io/projects/dmv3d/ .
Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering
The rendering scheme in neural radiance field (NeRF) is effective in rendering a pixel by casting a ray into the scene. However, NeRF yields blurred rendering results when the training images are captured at non-uniform scales, and produces aliasing artifacts if the test images are taken in distant views. To address this issue, Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information. Nevertheless, this approach is only suitable for offline rendering since it relies on integrated positional encoding (IPE) to query a multilayer perceptron (MLP). To overcome this limitation, we propose mip voxel grids (Mip-VoG), an explicit multiscale representation with a deferred architecture for real-time anti-aliasing rendering. Our approach includes a density Mip-VoG for scene geometry and a feature Mip-VoG with a small MLP for view-dependent color. Mip-VoG encodes scene scale using the level of detail (LOD) derived from ray differentials and uses quadrilinear interpolation to map a queried 3D location to its features and density from two neighboring downsampled voxel grids. To our knowledge, our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously. We conducted experiments on multiscale datasets, and the results show that our approach outperforms state-of-the-art real-time rendering baselines.
Hardware Acceleration of Neural Graphics
Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
DreamCraft3D++: Efficient Hierarchical 3D Generation with Multi-Plane Reconstruction Model
We introduce DreamCraft3D++, an extension of DreamCraft3D that enables efficient high-quality generation of complex 3D assets. DreamCraft3D++ inherits the multi-stage generation process of DreamCraft3D, but replaces the time-consuming geometry sculpting optimization with a feed-forward multi-plane based reconstruction model, speeding up the process by 1000x. For texture refinement, we propose a training-free IP-Adapter module that is conditioned on the enhanced multi-view images to enhance texture and geometry consistency, providing a 4x faster alternative to DreamCraft3D's DreamBooth fine-tuning. Experiments on diverse datasets demonstrate DreamCraft3D++'s ability to generate creative 3D assets with intricate geometry and realistic 360{\deg} textures, outperforming state-of-the-art image-to-3D methods in quality and speed. The full implementation will be open-sourced to enable new possibilities in 3D content creation.
Compact 3D Scene Representation via Self-Organizing Gaussian Grids
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/
Multi-Grid Back-Projection Networks
Multi-Grid Back-Projection (MGBP) is a fully-convolutional network architecture that can learn to restore images and videos with upscaling artifacts. Using the same strategy of multi-grid partial differential equation (PDE) solvers this multiscale architecture scales computational complexity efficiently with increasing output resolutions. The basic processing block is inspired in the iterative back-projection (IBP) algorithm and constitutes a type of cross-scale residual block with feedback from low resolution references. The architecture performs in par with state-of-the-arts alternatives for regression targets that aim to recover an exact copy of a high resolution image or video from which only a downscale image is known. A perceptual quality target aims to create more realistic outputs by introducing artificial changes that can be different from a high resolution original content as long as they are consistent with the low resolution input. For this target we propose a strategy using noise inputs in different resolution scales to control the amount of artificial details generated in the output. The noise input controls the amount of innovation that the network uses to create artificial realistic details. The effectiveness of this strategy is shown in benchmarks and it is explained as a particular strategy to traverse the perception-distortion plane.
Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach
Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].
VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model
Generating multi-view images based on text or single-image prompts is a critical capability for the creation of 3D content. Two fundamental questions on this topic are what data we use for training and how to ensure multi-view consistency. This paper introduces a novel framework that makes fundamental contributions to both questions. Unlike leveraging images from 2D diffusion models for training, we propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models. Images from video generative models are more suitable for multi-view generation because the underlying network architecture that generates them employs a temporal module to enforce frame consistency. Moreover, the video data sets used to train these models are abundant and diverse, leading to a reduced train-finetuning domain gap. To enhance multi-view consistency, we introduce a 3D-Aware Denoising Sampling, which first employs a feed-forward reconstruction module to get an explicit global 3D model, and then adopts a sampling strategy that effectively involves images rendered from the global 3D model into the denoising sampling loop to improve the multi-view consistency of the final images. As a by-product, this module also provides a fast way to create 3D assets represented by 3D Gaussians within a few seconds. Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches (4 GPU hours versus many thousand GPU hours) with comparable visual quality and consistency. By further fine-tuning, our approach outperforms existing state-of-the-art methods in both quantitative metrics and visual effects. Our project page is aigc3d.github.io/VideoMV.
Hierarchical Prior Mining for Non-local Multi-View Stereo
As a fundamental problem in computer vision, multi-view stereo (MVS) aims at recovering the 3D geometry of a target from a set of 2D images. Recent advances in MVS have shown that it is important to perceive non-local structured information for recovering geometry in low-textured areas. In this work, we propose a Hierarchical Prior Mining for Non-local Multi-View Stereo (HPM-MVS). The key characteristics are the following techniques that exploit non-local information to assist MVS: 1) A Non-local Extensible Sampling Pattern (NESP), which is able to adaptively change the size of sampled areas without becoming snared in locally optimal solutions. 2) A new approach to leverage non-local reliable points and construct a planar prior model based on K-Nearest Neighbor (KNN), to obtain potential hypotheses for the regions where prior construction is challenging. 3) A Hierarchical Prior Mining (HPM) framework, which is used to mine extensive non-local prior information at different scales to assist 3D model recovery, this strategy can achieve a considerable balance between the reconstruction of details and low-textured areas. Experimental results on the ETH3D and Tanks \& Temples have verified the superior performance and strong generalization capability of our method. Our code will be released.
Bilateral Guided Radiance Field Processing
Neural Radiance Fields (NeRF) achieves unprecedented performance in synthesizing novel view synthesis, utilizing multi-view consistency. When capturing multiple inputs, image signal processing (ISP) in modern cameras will independently enhance them, including exposure adjustment, color correction, local tone mapping, etc. While these processings greatly improve image quality, they often break the multi-view consistency assumption, leading to "floaters" in the reconstructed radiance fields. To address this concern without compromising visual aesthetics, we aim to first disentangle the enhancement by ISP at the NeRF training stage and re-apply user-desired enhancements to the reconstructed radiance fields at the finishing stage. Furthermore, to make the re-applied enhancements consistent between novel views, we need to perform imaging signal processing in 3D space (i.e. "3D ISP"). For this goal, we adopt the bilateral grid, a locally-affine model, as a generalized representation of ISP processing. Specifically, we optimize per-view 3D bilateral grids with radiance fields to approximate the effects of camera pipelines for each input view. To achieve user-adjustable 3D finishing, we propose to learn a low-rank 4D bilateral grid from a given single view edit, lifting photo enhancements to the whole 3D scene. We demonstrate our approach can boost the visual quality of novel view synthesis by effectively removing floaters and performing enhancements from user retouching. The source code and our data are available at: https://bilarfpro.github.io.
Im4D: High-Fidelity and Real-Time Novel View Synthesis for Dynamic Scenes
This paper aims to tackle the challenge of dynamic view synthesis from multi-view videos. The key observation is that while previous grid-based methods offer consistent rendering, they fall short in capturing appearance details of a complex dynamic scene, a domain where multi-view image-based rendering methods demonstrate the opposite properties. To combine the best of two worlds, we introduce Im4D, a hybrid scene representation that consists of a grid-based geometry representation and a multi-view image-based appearance representation. Specifically, the dynamic geometry is encoded as a 4D density function composed of spatiotemporal feature planes and a small MLP network, which globally models the scene structure and facilitates the rendering consistency. We represent the scene appearance by the original multi-view videos and a network that learns to predict the color of a 3D point from image features, instead of memorizing detailed appearance totally with networks, thereby naturally making the learning of networks easier. Our method is evaluated on five dynamic view synthesis datasets including DyNeRF, ZJU-MoCap, NHR, DNA-Rendering and ENeRF-Outdoor datasets. The results show that Im4D exhibits state-of-the-art performance in rendering quality and can be trained efficiently, while realizing real-time rendering with a speed of 79.8 FPS for 512x512 images, on a single RTX 3090 GPU.
PanSplat: 4K Panorama Synthesis with Feed-Forward Gaussian Splatting
With the advent of portable 360{\deg} cameras, panorama has gained significant attention in applications like virtual reality (VR), virtual tours, robotics, and autonomous driving. As a result, wide-baseline panorama view synthesis has emerged as a vital task, where high resolution, fast inference, and memory efficiency are essential. Nevertheless, existing methods are typically constrained to lower resolutions (512 times 1024) due to demanding memory and computational requirements. In this paper, we present PanSplat, a generalizable, feed-forward approach that efficiently supports resolution up to 4K (2048 times 4096). Our approach features a tailored spherical 3D Gaussian pyramid with a Fibonacci lattice arrangement, enhancing image quality while reducing information redundancy. To accommodate the demands of high resolution, we propose a pipeline that integrates a hierarchical spherical cost volume and Gaussian heads with local operations, enabling two-step deferred backpropagation for memory-efficient training on a single A100 GPU. Experiments demonstrate that PanSplat achieves state-of-the-art results with superior efficiency and image quality across both synthetic and real-world datasets. Code will be available at https://github.com/chengzhag/PanSplat.
Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis
In this study, we delve into the generation of high-resolution images from pre-trained diffusion models, addressing persistent challenges, such as repetitive patterns and structural distortions, that emerge when models are applied beyond their trained resolutions. To address this issue, we introduce an innovative, training-free approach FouriScale from the perspective of frequency domain analysis. We replace the original convolutional layers in pre-trained diffusion models by incorporating a dilation technique along with a low-pass operation, intending to achieve structural consistency and scale consistency across resolutions, respectively. Further enhanced by a padding-then-crop strategy, our method can flexibly handle text-to-image generation of various aspect ratios. By using the FouriScale as guidance, our method successfully balances the structural integrity and fidelity of generated images, achieving an astonishing capacity of arbitrary-size, high-resolution, and high-quality generation. With its simplicity and compatibility, our method can provide valuable insights for future explorations into the synthesis of ultra-high-resolution images. The code will be released at https://github.com/LeonHLJ/FouriScale.
Efficient Encoding of Graphics Primitives with Simplex-based Structures
Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.
NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction
Recent methods for neural surface representation and rendering, for example NeuS, have demonstrated the remarkably high-quality reconstruction of static scenes. However, the training of NeuS takes an extremely long time (8 hours), which makes it almost impossible to apply them to dynamic scenes with thousands of frames. We propose a fast neural surface reconstruction approach, called NeuS2, which achieves two orders of magnitude improvement in terms of acceleration without compromising reconstruction quality. To accelerate the training process, we parameterize a neural surface representation by multi-resolution hash encodings and present a novel lightweight calculation of second-order derivatives tailored to our networks to leverage CUDA parallelism, achieving a factor two speed up. To further stabilize and expedite training, a progressive learning strategy is proposed to optimize multi-resolution hash encodings from coarse to fine. We extend our method for fast training of dynamic scenes, with a proposed incremental training strategy and a novel global transformation prediction component, which allow our method to handle challenging long sequences with large movements and deformations. Our experiments on various datasets demonstrate that NeuS2 significantly outperforms the state-of-the-arts in both surface reconstruction accuracy and training speed for both static and dynamic scenes. The code is available at our website: https://vcai.mpi-inf.mpg.de/projects/NeuS2/ .
VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging
Foundation models for interactive segmentation in 2D natural images and videos have sparked significant interest in building 3D foundation models for medical imaging. However, the domain gaps and clinical use cases for 3D medical imaging require a dedicated model that diverges from existing 2D solutions. Specifically, such foundation models should support a full workflow that can actually reduce human effort. Treating 3D medical images as sequences of 2D slices and reusing interactive 2D foundation models seems straightforward, but 2D annotation is too time-consuming for 3D tasks. Moreover, for large cohort analysis, it's the highly accurate automatic segmentation models that reduce the most human effort. However, these models lack support for interactive corrections and lack zero-shot ability for novel structures, which is a key feature of "foundation". While reusing pre-trained 2D backbones in 3D enhances zero-shot potential, their performance on complex 3D structures still lags behind leading 3D models. To address these issues, we present VISTA3D, Versatile Imaging SegmenTation and Annotation model, that targets to solve all these challenges and requirements with one unified foundation model. VISTA3D is built on top of the well-established 3D segmentation pipeline, and it is the first model to achieve state-of-the-art performance in both 3D automatic (supporting 127 classes) and 3D interactive segmentation, even when compared with top 3D expert models on large and diverse benchmarks. Additionally, VISTA3D's 3D interactive design allows efficient human correction, and a novel 3D supervoxel method that distills 2D pretrained backbones grants VISTA3D top 3D zero-shot performance. We believe the model, recipe, and insights represent a promising step towards a clinically useful 3D foundation model. Code and weights are publicly available at https://github.com/Project-MONAI/VISTA.
DELIFFAS: Deformable Light Fields for Fast Avatar Synthesis
Generating controllable and photorealistic digital human avatars is a long-standing and important problem in Vision and Graphics. Recent methods have shown great progress in terms of either photorealism or inference speed while the combination of the two desired properties still remains unsolved. To this end, we propose a novel method, called DELIFFAS, which parameterizes the appearance of the human as a surface light field that is attached to a controllable and deforming human mesh model. At the core, we represent the light field around the human with a deformable two-surface parameterization, which enables fast and accurate inference of the human appearance. This allows perceptual supervision on the full image compared to previous approaches that could only supervise individual pixels or small patches due to their slow runtime. Our carefully designed human representation and supervision strategy leads to state-of-the-art synthesis results and inference time. The video results and code are available at https://vcai.mpi-inf.mpg.de/projects/DELIFFAS.
HiFi-123: Towards High-fidelity One Image to 3D Content Generation
Recent advances in text-to-image diffusion models have enabled 3D generation from a single image. However, current image-to-3D methods often produce suboptimal results for novel views, with blurred textures and deviations from the reference image, limiting their practical applications. In this paper, we introduce HiFi-123, a method designed for high-fidelity and multi-view consistent 3D generation. Our contributions are twofold: First, we propose a reference-guided novel view enhancement technique that substantially reduces the quality gap between synthesized and reference views. Second, capitalizing on the novel view enhancement, we present a novel reference-guided state distillation loss. When incorporated into the optimization-based image-to-3D pipeline, our method significantly improves 3D generation quality, achieving state-of-the-art performance. Comprehensive evaluations demonstrate the effectiveness of our approach over existing methods, both qualitatively and quantitatively.
SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration
Recent techniques for real-time view synthesis have rapidly advanced in fidelity and speed, and modern methods are capable of rendering near-photorealistic scenes at interactive frame rates. At the same time, a tension has arisen between explicit scene representations amenable to rasterization and neural fields built on ray marching, with state-of-the-art instances of the latter surpassing the former in quality while being prohibitively expensive for real-time applications. In this work, we introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes with footprints up to 300 m^2 at a volumetric resolution of 3.5 mm^3. Our method is built upon two primary contributions: a hierarchical model partitioning scheme, which increases model capacity while constraining compute and memory consumption, and a distillation training strategy that simultaneously yields high fidelity and internal consistency. Our approach enables full six degrees of freedom (6DOF) navigation within a web browser and renders in real-time on commodity smartphones and laptops. Extensive experiments show that our method exceeds the current state-of-the-art in real-time novel view synthesis by 0.78 dB on standard benchmarks and 1.78 dB on large scenes, renders frames three orders of magnitude faster than state-of-the-art radiance field models, and achieves real-time performance across a wide variety of commodity devices, including smartphones. We encourage readers to explore these models interactively at our project website: https://smerf-3d.github.io.
One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D Diffusion
Recent advancements in open-world 3D object generation have been remarkable, with image-to-3D methods offering superior fine-grained control over their text-to-3D counterparts. However, most existing models fall short in simultaneously providing rapid generation speeds and high fidelity to input images - two features essential for practical applications. In this paper, we present One-2-3-45++, an innovative method that transforms a single image into a detailed 3D textured mesh in approximately one minute. Our approach aims to fully harness the extensive knowledge embedded in 2D diffusion models and priors from valuable yet limited 3D data. This is achieved by initially finetuning a 2D diffusion model for consistent multi-view image generation, followed by elevating these images to 3D with the aid of multi-view conditioned 3D native diffusion models. Extensive experimental evaluations demonstrate that our method can produce high-quality, diverse 3D assets that closely mirror the original input image. Our project webpage: https://sudo-ai-3d.github.io/One2345plus_page.
MVDream: Multi-view Diffusion for 3D Generation
We propose MVDream, a multi-view diffusion model that is able to generate geometrically consistent multi-view images from a given text prompt. By leveraging image diffusion models pre-trained on large-scale web datasets and a multi-view dataset rendered from 3D assets, the resulting multi-view diffusion model can achieve both the generalizability of 2D diffusion and the consistency of 3D data. Such a model can thus be applied as a multi-view prior for 3D generation via Score Distillation Sampling, where it greatly improves the stability of existing 2D-lifting methods by solving the 3D consistency problem. Finally, we show that the multi-view diffusion model can also be fine-tuned under a few shot setting for personalized 3D generation, i.e. DreamBooth3D application, where the consistency can be maintained after learning the subject identity.
MAIR++: Improving Multi-view Attention Inverse Rendering with Implicit Lighting Representation
In this paper, we propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, SVBRDF, and 3D spatially-varying lighting. While multi-view images have been widely used for object-level inverse rendering, scene-level inverse rendering has primarily been studied using single-view images due to the lack of a dataset containing high dynamic range multi-view images with ground-truth geometry, material, and spatially-varying lighting. To improve the quality of scene-level inverse rendering, a novel framework called Multi-view Attention Inverse Rendering (MAIR) was recently introduced. MAIR performs scene-level multi-view inverse rendering by expanding the OpenRooms dataset, designing efficient pipelines to handle multi-view images, and splitting spatially-varying lighting. Although MAIR showed impressive results, its lighting representation is fixed to spherical Gaussians, which limits its ability to render images realistically. Consequently, MAIR cannot be directly used in applications such as material editing. Moreover, its multi-view aggregation networks have difficulties extracting rich features because they only focus on the mean and variance between multi-view features. In this paper, we propose its extended version, called MAIR++. MAIR++ addresses the aforementioned limitations by introducing an implicit lighting representation that accurately captures the lighting conditions of an image while facilitating realistic rendering. Furthermore, we design a directional attention-based multi-view aggregation network to infer more intricate relationships between views. Experimental results show that MAIR++ not only achieves better performance than MAIR and single-view-based methods, but also displays robust performance on unseen real-world scenes.
Carve3D: Improving Multi-view Reconstruction Consistency for Diffusion Models with RL Finetuning
Recent advancements in the text-to-3D task leverage finetuned text-to-image diffusion models to generate multi-view images, followed by NeRF reconstruction. Yet, existing supervised finetuned (SFT) diffusion models still suffer from multi-view inconsistency and the resulting NeRF artifacts. Although training longer with SFT improves consistency, it also causes distribution shift, which reduces diversity and realistic details. We argue that the SFT of multi-view diffusion models resembles the instruction finetuning stage of the LLM alignment pipeline and can benefit from RL finetuning (RLFT) methods. Essentially, RLFT methods optimize models beyond their SFT data distribution by using their own outputs, effectively mitigating distribution shift. To this end, we introduce Carve3D, a RLFT method coupled with the Multi-view Reconstruction Consistency (MRC) metric, to improve the consistency of multi-view diffusion models. To compute MRC on a set of multi-view images, we compare them with their corresponding renderings of the reconstructed NeRF at the same viewpoints. We validate the robustness of MRC with extensive experiments conducted under controlled inconsistency levels. We enhance the base RLFT algorithm to stabilize the training process, reduce distribution shift, and identify scaling laws. Through qualitative and quantitative experiments, along with a user study, we demonstrate Carve3D's improved multi-view consistency, the resulting superior NeRF reconstruction quality, and minimal distribution shift compared to longer SFT. Project webpage: https://desaixie.github.io/carve-3d.
Pyramid Diffusion for Fine 3D Large Scene Generation
Diffusion models have shown remarkable results in generating 2D images and small-scale 3D objects. However, their application to the synthesis of large-scale 3D scenes has been rarely explored. This is mainly due to the inherent complexity and bulky size of 3D scenery data, particularly outdoor scenes, and the limited availability of comprehensive real-world datasets, which makes training a stable scene diffusion model challenging. In this work, we explore how to effectively generate large-scale 3D scenes using the coarse-to-fine paradigm. We introduce a framework, the Pyramid Discrete Diffusion model (PDD), which employs scale-varied diffusion models to progressively generate high-quality outdoor scenes. Experimental results of PDD demonstrate our successful exploration in generating 3D scenes both unconditionally and conditionally. We further showcase the data compatibility of the PDD model, due to its multi-scale architecture: a PDD model trained on one dataset can be easily fine-tuned with another dataset. Code is available at https://github.com/yuhengliu02/pyramid-discrete-diffusion.
DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model
With the increasing popularity of autonomous driving based on the powerful and unified bird's-eye-view (BEV) representation, a demand for high-quality and large-scale multi-view video data with accurate annotation is urgently required. However, such large-scale multi-view data is hard to obtain due to expensive collection and annotation costs. To alleviate the problem, we propose a spatial-temporal consistent diffusion framework DrivingDiffusion, to generate realistic multi-view videos controlled by 3D layout. There are three challenges when synthesizing multi-view videos given a 3D layout: How to keep 1) cross-view consistency and 2) cross-frame consistency? 3) How to guarantee the quality of the generated instances? Our DrivingDiffusion solves the problem by cascading the multi-view single-frame image generation step, the single-view video generation step shared by multiple cameras, and post-processing that can handle long video generation. In the multi-view model, the consistency of multi-view images is ensured by information exchange between adjacent cameras. In the temporal model, we mainly query the information that needs attention in subsequent frame generation from the multi-view images of the first frame. We also introduce the local prompt to effectively improve the quality of generated instances. In post-processing, we further enhance the cross-view consistency of subsequent frames and extend the video length by employing temporal sliding window algorithm. Without any extra cost, our model can generate large-scale realistic multi-camera driving videos in complex urban scenes, fueling the downstream driving tasks. The code will be made publicly available.
UniRGB-IR: A Unified Framework for RGB-Infrared Semantic Tasks via Adapter Tuning
Semantic analysis on visible (RGB) and infrared (IR) images has gained attention for its ability to be more accurate and robust under low-illumination and complex weather conditions. Due to the lack of pre-trained foundation models on the large-scale infrared image datasets, existing methods prefer to design task-specific frameworks and directly fine-tune them with pre-trained foundation models on their RGB-IR semantic relevance datasets, which results in poor scalability and limited generalization. In this work, we propose a general and efficient framework called UniRGB-IR to unify RGB-IR semantic tasks, in which a novel adapter is developed to efficiently introduce richer RGB-IR features into the pre-trained RGB-based foundation model. Specifically, our framework consists of a RGB-based foundation model, a Multi-modal Feature Pool (MFP) module and a Supplementary Feature Injector (SFI) module. The MFP and SFI modules cooperate with each other as an adapter to effectively complement the RGB-based features with the rich RGB-IR features. During training process, we freeze the entire foundation model to inherit prior knowledge and only optimize the proposed adapter. Furthermore, to verify the effectiveness of our framework, we utilize the vanilla vision transformer (ViT-Base) as the pre-trained foundation model to perform extensive experiments. Experimental results on various RGB-IR downstream tasks demonstrate that our method can achieve state-of-the-art performance. The source code and results are available at https://github.com/PoTsui99/UniRGB-IR.git.
DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
Diffusion models have achieved great success in synthesizing high-quality images. However, generating high-resolution images with diffusion models is still challenging due to the enormous computational costs, resulting in a prohibitive latency for interactive applications. In this paper, we propose DistriFusion to tackle this problem by leveraging parallelism across multiple GPUs. Our method splits the model input into multiple patches and assigns each patch to a GPU. However, na\"{\i}vely implementing such an algorithm breaks the interaction between patches and loses fidelity, while incorporating such an interaction will incur tremendous communication overhead. To overcome this dilemma, we observe the high similarity between the input from adjacent diffusion steps and propose displaced patch parallelism, which takes advantage of the sequential nature of the diffusion process by reusing the pre-computed feature maps from the previous timestep to provide context for the current step. Therefore, our method supports asynchronous communication, which can be pipelined by computation. Extensive experiments show that our method can be applied to recent Stable Diffusion XL with no quality degradation and achieve up to a 6.1times speedup on eight NVIDIA A100s compared to one. Our code is publicly available at https://github.com/mit-han-lab/distrifuser.
Large-scale image analysis using docker sandboxing
With the advent of specialized hardware such as Graphics Processing Units (GPUs), large scale image localization, classification and retrieval have seen increased prevalence. Designing scalable software architecture that co-evolves with such specialized hardware is a challenge in the commercial setting. In this paper, we describe one such architecture (Cortexica) that leverages scalability of GPUs and sandboxing offered by docker containers. This allows for the flexibility of mixing different computer architectures as well as computational algorithms with the security of a trusted environment. We illustrate the utility of this framework in a commercial setting i.e., searching for multiple products in an image by combining image localisation and retrieval.
StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control
The enormous success of diffusion models in text-to-image synthesis has made them promising candidates for the next generation of end-user applications for image generation and editing. Previous works have focused on improving the usability of diffusion models by reducing the inference time or increasing user interactivity by allowing new, fine-grained controls such as region-based text prompts. However, we empirically find that integrating both branches of works is nontrivial, limiting the potential of diffusion models. To solve this incompatibility, we present StreamMultiDiffusion, the first real-time region-based text-to-image generation framework. By stabilizing fast inference techniques and restructuring the model into a newly proposed multi-prompt stream batch architecture, we achieve times 10 faster panorama generation than existing solutions, and the generation speed of 1.57 FPS in region-based text-to-image synthesis on a single RTX 2080 Ti GPU. Our solution opens up a new paradigm for interactive image generation named semantic palette, where high-quality images are generated in real-time from given multiple hand-drawn regions, encoding prescribed semantic meanings (e.g., eagle, girl). Our code and demo application are available at https://github.com/ironjr/StreamMultiDiffusion.
Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon.Our code is available at: https://github.com/justacar/Plane-DUSt3R
Physically Compatible 3D Object Modeling from a Single Image
We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. Our optimization framework addresses this by embedding physical compatibility into the reconstruction process. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors. Evaluations on a dataset collected from Objaverse demonstrate that our framework consistently enhances the physical realism of 3D models over existing methods. The utility of our framework extends to practical applications in dynamic simulations and 3D printing, where adherence to physical compatibility is paramount.
LLaVA-NeXT-Interleave: Tackling Multi-image, Video, and 3D in Large Multimodal Models
Visual instruction tuning has made considerable strides in enhancing the capabilities of Large Multimodal Models (LMMs). However, existing open LMMs largely focus on single-image tasks, their applications to multi-image scenarios remains less explored. Additionally, prior LMM research separately tackles different scenarios, leaving it impossible to generalize cross scenarios with new emerging capabilities. To this end, we introduce LLaVA-NeXT-Interleave, which simultaneously tackles Multi-image, Multi-frame (video), Multi-view (3D), and Multi-patch (single-image) scenarios in LMMs. To enable these capabilities, we regard the interleaved data format as a general template and compile the M4-Instruct dataset with 1,177.6k samples, spanning 4 primary domains with 14 tasks and 41 datasets. We also curate the LLaVA-Interleave Bench to comprehensively evaluate the multi-image performance of LMMs. Through extensive experiments, LLaVA-NeXT-Interleave achieves leading results in multi-image, video, and 3D benchmarks, while maintaining the performance of single-image tasks. Besides, our model also exhibits several emerging capabilities, e.g., transferring tasks across different settings and modalities. Code is available at https://github.com/LLaVA-VL/LLaVA-NeXT
GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling
The field of novel-view synthesis has recently witnessed the emergence of 3D Gaussian Splatting, which represents scenes in a point-based manner and renders through rasterization. This methodology, in contrast to Radiance Fields that rely on ray tracing, demonstrates superior rendering quality and speed. However, the explicit and unstructured nature of 3D Gaussians poses a significant storage challenge, impeding its broader application. To address this challenge, we introduce the Gaussian-Forest modeling framework, which hierarchically represents a scene as a forest of hybrid 3D Gaussians. Each hybrid Gaussian retains its unique explicit attributes while sharing implicit ones with its sibling Gaussians, thus optimizing parameterization with significantly fewer variables. Moreover, adaptive growth and pruning strategies are designed, ensuring detailed representation in complex regions and a notable reduction in the number of required Gaussians. Extensive experiments demonstrate that Gaussian-Forest not only maintains comparable speed and quality but also achieves a compression rate surpassing 10 times, marking a significant advancement in efficient scene modeling. Codes will be available at https://github.com/Xian-Bei/GaussianForest.
DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation
Recent advancements in 3D content generation from text or a single image struggle with limited high-quality 3D datasets and inconsistency from 2D multi-view generation. We introduce DiffSplat, a novel 3D generative framework that natively generates 3D Gaussian splats by taming large-scale text-to-image diffusion models. It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model. To bootstrap the training, a lightweight reconstruction model is proposed to instantly produce multi-view Gaussian splat grids for scalable dataset curation. In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views. The compatibility with image diffusion models enables seamless adaptions of numerous techniques for image generation to the 3D realm. Extensive experiments reveal the superiority of DiffSplat in text- and image-conditioned generation tasks and downstream applications. Thorough ablation studies validate the efficacy of each critical design choice and provide insights into the underlying mechanism.
AlphaTablets: A Generic Plane Representation for 3D Planar Reconstruction from Monocular Videos
We introduce AlphaTablets, a novel and generic representation of 3D planes that features continuous 3D surface and precise boundary delineation. By representing 3D planes as rectangles with alpha channels, AlphaTablets combine the advantages of current 2D and 3D plane representations, enabling accurate, consistent and flexible modeling of 3D planes. We derive differentiable rasterization on top of AlphaTablets to efficiently render 3D planes into images, and propose a novel bottom-up pipeline for 3D planar reconstruction from monocular videos. Starting with 2D superpixels and geometric cues from pre-trained models, we initialize 3D planes as AlphaTablets and optimize them via differentiable rendering. An effective merging scheme is introduced to facilitate the growth and refinement of AlphaTablets. Through iterative optimization and merging, we reconstruct complete and accurate 3D planes with solid surfaces and clear boundaries. Extensive experiments on the ScanNet dataset demonstrate state-of-the-art performance in 3D planar reconstruction, underscoring the great potential of AlphaTablets as a generic 3D plane representation for various applications. Project page is available at: https://hyzcluster.github.io/alphatablets
Multi-Space Neural Radiance Fields
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We demonstrate the superiority and compatibility of our approach using three representative NeRF-based models, i.e., NeRF, Mip-NeRF, and Mip-NeRF 360. Comparisons are performed on a novelly constructed dataset consisting of 25 synthetic scenes and 7 real captured scenes with complex reflection and refraction, all having 360-degree viewpoints. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects. Our code and dataset will be publicly available at https://zx-yin.github.io/msnerf.
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
On Scaling Up 3D Gaussian Splatting Training
3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS
MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba
Recently, State Space Models (SSMs), with Mamba as a prime example, have shown great promise for long-range dependency modeling with linear complexity. Then, Vision Mamba and the subsequent architectures are presented successively, and they perform well on visual tasks. The crucial step of applying Mamba to visual tasks is to construct 2D visual features in sequential manners. To effectively organize and construct visual features within the 2D image space through 1D selective scan, we propose a novel Multi-Head Scan (MHS) module. The embeddings extracted from the preceding layer are projected into multiple lower-dimensional subspaces. Subsequently, within each subspace, the selective scan is performed along distinct scan routes. The resulting sub-embeddings, obtained from the multi-head scan process, are then integrated and ultimately projected back into the high-dimensional space. Moreover, we incorporate a Scan Route Attention (SRA) mechanism to enhance the module's capability to discern complex structures. To validate the efficacy of our module, we exclusively substitute the 2D-Selective-Scan (SS2D) block in VM-UNet with our proposed module, and we train our models from scratch without using any pre-trained weights. The results indicate a significant improvement in performance while reducing the parameters of the original VM-UNet. The code for this study is publicly available at https://github.com/PixDeep/MHS-VM.
3D Video Loops from Asynchronous Input
Looping videos are short video clips that can be looped endlessly without visible seams or artifacts. They provide a very attractive way to capture the dynamism of natural scenes. Existing methods have been mostly limited to 2D representations. In this paper, we take a step forward and propose a practical solution that enables an immersive experience on dynamic 3D looping scenes. The key challenge is to consider the per-view looping conditions from asynchronous input while maintaining view consistency for the 3D representation. We propose a novel sparse 3D video representation, namely Multi-Tile Video (MTV), which not only provides a view-consistent prior, but also greatly reduces memory usage, making the optimization of a 4D volume tractable. Then, we introduce a two-stage pipeline to construct the 3D looping MTV from completely asynchronous multi-view videos with no time overlap. A novel looping loss based on video temporal retargeting algorithms is adopted during the optimization to loop the 3D scene. Experiments of our framework have shown promise in successfully generating and rendering photorealistic 3D looping videos in real time even on mobile devices. The code, dataset, and live demos are available in https://limacv.github.io/VideoLoop3D_web/.
SyncTweedies: A General Generative Framework Based on Synchronized Diffusions
We introduce a general framework for generating diverse visual content, including ambiguous images, panorama images, mesh textures, and Gaussian splat textures, by synchronizing multiple diffusion processes. We present exhaustive investigation into all possible scenarios for synchronizing multiple diffusion processes through a canonical space and analyze their characteristics across applications. In doing so, we reveal a previously unexplored case: averaging the outputs of Tweedie's formula while conducting denoising in multiple instance spaces. This case also provides the best quality with the widest applicability to downstream tasks. We name this case SyncTweedies. In our experiments generating visual content aforementioned, we demonstrate the superior quality of generation by SyncTweedies compared to other synchronization methods, optimization-based and iterative-update-based methods.
Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D priors
Most 3D generation research focuses on up-projecting 2D foundation models into the 3D space, either by minimizing 2D Score Distillation Sampling (SDS) loss or fine-tuning on multi-view datasets. Without explicit 3D priors, these methods often lead to geometric anomalies and multi-view inconsistency. Recently, researchers have attempted to improve the genuineness of 3D objects by directly training on 3D datasets, albeit at the cost of low-quality texture generation due to the limited texture diversity in 3D datasets. To harness the advantages of both approaches, we propose Bidirectional Diffusion(BiDiff), a unified framework that incorporates both a 3D and a 2D diffusion process, to preserve both 3D fidelity and 2D texture richness, respectively. Moreover, as a simple combination may yield inconsistent generation results, we further bridge them with novel bidirectional guidance. In addition, our method can be used as an initialization of optimization-based models to further improve the quality of 3D model and efficiency of optimization, reducing the generation process from 3.4 hours to 20 minutes. Experimental results have shown that our model achieves high-quality, diverse, and scalable 3D generation. Project website: https://bidiff.github.io/.
Is Vanilla MLP in Neural Radiance Field Enough for Few-shot View Synthesis?
Neural Radiance Field (NeRF) has achieved superior performance for novel view synthesis by modeling the scene with a Multi-Layer Perception (MLP) and a volume rendering procedure, however, when fewer known views are given (i.e., few-shot view synthesis), the model is prone to overfit the given views. To handle this issue, previous efforts have been made towards leveraging learned priors or introducing additional regularizations. In contrast, in this paper, we for the first time provide an orthogonal method from the perspective of network structure. Given the observation that trivially reducing the number of model parameters alleviates the overfitting issue, but at the cost of missing details, we propose the multi-input MLP (mi-MLP) that incorporates the inputs (i.e., location and viewing direction) of the vanilla MLP into each layer to prevent the overfitting issue without harming detailed synthesis. To further reduce the artifacts, we propose to model colors and volume density separately and present two regularization terms. Extensive experiments on multiple datasets demonstrate that: 1) although the proposed mi-MLP is easy to implement, it is surprisingly effective as it boosts the PSNR of the baseline from 14.73 to 24.23. 2) the overall framework achieves state-of-the-art results on a wide range of benchmarks. We will release the code upon publication.
MV-Adapter: Multi-view Consistent Image Generation Made Easy
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image (T2I) models and require full fine-tuning, leading to (1) high computational costs, especially with large base models and high-resolution images, and (2) degradation in image quality due to optimization difficulties and scarce high-quality 3D data. In this paper, we propose the first adapter-based solution for multi-view image generation, and introduce MV-Adapter, a versatile plug-and-play adapter that enhances T2I models and their derivatives without altering the original network structure or feature space. By updating fewer parameters, MV-Adapter enables efficient training and preserves the prior knowledge embedded in pre-trained models, mitigating overfitting risks. To efficiently model the 3D geometric knowledge within the adapter, we introduce innovative designs that include duplicated self-attention layers and parallel attention architecture, enabling the adapter to inherit the powerful priors of the pre-trained models to model the novel 3D knowledge. Moreover, we present a unified condition encoder that seamlessly integrates camera parameters and geometric information, facilitating applications such as text- and image-based 3D generation and texturing. MV-Adapter achieves multi-view generation at 768 resolution on Stable Diffusion XL (SDXL), and demonstrates adaptability and versatility. It can also be extended to arbitrary view generation, enabling broader applications. We demonstrate that MV-Adapter sets a new quality standard for multi-view image generation, and opens up new possibilities due to its efficiency, adaptability and versatility.
MegaScenes: Scene-Level View Synthesis at Scale
Scene-level novel view synthesis (NVS) is fundamental to many vision and graphics applications. Recently, pose-conditioned diffusion models have led to significant progress by extracting 3D information from 2D foundation models, but these methods are limited by the lack of scene-level training data. Common dataset choices either consist of isolated objects (Objaverse), or of object-centric scenes with limited pose distributions (DTU, CO3D). In this paper, we create a large-scale scene-level dataset from Internet photo collections, called MegaScenes, which contains over 100K structure from motion (SfM) reconstructions from around the world. Internet photos represent a scalable data source but come with challenges such as lighting and transient objects. We address these issues to further create a subset suitable for the task of NVS. Additionally, we analyze failure cases of state-of-the-art NVS methods and significantly improve generation consistency. Through extensive experiments, we validate the effectiveness of both our dataset and method on generating in-the-wild scenes. For details on the dataset and code, see our project page at https://megascenes.github.io.
Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis
Any-scale image synthesis offers an efficient and scalable solution to synthesize photo-realistic images at any scale, even going beyond 2K resolution. However, existing GAN-based solutions depend excessively on convolutions and a hierarchical architecture, which introduce inconsistency and the ``texture sticking" issue when scaling the output resolution. From another perspective, INR-based generators are scale-equivariant by design, but their huge memory footprint and slow inference hinder these networks from being adopted in large-scale or real-time systems. In this work, we propose Column-Row Entangled Pixel Synthesis (CREPS), a new generative model that is both efficient and scale-equivariant without using any spatial convolutions or coarse-to-fine design. To save memory footprint and make the system scalable, we employ a novel bi-line representation that decomposes layer-wise feature maps into separate ``thick" column and row encodings. Experiments on various datasets, including FFHQ, LSUN-Church, MetFaces, and Flickr-Scenery, confirm CREPS' ability to synthesize scale-consistent and alias-free images at any arbitrary resolution with proper training and inference speed. Code is available at https://github.com/VinAIResearch/CREPS.
Strivec: Sparse Tri-Vector Radiance Fields
We propose Strivec, a novel neural representation that models a 3D scene as a radiance field with sparsely distributed and compactly factorized local tensor feature grids. Our approach leverages tensor decomposition, following the recent work TensoRF, to model the tensor grids. In contrast to TensoRF which uses a global tensor and focuses on their vector-matrix decomposition, we propose to utilize a cloud of local tensors and apply the classic CANDECOMP/PARAFAC (CP) decomposition to factorize each tensor into triple vectors that express local feature distributions along spatial axes and compactly encode a local neural field. We also apply multi-scale tensor grids to discover the geometry and appearance commonalities and exploit spatial coherence with the tri-vector factorization at multiple local scales. The final radiance field properties are regressed by aggregating neural features from multiple local tensors across all scales. Our tri-vector tensors are sparsely distributed around the actual scene surface, discovered by a fast coarse reconstruction, leveraging the sparsity of a 3D scene. We demonstrate that our model can achieve better rendering quality while using significantly fewer parameters than previous methods, including TensoRF and Instant-NGP.
ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging
AI is revolutionizing MRI along the acquisition and processing chain. Advanced AI frameworks have been developed to apply AI in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. Existing frameworks are often designed to perform tasks independently or are focused on specific models or datasets, limiting generalization. We introduce ATOMMIC, an open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using DL networks and enables MultiTask Learning (MTL) to perform related tasks integrated, targeting generalization in the MRI domain. We first review the current state of AI frameworks for MRI through a comprehensive literature search and by parsing 12,479 GitHub repositories. We benchmark 25 DL models on eight publicly available datasets to present distinct applications of ATOMMIC on accelerated MRI reconstruction, image segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and image segmentation utilizing MTL. Our findings demonstrate that ATOMMIC is the only MTL framework with harmonized complex-valued and real-valued data support. Evaluations on single tasks show that physics-based models, which enforce data consistency by leveraging the physical properties of MRI, outperform other models in reconstructing highly accelerated acquisitions. Physics-based models that produce high reconstruction quality can accurately estimate quantitative parameter maps. When high-performing reconstruction models are combined with robust segmentation networks utilizing MTL, performance is improved in both tasks. ATOMMIC facilitates MRI reconstruction and analysis by standardizing workflows, enhancing data interoperability, integrating unique features like MTL, and effectively benchmarking DL models.
Accelerating Image Super-Resolution Networks with Pixel-Level Classification
In recent times, the need for effective super-resolution (SR) techniques has surged, especially for large-scale images ranging 2K to 8K resolutions. For DNN-based SISR, decomposing images into overlapping patches is typically necessary due to computational constraints. In such patch-decomposing scheme, one can allocate computational resources differently based on each patch's difficulty to further improve efficiency while maintaining SR performance. However, this approach has a limitation: computational resources is uniformly allocated within a patch, leading to lower efficiency when the patch contain pixels with varying levels of restoration difficulty. To address the issue, we propose the Pixel-level Classifier for Single Image Super-Resolution (PCSR), a novel method designed to distribute computational resources adaptively at the pixel level. A PCSR model comprises a backbone, a pixel-level classifier, and a set of pixel-level upsamplers with varying capacities. The pixel-level classifier assigns each pixel to an appropriate upsampler based on its restoration difficulty, thereby optimizing computational resource usage. Our method allows for performance and computational cost balance during inference without re-training. Our experiments demonstrate PCSR's advantage over existing patch-distributing methods in PSNR-FLOP trade-offs across different backbone models and benchmarks. The code is available at https://github.com/3587jjh/PCSR.
Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing Neural Radiance Fields
Despite the tremendous progress in neural radiance fields (NeRF), we still face a dilemma of the trade-off between quality and efficiency, e.g., MipNeRF presents fine-detailed and anti-aliased renderings but takes days for training, while Instant-ngp can accomplish the reconstruction in a few minutes but suffers from blurring or aliasing when rendering at various distances or resolutions due to ignoring the sampling area. To this end, we propose a novel Tri-Mip encoding that enables both instant reconstruction and anti-aliased high-fidelity rendering for neural radiance fields. The key is to factorize the pre-filtered 3D feature spaces in three orthogonal mipmaps. In this way, we can efficiently perform 3D area sampling by taking advantage of 2D pre-filtered feature maps, which significantly elevates the rendering quality without sacrificing efficiency. To cope with the novel Tri-Mip representation, we propose a cone-casting rendering technique to efficiently sample anti-aliased 3D features with the Tri-Mip encoding considering both pixel imaging and observing distance. Extensive experiments on both synthetic and real-world datasets demonstrate our method achieves state-of-the-art rendering quality and reconstruction speed while maintaining a compact representation that reduces 25% model size compared against Instant-ngp.
Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable 2D Repainting
Recent one image to 3D generation methods commonly adopt Score Distillation Sampling (SDS). Despite the impressive results, there are multiple deficiencies including multi-view inconsistency, over-saturated and over-smoothed textures, as well as the slow generation speed. To address these deficiencies, we present Repaint123 to alleviate multi-view bias as well as texture degradation and speed up the generation process. The core idea is to combine the powerful image generation capability of the 2D diffusion model and the texture alignment ability of the repainting strategy for generating high-quality multi-view images with consistency. We further propose visibility-aware adaptive repainting strength for overlap regions to enhance the generated image quality in the repainting process. The generated high-quality and multi-view consistent images enable the use of simple Mean Square Error (MSE) loss for fast 3D content generation. We conduct extensive experiments and show that our method has a superior ability to generate high-quality 3D content with multi-view consistency and fine textures in 2 minutes from scratch. Code is at https://github.com/junwuzhang19/repaint123.
LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation
3D content creation has achieved significant progress in terms of both quality and speed. Although current feed-forward models can produce 3D objects in seconds, their resolution is constrained by the intensive computation required during training. In this paper, we introduce Large Multi-View Gaussian Model (LGM), a novel framework designed to generate high-resolution 3D models from text prompts or single-view images. Our key insights are two-fold: 1) 3D Representation: We propose multi-view Gaussian features as an efficient yet powerful representation, which can then be fused together for differentiable rendering. 2) 3D Backbone: We present an asymmetric U-Net as a high-throughput backbone operating on multi-view images, which can be produced from text or single-view image input by leveraging multi-view diffusion models. Extensive experiments demonstrate the high fidelity and efficiency of our approach. Notably, we maintain the fast speed to generate 3D objects within 5 seconds while boosting the training resolution to 512, thereby achieving high-resolution 3D content generation.
Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
MuRF: Multi-Baseline Radiance Fields
We present Multi-Baseline Radiance Fields (MuRF), a general feed-forward approach to solving sparse view synthesis under multiple different baseline settings (small and large baselines, and different number of input views). To render a target novel view, we discretize the 3D space into planes parallel to the target image plane, and accordingly construct a target view frustum volume. Such a target volume representation is spatially aligned with the target view, which effectively aggregates relevant information from the input views for high-quality rendering. It also facilitates subsequent radiance field regression with a convolutional network thanks to its axis-aligned nature. The 3D context modeled by the convolutional network enables our method to synthesis sharper scene structures than prior works. Our MuRF achieves state-of-the-art performance across multiple different baseline settings and diverse scenarios ranging from simple objects (DTU) to complex indoor and outdoor scenes (RealEstate10K and LLFF). We also show promising zero-shot generalization abilities on the Mip-NeRF 360 dataset, demonstrating the general applicability of MuRF.
F^{2}-NeRF: Fast Neural Radiance Field Training with Free Camera Trajectories
This paper presents a novel grid-based NeRF called F2-NeRF (Fast-Free-NeRF) for novel view synthesis, which enables arbitrary input camera trajectories and only costs a few minutes for training. Existing fast grid-based NeRF training frameworks, like Instant-NGP, Plenoxels, DVGO, or TensoRF, are mainly designed for bounded scenes and rely on space warping to handle unbounded scenes. Existing two widely-used space-warping methods are only designed for the forward-facing trajectory or the 360-degree object-centric trajectory but cannot process arbitrary trajectories. In this paper, we delve deep into the mechanism of space warping to handle unbounded scenes. Based on our analysis, we further propose a novel space-warping method called perspective warping, which allows us to handle arbitrary trajectories in the grid-based NeRF framework. Extensive experiments demonstrate that F2-NeRF is able to use the same perspective warping to render high-quality images on two standard datasets and a new free trajectory dataset collected by us. Project page: https://totoro97.github.io/projects/f2-nerf.
SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models leveraging data from the Environmental Mapping and Analysis Program (EnMAP). SpectralEarth comprises 538,974 image patches covering 415,153 unique locations from more than 11,636 globally distributed EnMAP scenes spanning two years of archive. Additionally, 17.5% of these locations include multiple timestamps, enabling multi-temporal HSI analysis. Utilizing state-of-the-art self-supervised learning (SSL) algorithms, we pretrain a series of foundation models on SpectralEarth. We integrate a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation. Experimental results support the versatility of our models, showcasing their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning. The dataset, models, and source code will be made publicly available.
Jointly Generating Multi-view Consistent PBR Textures using Collaborative Control
Multi-view consistency remains a challenge for image diffusion models. Even within the Text-to-Texture problem, where perfect geometric correspondences are known a priori, many methods fail to yield aligned predictions across views, necessitating non-trivial fusion methods to incorporate the results onto the original mesh. We explore this issue for a Collaborative Control workflow specifically in PBR Text-to-Texture. Collaborative Control directly models PBR image probability distributions, including normal bump maps; to our knowledge, the only diffusion model to directly output full PBR stacks. We discuss the design decisions involved in making this model multi-view consistent, and demonstrate the effectiveness of our approach in ablation studies, as well as practical applications.
Denoising Diffusion via Image-Based Rendering
Generating 3D scenes is a challenging open problem, which requires synthesizing plausible content that is fully consistent in 3D space. While recent methods such as neural radiance fields excel at view synthesis and 3D reconstruction, they cannot synthesize plausible details in unobserved regions since they lack a generative capability. Conversely, existing generative methods are typically not capable of reconstructing detailed, large-scale scenes in the wild, as they use limited-capacity 3D scene representations, require aligned camera poses, or rely on additional regularizers. In this work, we introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes. To achieve this, we make three contributions. First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes, dynamically allocating more capacity as needed to capture details visible in each image. Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images without the need for any additional supervision signal such as masks or depths. This supports 3D reconstruction and generation in a unified architecture. Third, we develop a principled approach to avoid trivial 3D solutions when integrating the image-based rendering with the diffusion model, by dropping out representations of some images. We evaluate the model on several challenging datasets of real and synthetic images, and demonstrate superior results on generation, novel view synthesis and 3D reconstruction.
FastNeRF: High-Fidelity Neural Rendering at 200FPS
Recent work on Neural Radiance Fields (NeRF) showed how neural networks can be used to encode complex 3D environments that can be rendered photorealistically from novel viewpoints. Rendering these images is very computationally demanding and recent improvements are still a long way from enabling interactive rates, even on high-end hardware. Motivated by scenarios on mobile and mixed reality devices, we propose FastNeRF, the first NeRF-based system capable of rendering high fidelity photorealistic images at 200Hz on a high-end consumer GPU. The core of our method is a graphics-inspired factorization that allows for (i) compactly caching a deep radiance map at each position in space, (ii) efficiently querying that map using ray directions to estimate the pixel values in the rendered image. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF, while maintaining visual quality and extensibility.
NeRF-XL: Scaling NeRFs with Multiple GPUs
We present NeRF-XL, a principled method for distributing Neural Radiance Fields (NeRFs) across multiple GPUs, thus enabling the training and rendering of NeRFs with an arbitrarily large capacity. We begin by revisiting existing multi-GPU approaches, which decompose large scenes into multiple independently trained NeRFs, and identify several fundamental issues with these methods that hinder improvements in reconstruction quality as additional computational resources (GPUs) are used in training. NeRF-XL remedies these issues and enables the training and rendering of NeRFs with an arbitrary number of parameters by simply using more hardware. At the core of our method lies a novel distributed training and rendering formulation, which is mathematically equivalent to the classic single-GPU case and minimizes communication between GPUs. By unlocking NeRFs with arbitrarily large parameter counts, our approach is the first to reveal multi-GPU scaling laws for NeRFs, showing improvements in reconstruction quality with larger parameter counts and speed improvements with more GPUs. We demonstrate the effectiveness of NeRF-XL on a wide variety of datasets, including the largest open-source dataset to date, MatrixCity, containing 258K images covering a 25km^2 city area.
Revisiting the Integration of Convolution and Attention for Vision Backbone
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel at different granularity levels instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named GLMix: by offloading the burden of fine-grained features to light-weight Convs, it is sufficient to use MHSAs in a few (e.g., 64) semantic slots to match the performance of recent state-of-the-art backbones, while being more efficient. Our visualization results also demonstrate that the soft clustering module produces a meaningful semantic grouping effect with only IN1k classification supervision, which may induce better interpretability and inspire new weakly-supervised semantic segmentation approaches. Code will be available at https://github.com/rayleizhu/GLMix.
PFGS: High Fidelity Point Cloud Rendering via Feature Splatting
Rendering high-fidelity images from sparse point clouds is still challenging. Existing learning-based approaches suffer from either hole artifacts, missing details, or expensive computations. In this paper, we propose a novel framework to render high-quality images from sparse points. This method first attempts to bridge the 3D Gaussian Splatting and point cloud rendering, which includes several cascaded modules. We first use a regressor to estimate Gaussian properties in a point-wise manner, the estimated properties are used to rasterize neural feature descriptors into 2D planes which are extracted from a multiscale extractor. The projected feature volume is gradually decoded toward the final prediction via a multiscale and progressive decoder. The whole pipeline experiences a two-stage training and is driven by our well-designed progressive and multiscale reconstruction loss. Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components.
LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation
3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce LayerPano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. LayerPano3D comprises multiple dedicated designs: 1) we introduce a novel text-guided anchor view synthesis pipeline for high-quality, consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that LayerPano3D holds promise for advancing 3D panoramic scene creation with numerous applications.
Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture
Reconstructing detailed 3D scenes from single-view images remains a challenging task due to limitations in existing approaches, which primarily focus on geometric shape recovery, overlooking object appearances and fine shape details. To address these challenges, we propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images. Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering of color, depth, and surface normal images. To overcome shape-appearance ambiguity under partial observations, we introduce a two-stage learning curriculum incorporating both 3D and 2D supervisions. A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model. This integration enables not only improved textured 3D object reconstruction by 27.7% and 11.6% on the 3D-FRONT and Pix3D datasets, respectively, but also supports the rendering of images from novel viewpoints. Beyond individual objects, our approach facilitates composing object-level representations into flexible scene representations, thereby enabling applications such as holistic scene understanding and 3D scene editing. We conduct extensive experiments to demonstrate the effectiveness of our method.
MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes
Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
Greedy Growing Enables High-Resolution Pixel-Based Diffusion Models
We address the long-standing problem of how to learn effective pixel-based image diffusion models at scale, introducing a remarkably simple greedy growing method for stable training of large-scale, high-resolution models. without the needs for cascaded super-resolution components. The key insight stems from careful pre-training of core components, namely, those responsible for text-to-image alignment {\it vs.} high-resolution rendering. We first demonstrate the benefits of scaling a {\it Shallow UNet}, with no down(up)-sampling enc(dec)oder. Scaling its deep core layers is shown to improve alignment, object structure, and composition. Building on this core model, we propose a greedy algorithm that grows the architecture into high-resolution end-to-end models, while preserving the integrity of the pre-trained representation, stabilizing training, and reducing the need for large high-resolution datasets. This enables a single stage model capable of generating high-resolution images without the need of a super-resolution cascade. Our key results rely on public datasets and show that we are able to train non-cascaded models up to 8B parameters with no further regularization schemes. Vermeer, our full pipeline model trained with internal datasets to produce 1024x1024 images, without cascades, is preferred by 44.0% vs. 21.4% human evaluators over SDXL.
CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution
Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to super sample medical volumes at arbitrary scales via a single model. However, existing MIASSR methods face two major limitations: (i) reliance on high-resolution (HR) volumes and (ii) limited generalization ability, which restricts their application in various scenarios. To overcome these limitations, we propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that can yield medical images at arbitrary scales and viewpoints in a continuous domain. Unlike existing MIASSR methods that fit the mapping between low-resolution (LR) and HR volumes, CuNeRF focuses on building a coordinate-intensity continuous representation from LR volumes without the need for HR references. This is achieved by the proposed differentiable modules: including cube-based sampling, isotropic volume rendering, and cube-based hierarchical rendering. Through extensive experiments on magnetic resource imaging (MRI) and computed tomography (CT) modalities, we demonstrate that CuNeRF outperforms state-of-the-art MIASSR methods. CuNeRF yields better visual verisimilitude and reduces aliasing artifacts at various upsampling factors. Moreover, our CuNeRF does not need any LR-HR training pairs, which is more flexible and easier to be used than others. Our code will be publicly available soon.
3D-aware Image Generation using 2D Diffusion Models
In this paper, we introduce a novel 3D-aware image generation method that leverages 2D diffusion models. We formulate the 3D-aware image generation task as multiview 2D image set generation, and further to a sequential unconditional-conditional multiview image generation process. This allows us to utilize 2D diffusion models to boost the generative modeling power of the method. Additionally, we incorporate depth information from monocular depth estimators to construct the training data for the conditional diffusion model using only still images. We train our method on a large-scale dataset, i.e., ImageNet, which is not addressed by previous methods. It produces high-quality images that significantly outperform prior methods. Furthermore, our approach showcases its capability to generate instances with large view angles, even though the training images are diverse and unaligned, gathered from "in-the-wild" real-world environments.
Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations
Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/
InfiniCity: Infinite-Scale City Synthesis
Toward infinite-scale 3D city synthesis, we propose a novel framework, InfiniCity, which constructs and renders an unconstrainedly large and 3D-grounded environment from random noises. InfiniCity decomposes the seemingly impractical task into three feasible modules, taking advantage of both 2D and 3D data. First, an infinite-pixel image synthesis module generates arbitrary-scale 2D maps from the bird's-eye view. Next, an octree-based voxel completion module lifts the generated 2D map to 3D octrees. Finally, a voxel-based neural rendering module texturizes the voxels and renders 2D images. InfiniCity can thus synthesize arbitrary-scale and traversable 3D city environments, and allow flexible and interactive editing from users. We quantitatively and qualitatively demonstrate the efficacy of the proposed framework. Project page: https://hubert0527.github.io/infinicity/
Zero-Shot Novel View and Depth Synthesis with Multi-View Geometric Diffusion
Current methods for 3D scene reconstruction from sparse posed images employ intermediate 3D representations such as neural fields, voxel grids, or 3D Gaussians, to achieve multi-view consistent scene appearance and geometry. In this paper we introduce MVGD, a diffusion-based architecture capable of direct pixel-level generation of images and depth maps from novel viewpoints, given an arbitrary number of input views. Our method uses raymap conditioning to both augment visual features with spatial information from different viewpoints, as well as to guide the generation of images and depth maps from novel views. A key aspect of our approach is the multi-task generation of images and depth maps, using learnable task embeddings to guide the diffusion process towards specific modalities. We train this model on a collection of more than 60 million multi-view samples from publicly available datasets, and propose techniques to enable efficient and consistent learning in such diverse conditions. We also propose a novel strategy that enables the efficient training of larger models by incrementally fine-tuning smaller ones, with promising scaling behavior. Through extensive experiments, we report state-of-the-art results in multiple novel view synthesis benchmarks, as well as multi-view stereo and video depth estimation.
MVD^2: Efficient Multiview 3D Reconstruction for Multiview Diffusion
As a promising 3D generation technique, multiview diffusion (MVD) has received a lot of attention due to its advantages in terms of generalizability, quality, and efficiency. By finetuning pretrained large image diffusion models with 3D data, the MVD methods first generate multiple views of a 3D object based on an image or text prompt and then reconstruct 3D shapes with multiview 3D reconstruction. However, the sparse views and inconsistent details in the generated images make 3D reconstruction challenging. We present MVD^2, an efficient 3D reconstruction method for multiview diffusion (MVD) images. MVD^2 aggregates image features into a 3D feature volume by projection and convolution and then decodes volumetric features into a 3D mesh. We train MVD^2 with 3D shape collections and MVD images prompted by rendered views of 3D shapes. To address the discrepancy between the generated multiview images and ground-truth views of the 3D shapes, we design a simple-yet-efficient view-dependent training scheme. MVD^2 improves the 3D generation quality of MVD and is fast and robust to various MVD methods. After training, it can efficiently decode 3D meshes from multiview images within one second. We train MVD^2 with Zero-123++ and ObjectVerse-LVIS 3D dataset and demonstrate its superior performance in generating 3D models from multiview images generated by different MVD methods, using both synthetic and real images as prompts.
MEt3R: Measuring Multi-View Consistency in Generated Images
We introduce MEt3R, a metric for multi-view consistency in generated images. Large-scale generative models for multi-view image generation are rapidly advancing the field of 3D inference from sparse observations. However, due to the nature of generative modeling, traditional reconstruction metrics are not suitable to measure the quality of generated outputs and metrics that are independent of the sampling procedure are desperately needed. In this work, we specifically address the aspect of consistency between generated multi-view images, which can be evaluated independently of the specific scene. Our approach uses DUSt3R to obtain dense 3D reconstructions from image pairs in a feed-forward manner, which are used to warp image contents from one view into the other. Then, feature maps of these images are compared to obtain a similarity score that is invariant to view-dependent effects. Using MEt3R, we evaluate the consistency of a large set of previous methods for novel view and video generation, including our open, multi-view latent diffusion model.
M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation
There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into intra-scale modeling, which captures local spatial dependencies within each scale, and inter-scale modeling, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256times256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at https://github.com/OliverRensu/MVAR.
MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes. Project webpage: https://multidiffusion.github.io
MVGamba: Unify 3D Content Generation as State Space Sequence Modeling
Recent 3D large reconstruction models (LRMs) can generate high-quality 3D content in sub-seconds by integrating multi-view diffusion models with scalable multi-view reconstructors. Current works further leverage 3D Gaussian Splatting as 3D representation for improved visual quality and rendering efficiency. However, we observe that existing Gaussian reconstruction models often suffer from multi-view inconsistency and blurred textures. We attribute this to the compromise of multi-view information propagation in favor of adopting powerful yet computationally intensive architectures (e.g., Transformers). To address this issue, we introduce MVGamba, a general and lightweight Gaussian reconstruction model featuring a multi-view Gaussian reconstructor based on the RNN-like State Space Model (SSM). Our Gaussian reconstructor propagates causal context containing multi-view information for cross-view self-refinement while generating a long sequence of Gaussians for fine-detail modeling with linear complexity. With off-the-shelf multi-view diffusion models integrated, MVGamba unifies 3D generation tasks from a single image, sparse images, or text prompts. Extensive experiments demonstrate that MVGamba outperforms state-of-the-art baselines in all 3D content generation scenarios with approximately only 0.1times of the model size.
Compact Neural Graphics Primitives with Learned Hash Probing
Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid. However, existing feature grids either come with a large memory footprint (dense or factorized grids, trees, and hash tables) or slow performance (index learning and vector quantization). In this paper, we show that a hash table with learned probes has neither disadvantage, resulting in a favorable combination of size and speed. Inference is faster than unprobed hash tables at equal quality while training is only 1.2-2.6x slower, significantly outperforming prior index learning approaches. We arrive at this formulation by casting all feature grids into a common framework: they each correspond to a lookup function that indexes into a table of feature vectors. In this framework, the lookup functions of existing data structures can be combined by simple arithmetic combinations of their indices, resulting in Pareto optimal compression and speed.
EG4D: Explicit Generation of 4D Object without Score Distillation
In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at https://github.com/jasongzy/EG4D.
MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).
Is One GPU Enough? Pushing Image Generation at Higher-Resolutions with Foundation Models
In this work, we introduce Pixelsmith, a zero-shot text-to-image generative framework to sample images at higher resolutions with a single GPU. We are the first to show that it is possible to scale the output of a pre-trained diffusion model by a factor of 1000, opening the road for gigapixel image generation at no additional cost. Our cascading method uses the image generated at the lowest resolution as a baseline to sample at higher resolutions. For the guidance, we introduce the Slider, a tunable mechanism that fuses the overall structure contained in the first-generated image with enhanced fine details. At each inference step, we denoise patches rather than the entire latent space, minimizing memory demands such that a single GPU can handle the process, regardless of the image's resolution. Our experimental results show that Pixelsmith not only achieves higher quality and diversity compared to existing techniques, but also reduces sampling time and artifacts. The code for our work is available at https://github.com/Thanos-DB/Pixelsmith.
An Efficient 3D Gaussian Representation for Monocular/Multi-view Dynamic Scenes
In novel view synthesis of scenes from multiple input views, 3D Gaussian splatting emerges as a viable alternative to existing radiance field approaches, delivering great visual quality and real-time rendering. While successful in static scenes, the present advancement of 3D Gaussian representation, however, faces challenges in dynamic scenes in terms of memory consumption and the need for numerous observations per time step, due to the onus of storing 3D Gaussian parameters per time step. In this study, we present an efficient 3D Gaussian representation tailored for dynamic scenes in which we define positions and rotations as functions of time while leaving other time-invariant properties of the static 3D Gaussian unchanged. Notably, our representation reduces memory usage, which is consistent regardless of the input sequence length. Additionally, it mitigates the risk of overfitting observed frames by accounting for temporal changes. The optimization of our Gaussian representation based on image and flow reconstruction results in a powerful framework for dynamic scene view synthesis in both monocular and multi-view cases. We obtain the highest rendering speed of 118 frames per second (FPS) at a resolution of 1352 times 1014 with a single GPU, showing the practical usability and effectiveness of our proposed method in dynamic scene rendering scenarios.
Streaming Radiance Fields for 3D Video Synthesis
We present an explicit-grid based method for efficiently reconstructing streaming radiance fields for novel view synthesis of real world dynamic scenes. Instead of training a single model that combines all the frames, we formulate the dynamic modeling problem with an incremental learning paradigm in which per-frame model difference is trained to complement the adaption of a base model on the current frame. By exploiting the simple yet effective tuning strategy with narrow bands, the proposed method realizes a feasible framework for handling video sequences on-the-fly with high training efficiency. The storage overhead induced by using explicit grid representations can be significantly reduced through the use of model difference based compression. We also introduce an efficient strategy to further accelerate model optimization for each frame. Experiments on challenging video sequences demonstrate that our approach is capable of achieving a training speed of 15 seconds per-frame with competitive rendering quality, which attains 1000 times speedup over the state-of-the-art implicit methods. Code is available at https://github.com/AlgoHunt/StreamRF.
Lightweight Predictive 3D Gaussian Splats
Recent approaches representing 3D objects and scenes using Gaussian splats show increased rendering speed across a variety of platforms and devices. While rendering such representations is indeed extremely efficient, storing and transmitting them is often prohibitively expensive. To represent large-scale scenes, one often needs to store millions of 3D Gaussians, occupying gigabytes of disk space. This poses a very practical limitation, prohibiting widespread adoption.Several solutions have been proposed to strike a balance between disk size and rendering quality, noticeably reducing the visual quality. In this work, we propose a new representation that dramatically reduces the hard drive footprint while featuring similar or improved quality when compared to the standard 3D Gaussian splats. When compared to other compact solutions, ours offers higher quality renderings with significantly reduced storage, being able to efficiently run on a mobile device in real-time. Our key observation is that nearby points in the scene can share similar representations. Hence, only a small ratio of 3D points needs to be stored. We introduce an approach to identify such points which are called parent points. The discarded points called children points along with attributes can be efficiently predicted by tiny MLPs.
DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models
Generating high-quality 3D content requires models capable of learning robust distributions of complex scenes and the real-world objects within them. Recent Gaussian-based 3D reconstruction techniques have achieved impressive results in recovering high-fidelity 3D assets from sparse input images by predicting 3D Gaussians in a feed-forward manner. However, these techniques often lack the extensive priors and expressiveness offered by Diffusion Models. On the other hand, 2D Diffusion Models, which have been successfully applied to denoise multiview images, show potential for generating a wide range of photorealistic 3D outputs but still fall short on explicit 3D priors and consistency. In this work, we aim to bridge these two approaches by introducing DSplats, a novel method that directly denoises multiview images using Gaussian Splat-based Reconstructors to produce a diverse array of realistic 3D assets. To harness the extensive priors of 2D Diffusion Models, we incorporate a pretrained Latent Diffusion Model into the reconstructor backbone to predict a set of 3D Gaussians. Additionally, the explicit 3D representation embedded in the denoising network provides a strong inductive bias, ensuring geometrically consistent novel view generation. Our qualitative and quantitative experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction. When evaluated on the Google Scanned Objects dataset, DSplats achieves a PSNR of 20.38, an SSIM of 0.842, and an LPIPS of 0.109.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
SuperMat: Physically Consistent PBR Material Estimation at Interactive Rates
Decomposing physically-based materials from images into their constituent properties remains challenging, particularly when maintaining both computational efficiency and physical consistency. While recent diffusion-based approaches have shown promise, they face substantial computational overhead due to multiple denoising steps and separate models for different material properties. We present SuperMat, a single-step framework that achieves high-quality material decomposition with one-step inference. This enables end-to-end training with perceptual and re-render losses while decomposing albedo, metallic, and roughness maps at millisecond-scale speeds. We further extend our framework to 3D objects through a UV refinement network, enabling consistent material estimation across viewpoints while maintaining efficiency. Experiments demonstrate that SuperMat achieves state-of-the-art PBR material decomposition quality while reducing inference time from seconds to milliseconds per image, and completes PBR material estimation for 3D objects in approximately 3 seconds. The project page is at https://hyj542682306.github.io/SuperMat/.
SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images
Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale
Large-scale medical imaging datasets have accelerated development of artificial intelligence tools for clinical decision support. However, the large size of these datasets is a bottleneck for users with limited storage and bandwidth. Many users may not even require such large datasets as AI models are often trained on lower resolution images. If users could directly download at their desired resolution, storage and bandwidth requirements would significantly decrease. However, it is impossible to anticipate every users' requirements and impractical to store the data at multiple resolutions. What if we could store images at a single resolution but send them at different ones? We propose MIST, an open-source framework to operationalize progressive resolution for streaming medical images at multiple resolutions from a single high-resolution copy. We demonstrate that MIST can dramatically reduce imaging infrastructure inefficiencies for hosting and streaming medical images by >90%, while maintaining diagnostic quality for deep learning applications.
MV-DUSt3R+: Single-Stage Scene Reconstruction from Sparse Views In 2 Seconds
Recent sparse multi-view scene reconstruction advances like DUSt3R and MASt3R no longer require camera calibration and camera pose estimation. However, they only process a pair of views at a time to infer pixel-aligned pointmaps. When dealing with more than two views, a combinatorial number of error prone pairwise reconstructions are usually followed by an expensive global optimization, which often fails to rectify the pairwise reconstruction errors. To handle more views, reduce errors, and improve inference time, we propose the fast single-stage feed-forward network MV-DUSt3R. At its core are multi-view decoder blocks which exchange information across any number of views while considering one reference view. To make our method robust to reference view selection, we further propose MV-DUSt3R+, which employs cross-reference-view blocks to fuse information across different reference view choices. To further enable novel view synthesis, we extend both by adding and jointly training Gaussian splatting heads. Experiments on multi-view stereo reconstruction, multi-view pose estimation, and novel view synthesis confirm that our methods improve significantly upon prior art. Code will be released.
Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
The availability of large-scale multimodal datasets and advancements in diffusion models have significantly accelerated progress in 4D content generation. Most prior approaches rely on multiple image or video diffusion models, utilizing score distillation sampling for optimization or generating pseudo novel views for direct supervision. However, these methods are hindered by slow optimization speeds and multi-view inconsistency issues. Spatial and temporal consistency in 4D geometry has been extensively explored respectively in 3D-aware diffusion models and traditional monocular video diffusion models. Building on this foundation, we propose a strategy to migrate the temporal consistency in video diffusion models to the spatial-temporal consistency required for 4D generation. Specifically, we present a novel framework, Diffusion4D, for efficient and scalable 4D content generation. Leveraging a meticulously curated dynamic 3D dataset, we develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets. To control the dynamic strength of these assets, we introduce a 3D-to-4D motion magnitude metric as guidance. Additionally, we propose a novel motion magnitude reconstruction loss and 3D-aware classifier-free guidance to refine the learning and generation of motion dynamics. After obtaining orbital views of the 4D asset, we perform explicit 4D construction with Gaussian splatting in a coarse-to-fine manner. The synthesized multi-view consistent 4D image set enables us to swiftly generate high-fidelity and diverse 4D assets within just several minutes. Extensive experiments demonstrate that our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency across various prompt modalities.
WDM: 3D Wavelet Diffusion Models for High-Resolution Medical Image Synthesis
Due to the three-dimensional nature of CT- or MR-scans, generative modeling of medical images is a particularly challenging task. Existing approaches mostly apply patch-wise, slice-wise, or cascaded generation techniques to fit the high-dimensional data into the limited GPU memory. However, these approaches may introduce artifacts and potentially restrict the model's applicability for certain downstream tasks. This work presents WDM, a wavelet-based medical image synthesis framework that applies a diffusion model on wavelet decomposed images. The presented approach is a simple yet effective way of scaling diffusion models to high resolutions and can be trained on a single 40 GB GPU. Experimental results on BraTS and LIDC-IDRI unconditional image generation at a resolution of 128 times 128 times 128 show state-of-the-art image fidelity (FID) and sample diversity (MS-SSIM) scores compared to GANs, Diffusion Models, and Latent Diffusion Models. Our proposed method is the only one capable of generating high-quality images at a resolution of 256 times 256 times 256.
ZigMa: Zigzag Mamba Diffusion Model
The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ 1024times 1024 and UCF101, MultiModal-CelebA-HQ, and MS COCO 256times 256. Code will be released at https://taohu.me/zigma/
Segmentation-guided Layer-wise Image Vectorization with Gradient Fills
The widespread use of vector graphics creates a significant demand for vectorization methods. While recent learning-based techniques have shown their capability to create vector images of clear topology, filling these primitives with gradients remains a challenge. In this paper, we propose a segmentation-guided vectorization framework to convert raster images into concise vector graphics with radial gradient fills. With the guidance of an embedded gradient-aware segmentation subroutine, our approach progressively appends gradient-filled B\'ezier paths to the output, where primitive parameters are initiated with our newly designed initialization technique and are optimized to minimize our novel loss function. We build our method on a differentiable renderer with traditional segmentation algorithms to develop it as a model-free tool for raster-to-vector conversion. It is tested on various inputs to demonstrate its feasibility, independent of datasets, to synthesize vector graphics with improved visual quality and layer-wise topology compared to prior work.
RayDF: Neural Ray-surface Distance Fields with Multi-view Consistency
In this paper, we study the problem of continuous 3D shape representations. The majority of existing successful methods are coordinate-based implicit neural representations. However, they are inefficient to render novel views or recover explicit surface points. A few works start to formulate 3D shapes as ray-based neural functions, but the learned structures are inferior due to the lack of multi-view geometry consistency. To tackle these challenges, we propose a new framework called RayDF. It consists of three major components: 1) the simple ray-surface distance field, 2) the novel dual-ray visibility classifier, and 3) a multi-view consistency optimization module to drive the learned ray-surface distances to be multi-view geometry consistent. We extensively evaluate our method on three public datasets, demonstrating remarkable performance in 3D surface point reconstruction on both synthetic and challenging real-world 3D scenes, clearly surpassing existing coordinate-based and ray-based baselines. Most notably, our method achieves a 1000x faster speed than coordinate-based methods to render an 800x800 depth image, showing the superiority of our method for 3D shape representation. Our code and data are available at https://github.com/vLAR-group/RayDF
RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
Neural Processing of Tri-Plane Hybrid Neural Fields
Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.
Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement
Neural Radiance Fields (NeRF) have constituted a remarkable breakthrough in image-based 3D reconstruction. However, their implicit volumetric representations differ significantly from the widely-adopted polygonal meshes and lack support from common 3D software and hardware, making their rendering and manipulation inefficient. To overcome this limitation, we present a novel framework that generates textured surface meshes from images. Our approach begins by efficiently initializing the geometry and view-dependency decomposed appearance with a NeRF. Subsequently, a coarse mesh is extracted, and an iterative surface refining algorithm is developed to adaptively adjust both vertex positions and face density based on re-projected rendering errors. We jointly refine the appearance with geometry and bake it into texture images for real-time rendering. Extensive experiments demonstrate that our method achieves superior mesh quality and competitive rendering quality.
Splatter Image: Ultra-Fast Single-View 3D Reconstruction
We introduce the Splatter Image, an ultra-fast approach for monocular 3D object reconstruction which operates at 38 FPS. Splatter Image is based on Gaussian Splatting, which has recently brought real-time rendering, fast training, and excellent scaling to multi-view reconstruction. For the first time, we apply Gaussian Splatting in a monocular reconstruction setting. Our approach is learning-based, and, at test time, reconstruction only requires the feed-forward evaluation of a neural network. The main innovation of Splatter Image is the surprisingly straightforward design: it uses a 2D image-to-image network to map the input image to one 3D Gaussian per pixel. The resulting Gaussians thus have the form of an image, the Splatter Image. We further extend the method to incorporate more than one image as input, which we do by adding cross-view attention. Owning to the speed of the renderer (588 FPS), we can use a single GPU for training while generating entire images at each iteration in order to optimize perceptual metrics like LPIPS. On standard benchmarks, we demonstrate not only fast reconstruction but also better results than recent and much more expensive baselines in terms of PSNR, LPIPS, and other metrics.
Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion
Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization (sim15min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
VaLID: Variable-Length Input Diffusion for Novel View Synthesis
Novel View Synthesis (NVS), which tries to produce a realistic image at the target view given source view images and their corresponding poses, is a fundamental problem in 3D Vision. As this task is heavily under-constrained, some recent work, like Zero123, tries to solve this problem with generative modeling, specifically using pre-trained diffusion models. Although this strategy generalizes well to new scenes, compared to neural radiance field-based methods, it offers low levels of flexibility. For example, it can only accept a single-view image as input, despite realistic applications often offering multiple input images. This is because the source-view images and corresponding poses are processed separately and injected into the model at different stages. Thus it is not trivial to generalize the model into multi-view source images, once they are available. To solve this issue, we try to process each pose image pair separately and then fuse them as a unified visual representation which will be injected into the model to guide image synthesis at the target-views. However, inconsistency and computation costs increase as the number of input source-view images increases. To solve these issues, the Multi-view Cross Former module is proposed which maps variable-length input data to fix-size output data. A two-stage training strategy is introduced to further improve the efficiency during training time. Qualitative and quantitative evaluation over multiple datasets demonstrates the effectiveness of the proposed method against previous approaches. The code will be released according to the acceptance.
Dynamic PlenOctree for Adaptive Sampling Refinement in Explicit NeRF
The explicit neural radiance field (NeRF) has gained considerable interest for its efficient training and fast inference capabilities, making it a promising direction such as virtual reality and gaming. In particular, PlenOctree (POT)[1], an explicit hierarchical multi-scale octree representation, has emerged as a structural and influential framework. However, POT's fixed structure for direct optimization is sub-optimal as the scene complexity evolves continuously with updates to cached color and density, necessitating refining the sampling distribution to capture signal complexity accordingly. To address this issue, we propose the dynamic PlenOctree DOT, which adaptively refines the sample distribution to adjust to changing scene complexity. Specifically, DOT proposes a concise yet novel hierarchical feature fusion strategy during the iterative rendering process. Firstly, it identifies the regions of interest through training signals to ensure adaptive and efficient refinement. Next, rather than directly filtering out valueless nodes, DOT introduces the sampling and pruning operations for octrees to aggregate features, enabling rapid parameter learning. Compared with POT, our DOT outperforms it by enhancing visual quality, reducing over 55.15/68.84% parameters, and providing 1.7/1.9 times FPS for NeRF-synthetic and Tanks & Temples, respectively. Project homepage:https://vlislab22.github.io/DOT. [1] Yu, Alex, et al. "Plenoctrees for real-time rendering of neural radiance fields." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference
Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around 70% compared to DistriFusion (the state of the art implementation of PP) and achieves 2.36sim 8.02times inference speed-up using 4sim 8 GPUs compared to 2.32sim 6.71times achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency.
Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models
Image inpainting refers to the task of generating a complete, natural image based on a partially revealed reference image. Recently, many research interests have been focused on addressing this problem using fixed diffusion models. These approaches typically directly replace the revealed region of the intermediate or final generated images with that of the reference image or its variants. However, since the unrevealed regions are not directly modified to match the context, it results in incoherence between revealed and unrevealed regions. To address the incoherence problem, a small number of methods introduce a rigorous Bayesian framework, but they tend to introduce mismatches between the generated and the reference images due to the approximation errors in computing the posterior distributions. In this paper, we propose COPAINT, which can coherently inpaint the whole image without introducing mismatches. COPAINT also uses the Bayesian framework to jointly modify both revealed and unrevealed regions, but approximates the posterior distribution in a way that allows the errors to gradually drop to zero throughout the denoising steps, thus strongly penalizing any mismatches with the reference image. Our experiments verify that COPAINT can outperform the existing diffusion-based methods under both objective and subjective metrics. The codes are available at https://github.com/UCSB-NLP-Chang/CoPaint/.
PyNeRF: Pyramidal Neural Radiance Fields
Neural Radiance Fields (NeRFs) can be dramatically accelerated by spatial grid representations. However, they do not explicitly reason about scale and so introduce aliasing artifacts when reconstructing scenes captured at different camera distances. Mip-NeRF and its extensions propose scale-aware renderers that project volumetric frustums rather than point samples but such approaches rely on positional encodings that are not readily compatible with grid methods. We propose a simple modification to grid-based models by training model heads at different spatial grid resolutions. At render time, we simply use coarser grids to render samples that cover larger volumes. Our method can be easily applied to existing accelerated NeRF methods and significantly improves rendering quality (reducing error rates by 20-90% across synthetic and unbounded real-world scenes) while incurring minimal performance overhead (as each model head is quick to evaluate). Compared to Mip-NeRF, we reduce error rates by 20% while training over 60x faster.
Flex3D: Feed-Forward 3D Generation With Flexible Reconstruction Model And Input View Curation
Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications.Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
MV-Map: Offboard HD-Map Generation with Multi-view Consistency
While bird's-eye-view (BEV) perception models can be useful for building high-definition maps (HD-Maps) with less human labor, their results are often unreliable and demonstrate noticeable inconsistencies in the predicted HD-Maps from different viewpoints. This is because BEV perception is typically set up in an 'onboard' manner, which restricts the computation and consequently prevents algorithms from reasoning multiple views simultaneously. This paper overcomes these limitations and advocates a more practical 'offboard' HD-Map generation setup that removes the computation constraints, based on the fact that HD-Maps are commonly reusable infrastructures built offline in data centers. To this end, we propose a novel offboard pipeline called MV-Map that capitalizes multi-view consistency and can handle an arbitrary number of frames with the key design of a 'region-centric' framework. In MV-Map, the target HD-Maps are created by aggregating all the frames of onboard predictions, weighted by the confidence scores assigned by an 'uncertainty network'. To further enhance multi-view consistency, we augment the uncertainty network with the global 3D structure optimized by a voxelized neural radiance field (Voxel-NeRF). Extensive experiments on nuScenes show that our MV-Map significantly improves the quality of HD-Maps, further highlighting the importance of offboard methods for HD-Map generation.
Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion
Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.
ConSlide: Asynchronous Hierarchical Interaction Transformer with Breakup-Reorganize Rehearsal for Continual Whole Slide Image Analysis
Whole slide image (WSI) analysis has become increasingly important in the medical imaging community, enabling automated and objective diagnosis, prognosis, and therapeutic-response prediction. However, in clinical practice, the ever-evolving environment hamper the utility of WSI analysis models. In this paper, we propose the FIRST continual learning framework for WSI analysis, named ConSlide, to tackle the challenges of enormous image size, utilization of hierarchical structure, and catastrophic forgetting by progressive model updating on multiple sequential datasets. Our framework contains three key components. The Hierarchical Interaction Transformer (HIT) is proposed to model and utilize the hierarchical structural knowledge of WSI. The Breakup-Reorganize (BuRo) rehearsal method is developed for WSI data replay with efficient region storing buffer and WSI reorganizing operation. The asynchronous updating mechanism is devised to encourage the network to learn generic and specific knowledge respectively during the replay stage, based on a nested cross-scale similarity learning (CSSL) module. We evaluated the proposed ConSlide on four public WSI datasets from TCGA projects. It performs best over other state-of-the-art methods with a fair WSI-based continual learning setting and achieves a better trade-off of the overall performance and forgetting on previous task
FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering
3D Gaussian Splatting (3DGS) achieves fast and high-quality renderings by using numerous small Gaussians, which leads to significant memory consumption. This reliance on a large number of Gaussians restricts the application of 3DGS-based models on low-cost devices due to memory limitations. However, simply reducing the number of Gaussians to accommodate devices with less memory capacity leads to inferior quality compared to the quality that can be achieved on high-end hardware. To address this lack of scalability, we propose integrating a Flexible Level of Detail (FLoD) to 3DGS, to allow a scene to be rendered at varying levels of detail according to hardware capabilities. While existing 3DGSs with LoD focus on detailed reconstruction, our method provides reconstructions using a small number of Gaussians for reduced memory requirements, and a larger number of Gaussians for greater detail. Experiments demonstrate our various rendering options with tradeoffs between rendering quality and memory usage, thereby allowing real-time rendering across different memory constraints. Furthermore, we show that our method generalizes to different 3DGS frameworks, indicating its potential for integration into future state-of-the-art developments. Project page: https://3dgs-flod.github.io/flod.github.io/
Parameterization-driven Neural Surface Reconstruction for Object-oriented Editing in Neural Rendering
The advancements in neural rendering have increased the need for techniques that enable intuitive editing of 3D objects represented as neural implicit surfaces. This paper introduces a novel neural algorithm for parameterizing neural implicit surfaces to simple parametric domains like spheres and polycubes. Our method allows users to specify the number of cubes in the parametric domain, learning a configuration that closely resembles the target 3D object's geometry. It computes bi-directional deformation between the object and the domain using a forward mapping from the object's zero level set and an inverse deformation for backward mapping. We ensure nearly bijective mapping with a cycle loss and optimize deformation smoothness. The parameterization quality, assessed by angle and area distortions, is guaranteed using a Laplacian regularizer and an optimized learned parametric domain. Our framework integrates with existing neural rendering pipelines, using multi-view images of a single object or multiple objects of similar geometries to reconstruct 3D geometry and compute texture maps automatically, eliminating the need for any prior information. We demonstrate the method's effectiveness on images of human heads and man-made objects.
High Throughput Training of Deep Surrogates from Large Ensemble Runs
Recent years have seen a surge in deep learning approaches to accelerate numerical solvers, which provide faithful but computationally intensive simulations of the physical world. These deep surrogates are generally trained in a supervised manner from limited amounts of data slowly generated by the same solver they intend to accelerate. We propose an open-source framework that enables the online training of these models from a large ensemble run of simulations. It leverages multiple levels of parallelism to generate rich datasets. The framework avoids I/O bottlenecks and storage issues by directly streaming the generated data. A training reservoir mitigates the inherent bias of streaming while maximizing GPU throughput. Experiment on training a fully connected network as a surrogate for the heat equation shows the proposed approach enables training on 8TB of data in 2 hours with an accuracy improved by 47% and a batch throughput multiplied by 13 compared to a traditional offline procedure.
Compact 3D Gaussian Representation for Radiance Field
Neural Radiance Fields (NeRFs) have demonstrated remarkable potential in capturing complex 3D scenes with high fidelity. However, one persistent challenge that hinders the widespread adoption of NeRFs is the computational bottleneck due to the volumetric rendering. On the other hand, 3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussisan-based representation and adopts the rasterization pipeline to render the images rather than volumetric rendering, achieving very fast rendering speed and promising image quality. However, a significant drawback arises as 3DGS entails a substantial number of 3D Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric attributes of Gaussian by vector quantization. In our extensive experiments, we consistently show over 10times reduced storage and enhanced rendering speed, while maintaining the quality of the scene representation, compared to 3DGS. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
VistaDream: Sampling multiview consistent images for single-view scene reconstruction
In this paper, we propose VistaDream a novel framework to reconstruct a 3D scene from a single-view image. Recent diffusion models enable generating high-quality novel-view images from a single-view input image. Most existing methods only concentrate on building the consistency between the input image and the generated images while losing the consistency between the generated images. VistaDream addresses this problem by a two-stage pipeline. In the first stage, VistaDream begins with building a global coarse 3D scaffold by zooming out a little step with inpainted boundaries and an estimated depth map. Then, on this global scaffold, we use iterative diffusion-based RGB-D inpainting to generate novel-view images to inpaint the holes of the scaffold. In the second stage, we further enhance the consistency between the generated novel-view images by a novel training-free Multiview Consistency Sampling (MCS) that introduces multi-view consistency constraints in the reverse sampling process of diffusion models. Experimental results demonstrate that without training or fine-tuning existing diffusion models, VistaDream achieves consistent and high-quality novel view synthesis using just single-view images and outperforms baseline methods by a large margin. The code, videos, and interactive demos are available at https://vistadream-project-page.github.io/.
InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models
We present InstantMesh, a feed-forward framework for instant 3D mesh generation from a single image, featuring state-of-the-art generation quality and significant training scalability. By synergizing the strengths of an off-the-shelf multiview diffusion model and a sparse-view reconstruction model based on the LRM architecture, InstantMesh is able to create diverse 3D assets within 10 seconds. To enhance the training efficiency and exploit more geometric supervisions, e.g, depths and normals, we integrate a differentiable iso-surface extraction module into our framework and directly optimize on the mesh representation. Experimental results on public datasets demonstrate that InstantMesh significantly outperforms other latest image-to-3D baselines, both qualitatively and quantitatively. We release all the code, weights, and demo of InstantMesh, with the intention that it can make substantial contributions to the community of 3D generative AI and empower both researchers and content creators.
PaintScene4D: Consistent 4D Scene Generation from Text Prompts
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis
X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code and models will be publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .
MGARD: A multigrid framework for high-performance, error-controlled data compression and refactoring
We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on structured and unstructured grids. With exceptional data compression capability and precise error control, MGARD addresses a wide range of requirements, including storage reduction, high-performance I/O, and in-situ data analysis. It features a unified application programming interface (API) that seamlessly operates across diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient memory and device management mechanisms, ensuring scalable and rapid operations.
Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers
Recent advancements in 3D reconstruction from single images have been driven by the evolution of generative models. Prominent among these are methods based on Score Distillation Sampling (SDS) and the adaptation of diffusion models in the 3D domain. Despite their progress, these techniques often face limitations due to slow optimization or rendering processes, leading to extensive training and optimization times. In this paper, we introduce a novel approach for single-view reconstruction that efficiently generates a 3D model from a single image via feed-forward inference. Our method utilizes two transformer-based networks, namely a point decoder and a triplane decoder, to reconstruct 3D objects using a hybrid Triplane-Gaussian intermediate representation. This hybrid representation strikes a balance, achieving a faster rendering speed compared to implicit representations while simultaneously delivering superior rendering quality than explicit representations. The point decoder is designed for generating point clouds from single images, offering an explicit representation which is then utilized by the triplane decoder to query Gaussian features for each point. This design choice addresses the challenges associated with directly regressing explicit 3D Gaussian attributes characterized by their non-structural nature. Subsequently, the 3D Gaussians are decoded by an MLP to enable rapid rendering through splatting. Both decoders are built upon a scalable, transformer-based architecture and have been efficiently trained on large-scale 3D datasets. The evaluations conducted on both synthetic datasets and real-world images demonstrate that our method not only achieves higher quality but also ensures a faster runtime in comparison to previous state-of-the-art techniques. Please see our project page at https://zouzx.github.io/TriplaneGaussian/.
HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling
Volumetric scene representations enable photorealistic view synthesis for static scenes and form the basis of several existing 6-DoF video techniques. However, the volume rendering procedures that drive these representations necessitate careful trade-offs in terms of quality, rendering speed, and memory efficiency. In particular, existing methods fail to simultaneously achieve real-time performance, small memory footprint, and high-quality rendering for challenging real-world scenes. To address these issues, we present HyperReel -- a novel 6-DoF video representation. The two core components of HyperReel are: (1) a ray-conditioned sample prediction network that enables high-fidelity, high frame rate rendering at high resolutions and (2) a compact and memory-efficient dynamic volume representation. Our 6-DoF video pipeline achieves the best performance compared to prior and contemporary approaches in terms of visual quality with small memory requirements, while also rendering at up to 18 frames-per-second at megapixel resolution without any custom CUDA code.
ASM: Adaptive Skinning Model for High-Quality 3D Face Modeling
The research fields of parametric face models and 3D face reconstruction have been extensively studied. However, a critical question remains unanswered: how to tailor the face model for specific reconstruction settings. We argue that reconstruction with multi-view uncalibrated images demands a new model with stronger capacity. Our study shifts attention from data-dependent 3D Morphable Models (3DMM) to an understudied human-designed skinning model. We propose Adaptive Skinning Model (ASM), which redefines the skinning model with more compact and fully tunable parameters. With extensive experiments, we demonstrate that ASM achieves significantly improved capacity than 3DMM, with the additional advantage of model size and easy implementation for new topology. We achieve state-of-the-art performance with ASM for multi-view reconstruction on the Florence MICC Coop benchmark. Our quantitative analysis demonstrates the importance of a high-capacity model for fully exploiting abundant information from multi-view input in reconstruction. Furthermore, our model with physical-semantic parameters can be directly utilized for real-world applications, such as in-game avatar creation. As a result, our work opens up new research directions for the parametric face models and facilitates future research on multi-view reconstruction.
3D Neural Field Generation using Triplane Diffusion
Diffusion models have emerged as the state-of-the-art for image generation, among other tasks. Here, we present an efficient diffusion-based model for 3D-aware generation of neural fields. Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields and factoring them into a set of axis-aligned triplane feature representations. Thus, our 3D training scenes are all represented by 2D feature planes, and we can directly train existing 2D diffusion models on these representations to generate 3D neural fields with high quality and diversity, outperforming alternative approaches to 3D-aware generation. Our approach requires essential modifications to existing triplane factorization pipelines to make the resulting features easy to learn for the diffusion model. We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images. Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data. In this work, we introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes. Our methodology begins with the development of a point-cloud-based network that effectively generates precise and meaningful latent tri-planes, laying the groundwork for accurate 3D mesh reconstruction. Building upon this, our Image-Point-Cloud Feature Alignment technique processes a single input image, aligning to the latent tri-planes to imbue image features with robust 3D information. This process not only enriches the image features but also facilitates the production of high-fidelity 3D meshes without the need for multi-view input, significantly reducing geometric distortions. Our approach achieves state-of-the-art high-fidelity 3D mesh reconstruction from a single image in just 6 seconds, and experiments on various datasets demonstrate its effectiveness.
AGG: Amortized Generative 3D Gaussians for Single Image to 3D
Given the growing need for automatic 3D content creation pipelines, various 3D representations have been studied to generate 3D objects from a single image. Due to its superior rendering efficiency, 3D Gaussian splatting-based models have recently excelled in both 3D reconstruction and generation. 3D Gaussian splatting approaches for image to 3D generation are often optimization-based, requiring many computationally expensive score-distillation steps. To overcome these challenges, we introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image, eliminating the need for per-instance optimization. Utilizing an intermediate hybrid representation, AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization. Moreover, we propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module. Our method is evaluated against existing optimization-based 3D Gaussian frameworks and sampling-based pipelines utilizing other 3D representations, where AGG showcases competitive generation abilities both qualitatively and quantitatively while being several orders of magnitude faster. Project page: https://ir1d.github.io/AGG/
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
Scaling up deep neural network capacity has been known as an effective approach to improving model quality for several different machine learning tasks. In many cases, increasing model capacity beyond the memory limit of a single accelerator has required developing special algorithms or infrastructure. These solutions are often architecture-specific and do not transfer to other tasks. To address the need for efficient and task-independent model parallelism, we introduce GPipe, a pipeline parallelism library that allows scaling any network that can be expressed as a sequence of layers. By pipelining different sub-sequences of layers on separate accelerators, GPipe provides the flexibility of scaling a variety of different networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-splitting pipelining algorithm, resulting in almost linear speedup when a model is partitioned across multiple accelerators. We demonstrate the advantages of GPipe by training large-scale neural networks on two different tasks with distinct network architectures: (i) Image Classification: We train a 557-million-parameter AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii) Multilingual Neural Machine Translation: We train a single 6-billion-parameter, 128-layer Transformer model on a corpus spanning over 100 languages and achieve better quality than all bilingual models.
ReconResNet: Regularised Residual Learning for MR Image Reconstruction of Undersampled Cartesian and Radial Data
MRI is an inherently slow process, which leads to long scan time for high-resolution imaging. The speed of acquisition can be increased by ignoring parts of the data (undersampling). Consequently, this leads to the degradation of image quality, such as loss of resolution or introduction of image artefacts. This work aims to reconstruct highly undersampled Cartesian or radial MR acquisitions, with better resolution and with less to no artefact compared to conventional techniques like compressed sensing. In recent times, deep learning has emerged as a very important area of research and has shown immense potential in solving inverse problems, e.g. MR image reconstruction. In this paper, a deep learning based MR image reconstruction framework is proposed, which includes a modified regularised version of ResNet as the network backbone to remove artefacts from the undersampled image, followed by data consistency steps that fusions the network output with the data already available from undersampled k-space in order to further improve reconstruction quality. The performance of this framework for various undersampling patterns has also been tested, and it has been observed that the framework is robust to deal with various sampling patterns, even when mixed together while training, and results in very high quality reconstruction, in terms of high SSIM (highest being 0.990pm0.006 for acceleration factor of 3.5), while being compared with the fully sampled reconstruction. It has been shown that the proposed framework can successfully reconstruct even for an acceleration factor of 20 for Cartesian (0.968pm0.005) and 17 for radially (0.962pm0.012) sampled data. Furthermore, it has been shown that the framework preserves brain pathology during reconstruction while being trained on healthy subjects.
Distributed bundle adjustment with block-based sparse matrix compression for super large scale datasets
We propose a distributed bundle adjustment (DBA) method using the exact Levenberg-Marquardt (LM) algorithm for super large-scale datasets. Most of the existing methods partition the global map to small ones and conduct bundle adjustment in the submaps. In order to fit the parallel framework, they use approximate solutions instead of the LM algorithm. However, those methods often give sub-optimal results. Different from them, we utilize the exact LM algorithm to conduct global bundle adjustment where the formation of the reduced camera system (RCS) is actually parallelized and executed in a distributed way. To store the large RCS, we compress it with a block-based sparse matrix compression format (BSMC), which fully exploits its block feature. The BSMC format also enables the distributed storage and updating of the global RCS. The proposed method is extensively evaluated and compared with the state-of-the-art pipelines using both synthetic and real datasets. Preliminary results demonstrate the efficient memory usage and vast scalability of the proposed method compared with the baselines. For the first time, we conducted parallel bundle adjustment using LM algorithm on a real datasets with 1.18 million images and a synthetic dataset with 10 million images (about 500 times that of the state-of-the-art LM-based BA) on a distributed computing system.
4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion
We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).
360^circ Reconstruction From a Single Image Using Space Carved Outpainting
We introduce POP3D, a novel framework that creates a full 360^circ-view 3D model from a single image. POP3D resolves two prominent issues that limit the single-view reconstruction. Firstly, POP3D offers substantial generalizability to arbitrary categories, a trait that previous methods struggle to achieve. Secondly, POP3D further improves reconstruction fidelity and naturalness, a crucial aspect that concurrent works fall short of. Our approach marries the strengths of four primary components: (1) a monocular depth and normal predictor that serves to predict crucial geometric cues, (2) a space carving method capable of demarcating the potentially unseen portions of the target object, (3) a generative model pre-trained on a large-scale image dataset that can complete unseen regions of the target, and (4) a neural implicit surface reconstruction method tailored in reconstructing objects using RGB images along with monocular geometric cues. The combination of these components enables POP3D to readily generalize across various in-the-wild images and generate state-of-the-art reconstructions, outperforming similar works by a significant margin. Project page: http://cg.postech.ac.kr/research/POP3D
MambaIRv2: Attentive State Space Restoration
The Mamba-based image restoration backbones have recently demonstrated significant potential in balancing global reception and computational efficiency. However, the inherent causal modeling limitation of Mamba, where each token depends solely on its predecessors in the scanned sequence, restricts the full utilization of pixels across the image and thus presents new challenges in image restoration. In this work, we propose MambaIRv2, which equips Mamba with the non-causal modeling ability similar to ViTs to reach the attentive state space restoration model. Specifically, the proposed attentive state-space equation allows to attend beyond the scanned sequence and facilitate image unfolding with just one single scan. Moreover, we further introduce a semantic-guided neighboring mechanism to encourage interaction between distant but similar pixels. Extensive experiments show our MambaIRv2 outperforms SRFormer by even 0.35dB PSNR for lightweight SR even with 9.3\% less parameters and suppresses HAT on classic SR by up to 0.29dB. Code is available at https://github.com/csguoh/MambaIR.
MMCBE: Multi-modality Dataset for Crop Biomass Estimation and Beyond
Crop biomass, a critical indicator of plant growth, health, and productivity, is invaluable for crop breeding programs and agronomic research. However, the accurate and scalable quantification of crop biomass remains inaccessible due to limitations in existing measurement methods. One of the obstacles impeding the advancement of current crop biomass prediction methodologies is the scarcity of publicly available datasets. Addressing this gap, we introduce a new dataset in this domain, i.e. Multi-modality dataset for crop biomass estimation (MMCBE). Comprising 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth, MMCBE represents the first multi-modality one in the field. This dataset aims to establish benchmark methods for crop biomass quantification and foster the development of vision-based approaches. We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering. With this publication, we are making our comprehensive dataset available to the broader community.
Benchmarking and Dissecting the Nvidia Hopper GPU Architecture
Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.
Hyper-Drive: Visible-Short Wave Infrared Hyperspectral Imaging Datasets for Robots in Unstructured Environments
Hyperspectral sensors have enjoyed widespread use in the realm of remote sensing; however, they must be adapted to a format in which they can be operated onboard mobile robots. In this work, we introduce a first-of-its-kind system architecture with snapshot hyperspectral cameras and point spectrometers to efficiently generate composite datacubes from a robotic base. Our system collects and registers datacubes spanning the visible to shortwave infrared (660-1700 nm) spectrum while simultaneously capturing the ambient solar spectrum reflected off a white reference tile. We collect and disseminate a large dataset of more than 500 labeled datacubes from on-road and off-road terrain compliant with the ATLAS ontology to further the integration and demonstration of hyperspectral imaging (HSI) as beneficial in terrain class separability. Our analysis of this data demonstrates that HSI is a significant opportunity to increase understanding of scene composition from a robot-centric context. All code and data are open source online: https://river-lab.github.io/hyper_drive_data
PlacidDreamer: Advancing Harmony in Text-to-3D Generation
Recently, text-to-3D generation has attracted significant attention, resulting in notable performance enhancements. Previous methods utilize end-to-end 3D generation models to initialize 3D Gaussians, multi-view diffusion models to enforce multi-view consistency, and text-to-image diffusion models to refine details with score distillation algorithms. However, these methods exhibit two limitations. Firstly, they encounter conflicts in generation directions since different models aim to produce diverse 3D assets. Secondly, the issue of over-saturation in score distillation has not been thoroughly investigated and solved. To address these limitations, we propose PlacidDreamer, a text-to-3D framework that harmonizes initialization, multi-view generation, and text-conditioned generation with a single multi-view diffusion model, while simultaneously employing a novel score distillation algorithm to achieve balanced saturation. To unify the generation direction, we introduce the Latent-Plane module, a training-friendly plug-in extension that enables multi-view diffusion models to provide fast geometry reconstruction for initialization and enhanced multi-view images to personalize the text-to-image diffusion model. To address the over-saturation problem, we propose to view score distillation as a multi-objective optimization problem and introduce the Balanced Score Distillation algorithm, which offers a Pareto Optimal solution that achieves both rich details and balanced saturation. Extensive experiments validate the outstanding capabilities of our PlacidDreamer. The code is available at https://github.com/HansenHuang0823/PlacidDreamer.
A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions
Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.
Real-time High-resolution View Synthesis of Complex Scenes with Explicit 3D Visibility Reasoning
Rendering photo-realistic novel-view images of complex scenes has been a long-standing challenge in computer graphics. In recent years, great research progress has been made on enhancing rendering quality and accelerating rendering speed in the realm of view synthesis. However, when rendering complex dynamic scenes with sparse views, the rendering quality remains limited due to occlusion problems. Besides, for rendering high-resolution images on dynamic scenes, the rendering speed is still far from real-time. In this work, we propose a generalizable view synthesis method that can render high-resolution novel-view images of complex static and dynamic scenes in real-time from sparse views. To address the occlusion problems arising from the sparsity of input views and the complexity of captured scenes, we introduce an explicit 3D visibility reasoning approach that can efficiently estimate the visibility of sampled 3D points to the input views. The proposed visibility reasoning approach is fully differentiable and can gracefully fit inside the volume rendering pipeline, allowing us to train our networks with only multi-view images as supervision while refining geometry and texture simultaneously. Besides, each module in our pipeline is carefully designed to bypass the time-consuming MLP querying process and enhance the rendering quality of high-resolution images, enabling us to render high-resolution novel-view images in real-time.Experimental results show that our method outperforms previous view synthesis methods in both rendering quality and speed, particularly when dealing with complex dynamic scenes with sparse views.
Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
Constraining Depth Map Geometry for Multi-View Stereo: A Dual-Depth Approach with Saddle-shaped Depth Cells
Learning-based multi-view stereo (MVS) methods deal with predicting accurate depth maps to achieve an accurate and complete 3D representation. Despite the excellent performance, existing methods ignore the fact that a suitable depth geometry is also critical in MVS. In this paper, we demonstrate that different depth geometries have significant performance gaps, even using the same depth prediction error. Therefore, we introduce an ideal depth geometry composed of Saddle-Shaped Cells, whose predicted depth map oscillates upward and downward around the ground-truth surface, rather than maintaining a continuous and smooth depth plane. To achieve it, we develop a coarse-to-fine framework called Dual-MVSNet (DMVSNet), which can produce an oscillating depth plane. Technically, we predict two depth values for each pixel (Dual-Depth), and propose a novel loss function and a checkerboard-shaped selecting strategy to constrain the predicted depth geometry. Compared to existing methods,DMVSNet achieves a high rank on the DTU benchmark and obtains the top performance on challenging scenes of Tanks and Temples, demonstrating its strong performance and generalization ability. Our method also points to a new research direction for considering depth geometry in MVS.
Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
Predicting realistic ground views from satellite imagery in urban scenes is a challenging task due to the significant view gaps between satellite and ground-view images. We propose a novel pipeline to tackle this challenge, by generating geospecifc views that maximally respect the weak geometry and texture from multi-view satellite images. Different from existing approaches that hallucinate images from cues such as partial semantics or geometry from overhead satellite images, our method directly predicts ground-view images at geolocation by using a comprehensive set of information from the satellite image, resulting in ground-level images with a resolution boost at a factor of ten or more. We leverage a novel building refinement method to reduce geometric distortions in satellite data at ground level, which ensures the creation of accurate conditions for view synthesis using diffusion networks. Moreover, we proposed a novel geospecific prior, which prompts distribution learning of diffusion models to respect image samples that are closer to the geolocation of the predicted images. We demonstrate our pipeline is the first to generate close-to-real and geospecific ground views merely based on satellite images.
Mosaic-SDF for 3D Generative Models
Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.
Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration
Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.
View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields
Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields
StreamDiffusion: A Pipeline-level Solution for Real-time Interactive Generation
We introduce StreamDiffusion, a real-time diffusion pipeline designed for interactive image generation. Existing diffusion models are adept at creating images from text or image prompts, yet they often fall short in real-time interaction. This limitation becomes particularly evident in scenarios involving continuous input, such as Metaverse, live video streaming, and broadcasting, where high throughput is imperative. To address this, we present a novel approach that transforms the original sequential denoising into the batching denoising process. Stream Batch eliminates the conventional wait-and-interact approach and enables fluid and high throughput streams. To handle the frequency disparity between data input and model throughput, we design a novel input-output queue for parallelizing the streaming process. Moreover, the existing diffusion pipeline uses classifier-free guidance(CFG), which requires additional U-Net computation. To mitigate the redundant computations, we propose a novel residual classifier-free guidance (RCFG) algorithm that reduces the number of negative conditional denoising steps to only one or even zero. Besides, we introduce a stochastic similarity filter(SSF) to optimize power consumption. Our Stream Batch achieves around 1.5x speedup compared to the sequential denoising method at different denoising levels. The proposed RCFG leads to speeds up to 2.05x higher than the conventional CFG. Combining the proposed strategies and existing mature acceleration tools makes the image-to-image generation achieve up-to 91.07fps on one RTX4090, improving the throughputs of AutoPipline developed by Diffusers over 59.56x. Furthermore, our proposed StreamDiffusion also significantly reduces the energy consumption by 2.39x on one RTX3060 and 1.99x on one RTX4090, respectively.
MicroDreamer: Zero-shot 3D Generation in sim20 Seconds by Score-based Iterative Reconstruction
Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample. In this paper, we introduce score-based iterative reconstruction (SIR), an efficient and general algorithm for 3D generation with a multi-view score-based diffusion model. Given the images produced by the diffusion model, SIR reduces NFEs by repeatedly optimizing 3D parameters, unlike the single optimization in SDS, mimicking the 3D reconstruction process. With other improvements including optimization in the pixel space, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, retaining a comparable performance, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field and takes about 20 seconds to generate meshes from 3D Gaussian splitting on a single A100 GPU, halving the time of the fastest zero-shot baseline, DreamGaussian. Our code is available at https://github.com/ML-GSAI/MicroDreamer.
Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields
3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussian-based representation and introduces an approximated volumetric rendering, achieving very fast rendering speed and promising image quality. Furthermore, subsequent studies have successfully extended 3DGS to dynamic 3D scenes, demonstrating its wide range of applications. However, a significant drawback arises as 3DGS and its following methods entail a substantial number of Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric and temporal attributes by residual vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25x reduced storage and enhanced rendering speed compared to 3DGS for static scenes, while maintaining the quality of the scene representation. For dynamic scenes, our approach achieves more than 12x storage efficiency and retains a high-quality reconstruction compared to the existing state-of-the-art methods. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
Bring Metric Functions into Diffusion Models
We introduce a Cascaded Diffusion Model (Cas-DM) that improves a Denoising Diffusion Probabilistic Model (DDPM) by effectively incorporating additional metric functions in training. Metric functions such as the LPIPS loss have been proven highly effective in consistency models derived from the score matching. However, for the diffusion counterparts, the methodology and efficacy of adding extra metric functions remain unclear. One major challenge is the mismatch between the noise predicted by a DDPM at each step and the desired clean image that the metric function works well on. To address this problem, we propose Cas-DM, a network architecture that cascades two network modules to effectively apply metric functions to the diffusion model training. The first module, similar to a standard DDPM, learns to predict the added noise and is unaffected by the metric function. The second cascaded module learns to predict the clean image, thereby facilitating the metric function computation. Experiment results show that the proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS) on various established benchmarks.
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
HiCo: Hierarchical Controllable Diffusion Model for Layout-to-image Generation
The task of layout-to-image generation involves synthesizing images based on the captions of objects and their spatial positions. Existing methods still struggle in complex layout generation, where common bad cases include object missing, inconsistent lighting, conflicting view angles, etc. To effectively address these issues, we propose a Hierarchical Controllable (HiCo) diffusion model for layout-to-image generation, featuring object seperable conditioning branch structure. Our key insight is to achieve spatial disentanglement through hierarchical modeling of layouts. We use a multi branch structure to represent hierarchy and aggregate them in fusion module. To evaluate the performance of multi-objective controllable layout generation in natural scenes, we introduce the HiCo-7K benchmark, derived from the GRIT-20M dataset and manually cleaned. https://github.com/360CVGroup/HiCo_T2I.
Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation
The scaling laws and extraordinary performance of large foundation models motivate the development and utilization of such models in biomedicine. However, despite early promising results on some biomedical benchmarks, there are still major challenges that need to be addressed before these models can be used in real-world clinics. Frontier general-domain models such as GPT-4V still have significant performance gaps in multimodal biomedical applications. More importantly, less-acknowledged pragmatic issues, including accessibility, model cost, and tedious manual evaluation make it hard for clinicians to use state-of-the-art large models directly on private patient data. Here, we explore training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology. To maximize data efficiency, we adopt a modular approach by incorporating state-of-the-art pre-trained models for image and text modalities, and focusing on training a lightweight adapter to ground each modality to the text embedding space, as exemplified by LLaVA-Med. For training, we assemble a large dataset of over 697 thousand radiology image-text pairs. For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation. For best practice, we conduct a systematic ablation study on various choices in data engineering and multimodal training. The resulting LlaVA-Rad (7B) model attains state-of-the-art results on standard radiology tasks such as report generation and cross-modal retrieval, even outperforming much larger models such as GPT-4V and Med-PaLM M (84B). The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
Dataset Distillation via Curriculum Data Synthesis in Large Data Era
Dataset distillation or condensation aims to generate a smaller but representative subset from a large dataset, which allows a model to be trained more efficiently, meanwhile evaluating on the original testing data distribution to achieve decent performance. Previous decoupled methods like SRe^2L simply use a unified gradient update scheme for synthesizing data from Gaussian noise, while, we notice that the initial several update iterations will determine the final outline of synthesis, thus an improper gradient update strategy may dramatically affect the final generation quality. To address this, we introduce a simple yet effective global-to-local gradient refinement approach enabled by curriculum data augmentation (CDA) during data synthesis. The proposed framework achieves the current published highest accuracy on both large-scale ImageNet-1K and 21K with 63.2% under IPC (Images Per Class) 50 and 36.1% under IPC 20, using a regular input resolution of 224times224 with faster convergence speed and less synthetic time. The proposed model outperforms the current state-of-the-art methods like SRe^2L, TESLA, and MTT by more than 4% Top-1 accuracy on ImageNet-1K/21K and for the first time, reduces the gap to its full-data training counterparts to less than absolute 15%. Moreover, this work represents the inaugural success in dataset distillation on the larger-scale ImageNet-21K dataset under the standard 224times224 resolution. Our code and distilled ImageNet-21K dataset of 20 IPC, 2K recovery budget are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA.
ProNeRF: Learning Efficient Projection-Aware Ray Sampling for Fine-Grained Implicit Neural Radiance Fields
Recent advances in neural rendering have shown that, albeit slow, implicit compact models can learn a scene's geometries and view-dependent appearances from multiple views. To maintain such a small memory footprint but achieve faster inference times, recent works have adopted `sampler' networks that adaptively sample a small subset of points along each ray in the implicit neural radiance fields. Although these methods achieve up to a 10times reduction in rendering time, they still suffer from considerable quality degradation compared to the vanilla NeRF. In contrast, we propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes). ProNeRF is equipped with a novel projection-aware sampling (PAS) network together with a new training strategy for ray exploration and exploitation, allowing for efficient fine-grained particle sampling. Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel. Our exploration and exploitation training strategy allows ProNeRF to learn the full scenes' color and density distributions while also learning efficient ray sampling focused on the highest-density regions. We provide extensive experimental results that support the effectiveness of our method on the widely adopted forward-facing and 360 datasets, LLFF and Blender, respectively.
Visualizing Large-scale and High-dimensional Data
We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e.g., millions of data points and hundreds of dimensions). We propose the LargeVis, a technique that first constructs an accurately approximated K-nearest neighbor graph from the data and then layouts the graph in the low-dimensional space. Comparing to t-SNE, LargeVis significantly reduces the computational cost of the graph construction step and employs a principled probabilistic model for the visualization step, the objective of which can be effectively optimized through asynchronous stochastic gradient descent with a linear time complexity. The whole procedure thus easily scales to millions of high-dimensional data points. Experimental results on real-world data sets demonstrate that the LargeVis outperforms the state-of-the-art methods in both efficiency and effectiveness. The hyper-parameters of LargeVis are also much more stable over different data sets.
3DGen: Triplane Latent Diffusion for Textured Mesh Generation
Latent diffusion models for image generation have crossed a quality threshold which enabled them to achieve mass adoption. Recently, a series of works have made advancements towards replicating this success in the 3D domain, introducing techniques such as point cloud VAE, triplane representation, neural implicit surfaces and differentiable rendering based training. We take another step along this direction, combining these developments in a two-step pipeline consisting of 1) a triplane VAE which can learn latent representations of textured meshes and 2) a conditional diffusion model which generates the triplane features. For the first time this architecture allows conditional and unconditional generation of high quality textured or untextured 3D meshes across multiple diverse categories in a few seconds on a single GPU. It outperforms previous work substantially on image-conditioned and unconditional generation on mesh quality as well as texture generation. Furthermore, we demonstrate the scalability of our model to large datasets for increased quality and diversity. We will release our code and trained models.
Ray Conditioning: Trading Photo-consistency for Photo-realism in Multi-view Image Generation
Multi-view image generation attracts particular attention these days due to its promising 3D-related applications, e.g., image viewpoint editing. Most existing methods follow a paradigm where a 3D representation is first synthesized, and then rendered into 2D images to ensure photo-consistency across viewpoints. However, such explicit bias for photo-consistency sacrifices photo-realism, causing geometry artifacts and loss of fine-scale details when these methods are applied to edit real images. To address this issue, we propose ray conditioning, a geometry-free alternative that relaxes the photo-consistency constraint. Our method generates multi-view images by conditioning a 2D GAN on a light field prior. With explicit viewpoint control, state-of-the-art photo-realism and identity consistency, our method is particularly suited for the viewpoint editing task.
Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior
Recent works on text-to-3d generation show that using only 2D diffusion supervision for 3D generation tends to produce results with inconsistent appearances (e.g., faces on the back view) and inaccurate shapes (e.g., animals with extra legs). Existing methods mainly address this issue by retraining diffusion models with images rendered from 3D data to ensure multi-view consistency while struggling to balance 2D generation quality with 3D consistency. In this paper, we present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model. Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach. Moreover, to ensure accurate appearances of different views, we further modulate the output of the 2D diffusion model to the correct patterns of the template views without altering the generated object's style. These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model. Extensive experiments show our method can largely improve the multi-view consistency while retaining fidelity and diversity. Our project page is available at: https://stellarcheng.github.io/Sculpt3D/.