new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Generative Image Layer Decomposition with Visual Effects

Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose LayerDecomp, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.

Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing

Large-scale text-to-image generative models have been a ground-breaking development in generative AI, with diffusion models showing their astounding ability to synthesize convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are susceptible to unintended modifications of regions outside the targeted area, such as on the background or on distractor objects which have some semantic or visual relationship with the targeted object. According to our experimental findings, inaccurate cross-attention maps are at the root of this problem. Based on this observation, we propose Dynamic Prompt Learning (DPL) to force cross-attention maps to focus on correct noun words in the text prompt. By updating the dynamic tokens for nouns in the textual input with the proposed leakage repairment losses, we achieve fine-grained image editing over particular objects while preventing undesired changes to other image regions. Our method DPL, based on the publicly available Stable Diffusion, is extensively evaluated on a wide range of images, and consistently obtains superior results both quantitatively (CLIP score, Structure-Dist) and qualitatively (on user-evaluation). We show improved prompt editing results for Word-Swap, Prompt Refinement, and Attention Re-weighting, especially for complex multi-object scenes.

Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing

Despite recent advances in large-scale text-to-image generative models, manipulating real images with these models remains a challenging problem. The main limitations of existing editing methods are that they either fail to perform with consistent quality on a wide range of image edits or require time-consuming hyperparameter tuning or fine-tuning of the diffusion model to preserve the image-specific appearance of the input image. We propose a novel approach that is built upon a modified diffusion sampling process via the guidance mechanism. In this work, we explore the self-guidance technique to preserve the overall structure of the input image and its local regions appearance that should not be edited. In particular, we explicitly introduce layout-preserving energy functions that are aimed to save local and global structures of the source image. Additionally, we propose a noise rescaling mechanism that allows to preserve noise distribution by balancing the norms of classifier-free guidance and our proposed guiders during generation. Such a guiding approach does not require fine-tuning the diffusion model and exact inversion process. As a result, the proposed method provides a fast and high-quality editing mechanism. In our experiments, we show through human evaluation and quantitative analysis that the proposed method allows to produce desired editing which is more preferable by humans and also achieves a better trade-off between editing quality and preservation of the original image. Our code is available at https://github.com/FusionBrainLab/Guide-and-Rescale.

PIE: Simulating Disease Progression via Progressive Image Editing

Disease progression simulation is a crucial area of research that has significant implications for clinical diagnosis, prognosis, and treatment. One major challenge in this field is the lack of continuous medical imaging monitoring of individual patients over time. To address this issue, we develop a novel framework termed Progressive Image Editing (PIE) that enables controlled manipulation of disease-related image features, facilitating precise and realistic disease progression simulation. Specifically, we leverage recent advancements in text-to-image generative models to simulate disease progression accurately and personalize it for each patient. We theoretically analyze the iterative refining process in our framework as a gradient descent with an exponentially decayed learning rate. To validate our framework, we conduct experiments in three medical imaging domains. Our results demonstrate the superiority of PIE over existing methods such as Stable Diffusion Walk and Style-Based Manifold Extrapolation based on CLIP score (Realism) and Disease Classification Confidence (Alignment). Our user study collected feedback from 35 veteran physicians to assess the generated progressions. Remarkably, 76.2% of the feedback agrees with the fidelity of the generated progressions. To our best knowledge, PIE is the first of its kind to generate disease progression images meeting real-world standards. It is a promising tool for medical research and clinical practice, potentially allowing healthcare providers to model disease trajectories over time, predict future treatment responses, and improve patient outcomes.

Multi-Reward as Condition for Instruction-based Image Editing

High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in 0sim 5 and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.

TextCraftor: Your Text Encoder Can be Image Quality Controller

Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation, enabling significant advancements in areas like image editing and video synthesis. Despite their formidable capabilities, these models are not without their limitations. It is still challenging to synthesize an image that aligns well with the input text, and multiple runs with carefully crafted prompts are required to achieve satisfactory results. To mitigate these limitations, numerous studies have endeavored to fine-tune the pre-trained diffusion models, i.e., UNet, utilizing various technologies. Yet, amidst these efforts, a pivotal question of text-to-image diffusion model training has remained largely unexplored: Is it possible and feasible to fine-tune the text encoder to improve the performance of text-to-image diffusion models? Our findings reveal that, instead of replacing the CLIP text encoder used in Stable Diffusion with other large language models, we can enhance it through our proposed fine-tuning approach, TextCraftor, leading to substantial improvements in quantitative benchmarks and human assessments. Interestingly, our technique also empowers controllable image generation through the interpolation of different text encoders fine-tuned with various rewards. We also demonstrate that TextCraftor is orthogonal to UNet finetuning, and can be combined to further improve generative quality.

Targeted Image Data Augmentation Increases Basic Skills Captioning Robustness

Artificial neural networks typically struggle in generalizing to out-of-context examples. One reason for this limitation is caused by having datasets that incorporate only partial information regarding the potential correlational structure of the world. In this work, we propose TIDA (Targeted Image-editing Data Augmentation), a targeted data augmentation method focused on improving models' human-like abilities (e.g., gender recognition) by filling the correlational structure gap using a text-to-image generative model. More specifically, TIDA identifies specific skills in captions describing images (e.g., the presence of a specific gender in the image), changes the caption (e.g., "woman" to "man"), and then uses a text-to-image model to edit the image in order to match the novel caption (e.g., uniquely changing a woman to a man while maintaining the context identical). Based on the Flickr30K benchmark, we show that, compared with the original data set, a TIDA-enhanced dataset related to gender, color, and counting abilities induces better performance in several image captioning metrics. Furthermore, on top of relying on the classical BLEU metric, we conduct a fine-grained analysis of the improvements of our models against the baseline in different ways. We compared text-to-image generative models and found different behaviors of the image captioning models in terms of encoding visual encoding and textual decoding.

Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances

Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.

SGEdit: Bridging LLM with Text2Image Generative Model for Scene Graph-based Image Editing

Scene graphs offer a structured, hierarchical representation of images, with nodes and edges symbolizing objects and the relationships among them. It can serve as a natural interface for image editing, dramatically improving precision and flexibility. Leveraging this benefit, we introduce a new framework that integrates large language model (LLM) with Text2Image generative model for scene graph-based image editing. This integration enables precise modifications at the object level and creative recomposition of scenes without compromising overall image integrity. Our approach involves two primary stages: 1) Utilizing a LLM-driven scene parser, we construct an image's scene graph, capturing key objects and their interrelationships, as well as parsing fine-grained attributes such as object masks and descriptions. These annotations facilitate concept learning with a fine-tuned diffusion model, representing each object with an optimized token and detailed description prompt. 2) During the image editing phase, a LLM editing controller guides the edits towards specific areas. These edits are then implemented by an attention-modulated diffusion editor, utilizing the fine-tuned model to perform object additions, deletions, replacements, and adjustments. Through extensive experiments, we demonstrate that our framework significantly outperforms existing image editing methods in terms of editing precision and scene aesthetics.

FastEdit: Fast Text-Guided Single-Image Editing via Semantic-Aware Diffusion Fine-Tuning

Conventional Text-guided single-image editing approaches require a two-step process, including fine-tuning the target text embedding for over 1K iterations and the generative model for another 1.5K iterations. Although it ensures that the resulting image closely aligns with both the input image and the target text, this process often requires 7 minutes per image, posing a challenge for practical application due to its time-intensive nature. To address this bottleneck, we introduce FastEdit, a fast text-guided single-image editing method with semantic-aware diffusion fine-tuning, dramatically accelerating the editing process to only 17 seconds. FastEdit streamlines the generative model's fine-tuning phase, reducing it from 1.5K to a mere 50 iterations. For diffusion fine-tuning, we adopt certain time step values based on the semantic discrepancy between the input image and target text. Furthermore, FastEdit circumvents the initial fine-tuning step by utilizing an image-to-image model that conditions on the feature space, rather than the text embedding space. It can effectively align the target text prompt and input image within the same feature space and save substantial processing time. Additionally, we apply the parameter-efficient fine-tuning technique LoRA to U-net. With LoRA, FastEdit minimizes the model's trainable parameters to only 0.37\% of the original size. At the same time, we can achieve comparable editing outcomes with significantly reduced computational overhead. We conduct extensive experiments to validate the editing performance of our approach and show promising editing capabilities, including content addition, style transfer, background replacement, and posture manipulation, etc.

Prompt-to-Prompt Image Editing with Cross Attention Control

Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.

RotationDrag: Point-based Image Editing with Rotated Diffusion Features

A precise and user-friendly manipulation of image content while preserving image fidelity has always been crucial to the field of image editing. Thanks to the power of generative models, recent point-based image editing methods allow users to interactively change the image content with high generalizability by clicking several control points. But the above mentioned editing process is usually based on the assumption that features stay constant in the motion supervision step from initial to target points. In this work, we conduct a comprehensive investigation in the feature space of diffusion models, and find that features change acutely under in-plane rotation. Based on this, we propose a novel approach named RotationDrag, which significantly improves point-based image editing performance when users intend to in-plane rotate the image content. Our method tracks handle points more precisely by utilizing the feature map of the rotated images, thus ensuring precise optimization and high image fidelity. Furthermore, we build a in-plane rotation focused benchmark called RotateBench, the first benchmark to evaluate the performance of point-based image editing method under in-plane rotation scenario on both real images and generated images. A thorough user study demonstrates the superior capability in accomplishing in-plane rotation that users intend to achieve, comparing the DragDiffusion baseline and other existing diffusion-based methods. See the project page https://github.com/Tony-Lowe/RotationDrag for code and experiment results.

ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling

We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability.

InstaDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos

Accuracy and speed are critical in image editing tasks. Pan et al. introduced a drag-based image editing framework that achieves pixel-level control using Generative Adversarial Networks (GANs). A flurry of subsequent studies enhanced this framework's generality by leveraging large-scale diffusion models. However, these methods often suffer from inordinately long processing times (exceeding 1 minute per edit) and low success rates. Addressing these issues head on, we present InstaDrag, a rapid approach enabling high quality drag-based image editing in ~1 second. Unlike most previous methods, we redefine drag-based editing as a conditional generation task, eliminating the need for time-consuming latent optimization or gradient-based guidance during inference. In addition, the design of our pipeline allows us to train our model on large-scale paired video frames, which contain rich motion information such as object translations, changing poses and orientations, zooming in and out, etc. By learning from videos, our approach can significantly outperform previous methods in terms of accuracy and consistency. Despite being trained solely on videos, our model generalizes well to perform local shape deformations not presented in the training data (e.g., lengthening of hair, twisting rainbows, etc.). Extensive qualitative and quantitative evaluations on benchmark datasets corroborate the superiority of our approach. The code and model will be released at https://github.com/magic-research/InstaDrag.

Consolidating Attention Features for Multi-view Image Editing

Large-scale text-to-image models enable a wide range of image editing techniques, using text prompts or even spatial controls. However, applying these editing methods to multi-view images depicting a single scene leads to 3D-inconsistent results. In this work, we focus on spatial control-based geometric manipulations and introduce a method to consolidate the editing process across various views. We build on two insights: (1) maintaining consistent features throughout the generative process helps attain consistency in multi-view editing, and (2) the queries in self-attention layers significantly influence the image structure. Hence, we propose to improve the geometric consistency of the edited images by enforcing the consistency of the queries. To do so, we introduce QNeRF, a neural radiance field trained on the internal query features of the edited images. Once trained, QNeRF can render 3D-consistent queries, which are then softly injected back into the self-attention layers during generation, greatly improving multi-view consistency. We refine the process through a progressive, iterative method that better consolidates queries across the diffusion timesteps. We compare our method to a range of existing techniques and demonstrate that it can achieve better multi-view consistency and higher fidelity to the input scene. These advantages allow us to train NeRFs with fewer visual artifacts, that are better aligned with the target geometry.

EditVal: Benchmarking Diffusion Based Text-Guided Image Editing Methods

A plethora of text-guided image editing methods have recently been developed by leveraging the impressive capabilities of large-scale diffusion-based generative models such as Imagen and Stable Diffusion. A standardized evaluation protocol, however, does not exist to compare methods across different types of fine-grained edits. To address this gap, we introduce EditVal, a standardized benchmark for quantitatively evaluating text-guided image editing methods. EditVal consists of a curated dataset of images, a set of editable attributes for each image drawn from 13 possible edit types, and an automated evaluation pipeline that uses pre-trained vision-language models to assess the fidelity of generated images for each edit type. We use EditVal to benchmark 8 cutting-edge diffusion-based editing methods including SINE, Imagic and Instruct-Pix2Pix. We complement this with a large-scale human study where we show that EditVall's automated evaluation pipeline is strongly correlated with human-preferences for the edit types we considered. From both the human study and automated evaluation, we find that: (i) Instruct-Pix2Pix, Null-Text and SINE are the top-performing methods averaged across different edit types, however {\it only} Instruct-Pix2Pix and Null-Text are able to preserve original image properties; (ii) Most of the editing methods fail at edits involving spatial operations (e.g., changing the position of an object). (iii) There is no `winner' method which ranks the best individually across a range of different edit types. We hope that our benchmark can pave the way to developing more reliable text-guided image editing tools in the future. We will publicly release EditVal, and all associated code and human-study templates to support these research directions in https://deep-ml-research.github.io/editval/.

AdaptiveDrag: Semantic-Driven Dragging on Diffusion-Based Image Editing

Recently, several point-based image editing methods (e.g., DragDiffusion, FreeDrag, DragNoise) have emerged, yielding precise and high-quality results based on user instructions. However, these methods often make insufficient use of semantic information, leading to less desirable results. In this paper, we proposed a novel mask-free point-based image editing method, AdaptiveDrag, which provides a more flexible editing approach and generates images that better align with user intent. Specifically, we design an auto mask generation module using super-pixel division for user-friendliness. Next, we leverage a pre-trained diffusion model to optimize the latent, enabling the dragging of features from handle points to target points. To ensure a comprehensive connection between the input image and the drag process, we have developed a semantic-driven optimization. We design adaptive steps that are supervised by the positions of the points and the semantic regions derived from super-pixel segmentation. This refined optimization process also leads to more realistic and accurate drag results. Furthermore, to address the limitations in the generative consistency of the diffusion model, we introduce an innovative corresponding loss during the sampling process. Building on these effective designs, our method delivers superior generation results using only the single input image and the handle-target point pairs. Extensive experiments have been conducted and demonstrate that the proposed method outperforms others in handling various drag instructions (e.g., resize, movement, extension) across different domains (e.g., animals, human face, land space, clothing).

Augmentation-Driven Metric for Balancing Preservation and Modification in Text-Guided Image Editing

The development of vision-language and generative models has significantly advanced text-guided image editing, which seeks preservation of core elements in the source image while implementing modifications based on the target text. However, in the absence of evaluation metrics specifically tailored for text-guided image editing, existing metrics are limited in balancing the consideration of preservation and modification. Especially, our analysis reveals that CLIPScore, the most commonly used metric, tends to favor modification and ignore core attributes to be preserved, resulting in inaccurate evaluations. To address this problem, we propose AugCLIP, which balances preservation and modification by estimating the representation of an ideal edited image that aligns with the target text with minimum alteration on the source image. We augment detailed textual descriptions on the source image and the target text using a multi-modal large language model, to model a hyperplane that separates CLIP space into source or target. The representation of the ideal edited image is an orthogonal projection of the source image into the hyperplane, which encapsulates the relative importance of each attribute considering the interdependent relationships. Our extensive experiments on five benchmark datasets, encompassing a diverse range of editing scenarios, demonstrate that AugCLIP aligns remarkably well with human evaluation standards compared to existing metrics. The code for evaluation will be open-sourced to contribute to the community.

DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing

Text-guided image editing faces significant challenges to training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models are put forward to avoid data collection, but they are also limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.

Cityscape-Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion-Based Image Editing

Recent advancements in generative AI, particularly diffusion-based image editing, have enabled the transformation of images into highly realistic scenes using only text instructions. This technology offers significant potential for generating diverse synthetic datasets to evaluate model robustness. In this paper, we introduce Cityscape-Adverse, a benchmark that employs diffusion-based image editing to simulate eight adverse conditions, including variations in weather, lighting, and seasons, while preserving the original semantic labels. We evaluate the reliability of diffusion-based models in generating realistic scene modifications and assess the performance of state-of-the-art CNN and Transformer-based semantic segmentation models under these challenging conditions. Additionally, we analyze which modifications have the greatest impact on model performance and explore how training on synthetic datasets can improve robustness in real-world adverse scenarios. Our results demonstrate that all tested models, particularly CNN-based architectures, experienced significant performance degradation under extreme conditions, while Transformer-based models exhibited greater resilience. We verify that models trained on Cityscape-Adverse show significantly enhanced resilience when applied to unseen domains. Code and datasets will be released at https://github.com/naufalso/cityscape-adverse.

GenAI Arena: An Open Evaluation Platform for Generative Models

Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three arenas for text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 27 open-source generative models. GenAI-Arena has been operating for four months, amassing over 6000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, GPT-4o to mimic human voting. We compute the correlation between model voting with human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves a Pearson correlation of 0.22 in the quality subscore, and behaves like random guessing in others.

E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation

One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality image editing on mobile devices with remarkably reduced training and storage costs for each concept.

Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking

Recently, stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing, with a range of photorealistic and unprecedented images being successfully generated. As a result, widespread interest has been ignited to develop and use various SD-based tools for visual content creation. However, the exposure of AI-created content on public platforms could raise both legal and ethical risks. In this regard, the traditional methods of adding watermarks to the already generated images (i.e. post-processing) may face a dilemma (e.g., being erased or modified) in terms of copyright protection and content monitoring, since the powerful image inversion and text-to-image editing techniques have been widely explored in SD-based methods. In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely Safe-SD) to adaptively implant the graphical watermarks (e.g., QR code) into the imperceptible structure-related pixels during the generative diffusion process for supporting text-driven invisible watermarking and detection. Different from the previous high-cost injection-then-detection training framework, we design a simple and unified architecture, which makes it possible to simultaneously train watermark injection and detection in a single network, greatly improving the efficiency and convenience of use. Moreover, to further support text-driven generative watermarking and deeply explore its robustness and high-traceability, we elaborately design lambda sampling and encryption algorithm to fine-tune a latent diffuser wrapped by a VAE for balancing high-fidelity image synthesis and high-traceable watermark detection. We present our quantitative and qualitative results on two representative datasets LSUN, COCO and FFHQ, demonstrating state-of-the-art performance of Safe-SD and showing it significantly outperforms the previous approaches.

Localizing and Editing Knowledge in Text-to-Image Generative Models

Text-to-Image Diffusion Models such as Stable-Diffusion and Imagen have achieved unprecedented quality of photorealism with state-of-the-art FID scores on MS-COCO and other generation benchmarks. Given a caption, image generation requires fine-grained knowledge about attributes such as object structure, style, and viewpoint amongst others. Where does this information reside in text-to-image generative models? In our paper, we tackle this question and understand how knowledge corresponding to distinct visual attributes is stored in large-scale text-to-image diffusion models. We adapt Causal Mediation Analysis for text-to-image models and trace knowledge about distinct visual attributes to various (causal) components in the (i) UNet and (ii) text-encoder of the diffusion model. In particular, we show that unlike generative large-language models, knowledge about different attributes is not localized in isolated components, but is instead distributed amongst a set of components in the conditional UNet. These sets of components are often distinct for different visual attributes. Remarkably, we find that the CLIP text-encoder in public text-to-image models such as Stable-Diffusion contains only one causal state across different visual attributes, and this is the first self-attention layer corresponding to the last subject token of the attribute in the caption. This is in stark contrast to the causal states in other language models which are often the mid-MLP layers. Based on this observation of only one causal state in the text-encoder, we introduce a fast, data-free model editing method Diff-QuickFix which can effectively edit concepts in text-to-image models. DiffQuickFix can edit (ablate) concepts in under a second with a closed-form update, providing a significant 1000x speedup and comparable editing performance to existing fine-tuning based editing methods.

MvDrag3D: Drag-based Creative 3D Editing via Multi-view Generation-Reconstruction Priors

Drag-based editing has become popular in 2D content creation, driven by the capabilities of image generative models. However, extending this technique to 3D remains a challenge. Existing 3D drag-based editing methods, whether employing explicit spatial transformations or relying on implicit latent optimization within limited-capacity 3D generative models, fall short in handling significant topology changes or generating new textures across diverse object categories. To overcome these limitations, we introduce MVDrag3D, a novel framework for more flexible and creative drag-based 3D editing that leverages multi-view generation and reconstruction priors. At the core of our approach is the usage of a multi-view diffusion model as a strong generative prior to perform consistent drag editing over multiple rendered views, which is followed by a reconstruction model that reconstructs 3D Gaussians of the edited object. While the initial 3D Gaussians may suffer from misalignment between different views, we address this via view-specific deformation networks that adjust the position of Gaussians to be well aligned. In addition, we propose a multi-view score function that distills generative priors from multiple views to further enhance the view consistency and visual quality. Extensive experiments demonstrate that MVDrag3D provides a precise, generative, and flexible solution for 3D drag-based editing, supporting more versatile editing effects across various object categories and 3D representations.

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

Recent virtual try-on approaches have advanced by fine-tuning the pre-trained text-to-image diffusion models to leverage their powerful generative ability. However, the use of text prompts in virtual try-on is still underexplored. This paper tackles a text-editable virtual try-on task that changes the clothing item based on the provided clothing image while editing the wearing style (e.g., tucking style, fit) according to the text descriptions. In the text-editable virtual try-on, three key aspects exist: (i) designing rich text descriptions for paired person-clothing data to train the model, (ii) addressing the conflicts where textual information of the existing person's clothing interferes the generation of the new clothing, and (iii) adaptively adjust the inpainting mask aligned with the text descriptions, ensuring proper editing areas while preserving the original person's appearance irrelevant to the new clothing. To address these aspects, we propose PromptDresser, a text-editable virtual try-on model that leverages large multimodal model (LMM) assistance to enable high-quality and versatile manipulation based on generative text prompts. Our approach utilizes LMMs via in-context learning to generate detailed text descriptions for person and clothing images independently, including pose details and editing attributes using minimal human cost. Moreover, to ensure the editing areas, we adjust the inpainting mask depending on the text prompts adaptively. We found that our approach, utilizing detailed text prompts, not only enhances text editability but also effectively conveys clothing details that are difficult to capture through images alone, thereby enhancing image quality. Our code is available at https://github.com/rlawjdghek/PromptDresser.

Boundary Guided Learning-Free Semantic Control with Diffusion Models

Applying pre-trained generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning DDMs or learning auxiliary editing networks in the existing literature. In this work, we present our BoundaryDiffusion method for efficient, effective and light-weight semantic control with frozen pre-trained DDMs, without learning any extra networks. As one of the first learning-free diffusion editing works, we start by seeking a comprehensive understanding of the intermediate high-dimensional latent spaces by theoretically and empirically analyzing their probabilistic and geometric behaviors in the Markov chain. We then propose to further explore the critical step for editing in the denoising trajectory that characterizes the convergence of a pre-trained DDM and introduce an automatic search method. Last but not least, in contrast to the conventional understanding that DDMs have relatively poor semantic behaviors, we prove that the critical latent space we found already exhibits semantic subspace boundaries at the generic level in unconditional DDMs, which allows us to do controllable manipulation by guiding the denoising trajectory towards the targeted boundary via a single-step operation. We conduct extensive experiments on multiple DPMs architectures (DDPM, iDDPM) and datasets (CelebA, CelebA-HQ, LSUN-church, LSUN-bedroom, AFHQ-dog) with different resolutions (64, 256), achieving superior or state-of-the-art performance in various task scenarios (image semantic editing, text-based editing, unconditional semantic control) to demonstrate the effectiveness.

Multimodal Image Synthesis and Editing: The Generative AI Era

As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research. A project associated with this survey is available at https://github.com/fnzhan/Generative-AI.

Taming Rectified Flow for Inversion and Editing

Rectified-flow-based diffusion transformers, such as FLUX and OpenSora, have demonstrated exceptional performance in the field of image and video generation. Despite their robust generative capabilities, these models often suffer from inaccurate inversion, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that enhances inversion precision by reducing errors in the process of solving rectified flow ODEs. Specifically, we derive the exact formulation of the rectified flow ODE and perform a high-order Taylor expansion to estimate its nonlinear components, significantly decreasing the approximation error at each timestep. Building upon RF-Solver, we further design RF-Edit, which comprises specialized sub-modules for image and video editing. By sharing self-attention layer features during the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments on text-to-image generation, image & video inversion, and image & video editing demonstrate the robust performance and adaptability of our methods. Code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.

Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising

Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.

A Survey on Video Diffusion Models

The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision, with the diffusion model playing a crucial role in this achievement. Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers, demonstrating exceptional performance not only in image generation and editing, but also in the realm of video-related research. However, existing surveys mainly focus on diffusion models in the context of image generation, with few up-to-date reviews on their application in the video domain. To address this gap, this paper presents a comprehensive review of video diffusion models in the AIGC era. Specifically, we begin with a concise introduction to the fundamentals and evolution of diffusion models. Subsequently, we present an overview of research on diffusion models in the video domain, categorizing the work into three key areas: video generation, video editing, and other video understanding tasks. We conduct a thorough review of the literature in these three key areas, including further categorization and practical contributions in the field. Finally, we discuss the challenges faced by research in this domain and outline potential future developmental trends. A comprehensive list of video diffusion models studied in this survey is available at https://github.com/ChenHsing/Awesome-Video-Diffusion-Models.

SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing

Image diffusion models have been utilized in various tasks, such as text-to-image generation and controllable image synthesis. Recent research has introduced tuning methods that make subtle adjustments to the original models, yielding promising results in specific adaptations of foundational generative diffusion models. Rather than modifying the main backbone of the diffusion model, we delve into the role of skip connection in U-Net and reveal that hierarchical features aggregating long-distance information across encoder and decoder make a significant impact on the content and quality of image generation. Based on the observation, we propose an efficient generative tuning framework, dubbed SCEdit, which integrates and edits Skip Connection using a lightweight tuning module named SC-Tuner. Furthermore, the proposed framework allows for straightforward extension to controllable image synthesis by injecting different conditions with Controllable SC-Tuner, simplifying and unifying the network design for multi-condition inputs. Our SCEdit substantially reduces training parameters, memory usage, and computational expense due to its lightweight tuners, with backward propagation only passing to the decoder blocks. Extensive experiments conducted on text-to-image generation and controllable image synthesis tasks demonstrate the superiority of our method in terms of efficiency and performance. Project page: https://scedit.github.io/

FateZero: Fusing Attentions for Zero-shot Text-based Video Editing

The diffusion-based generative models have achieved remarkable success in text-based image generation. However, since it contains enormous randomness in generation progress, it is still challenging to apply such models for real-world visual content editing, especially in videos. In this paper, we propose FateZero, a zero-shot text-based editing method on real-world videos without per-prompt training or use-specific mask. To edit videos consistently, we propose several techniques based on the pre-trained models. Firstly, in contrast to the straightforward DDIM inversion technique, our approach captures intermediate attention maps during inversion, which effectively retain both structural and motion information. These maps are directly fused in the editing process rather than generated during denoising. To further minimize semantic leakage of the source video, we then fuse self-attentions with a blending mask obtained by cross-attention features from the source prompt. Furthermore, we have implemented a reform of the self-attention mechanism in denoising UNet by introducing spatial-temporal attention to ensure frame consistency. Yet succinct, our method is the first one to show the ability of zero-shot text-driven video style and local attribute editing from the trained text-to-image model. We also have a better zero-shot shape-aware editing ability based on the text-to-video model. Extensive experiments demonstrate our superior temporal consistency and editing capability than previous works.

CODE: Confident Ordinary Differential Editing

Conditioning image generation facilitates seamless editing and the creation of photorealistic images. However, conditioning on noisy or Out-of-Distribution (OoD) images poses significant challenges, particularly in balancing fidelity to the input and realism of the output. We introduce Confident Ordinary Differential Editing (CODE), a novel approach for image synthesis that effectively handles OoD guidance images. Utilizing a diffusion model as a generative prior, CODE enhances images through score-based updates along the probability-flow Ordinary Differential Equation (ODE) trajectory. This method requires no task-specific training, no handcrafted modules, and no assumptions regarding the corruptions affecting the conditioning image. Our method is compatible with any diffusion model. Positioned at the intersection of conditional image generation and blind image restoration, CODE operates in a fully blind manner, relying solely on a pre-trained generative model. Our method introduces an alternative approach to blind restoration: instead of targeting a specific ground truth image based on assumptions about the underlying corruption, CODE aims to increase the likelihood of the input image while maintaining fidelity. This results in the most probable in-distribution image around the input. Our contributions are twofold. First, CODE introduces a novel editing method based on ODE, providing enhanced control, realism, and fidelity compared to its SDE-based counterpart. Second, we introduce a confidence interval-based clipping method, which improves CODE's effectiveness by allowing it to disregard certain pixels or information, thus enhancing the restoration process in a blind manner. Experimental results demonstrate CODE's effectiveness over existing methods, particularly in scenarios involving severe degradation or OoD inputs.

InseRF: Text-Driven Generative Object Insertion in Neural 3D Scenes

We introduce InseRF, a novel method for generative object insertion in the NeRF reconstructions of 3D scenes. Based on a user-provided textual description and a 2D bounding box in a reference viewpoint, InseRF generates new objects in 3D scenes. Recently, methods for 3D scene editing have been profoundly transformed, owing to the use of strong priors of text-to-image diffusion models in 3D generative modeling. Existing methods are mostly effective in editing 3D scenes via style and appearance changes or removing existing objects. Generating new objects, however, remains a challenge for such methods, which we address in this study. Specifically, we propose grounding the 3D object insertion to a 2D object insertion in a reference view of the scene. The 2D edit is then lifted to 3D using a single-view object reconstruction method. The reconstructed object is then inserted into the scene, guided by the priors of monocular depth estimation methods. We evaluate our method on various 3D scenes and provide an in-depth analysis of the proposed components. Our experiments with generative insertion of objects in several 3D scenes indicate the effectiveness of our method compared to the existing methods. InseRF is capable of controllable and 3D-consistent object insertion without requiring explicit 3D information as input. Please visit our project page at https://mohamad-shahbazi.github.io/inserf.

Social Reward: Evaluating and Enhancing Generative AI through Million-User Feedback from an Online Creative Community

Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at https://github.com/Picsart-AI-Research/Social-Reward

UniTune: Text-Driven Image Editing by Fine Tuning a Diffusion Model on a Single Image

Text-driven image generation methods have shown impressive results recently, allowing casual users to generate high quality images by providing textual descriptions. However, similar capabilities for editing existing images are still out of reach. Text-driven image editing methods usually need edit masks, struggle with edits that require significant visual changes and cannot easily keep specific details of the edited portion. In this paper we make the observation that image-generation models can be converted to image-editing models simply by fine-tuning them on a single image. We also show that initializing the stochastic sampler with a noised version of the base image before the sampling and interpolating relevant details from the base image after sampling further increase the quality of the edit operation. Combining these observations, we propose UniTune, a novel image editing method. UniTune gets as input an arbitrary image and a textual edit description, and carries out the edit while maintaining high fidelity to the input image. UniTune does not require additional inputs, like masks or sketches, and can perform multiple edits on the same image without retraining. We test our method using the Imagen model in a range of different use cases. We demonstrate that it is broadly applicable and can perform a surprisingly wide range of expressive editing operations, including those requiring significant visual changes that were previously impossible.

Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation

Large-scale text-to-image generative models have been a revolutionary breakthrough in the evolution of generative AI, allowing us to synthesize diverse images that convey highly complex visual concepts. However, a pivotal challenge in leveraging such models for real-world content creation tasks is providing users with control over the generated content. In this paper, we present a new framework that takes text-to-image synthesis to the realm of image-to-image translation -- given a guidance image and a target text prompt, our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text, while preserving the semantic layout of the source image. Specifically, we observe and empirically demonstrate that fine-grained control over the generated structure can be achieved by manipulating spatial features and their self-attention inside the model. This results in a simple and effective approach, where features extracted from the guidance image are directly injected into the generation process of the target image, requiring no training or fine-tuning and applicable for both real or generated guidance images. We demonstrate high-quality results on versatile text-guided image translation tasks, including translating sketches, rough drawings and animations into realistic images, changing of the class and appearance of objects in a given image, and modifications of global qualities such as lighting and color.

Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis

Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.

CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing

Researchers have recently begun exploring the use of StyleGAN-based models for real image editing. One particularly interesting application is using natural language descriptions to guide the editing process. Existing approaches for editing images using language either resort to instance-level latent code optimization or map predefined text prompts to some editing directions in the latent space. However, these approaches have inherent limitations. The former is not very efficient, while the latter often struggles to effectively handle multi-attribute changes. To address these weaknesses, we present CLIPInverter, a new text-driven image editing approach that is able to efficiently and reliably perform multi-attribute changes. The core of our method is the use of novel, lightweight text-conditioned adapter layers integrated into pretrained GAN-inversion networks. We demonstrate that by conditioning the initial inversion step on the CLIP embedding of the target description, we are able to obtain more successful edit directions. Additionally, we use a CLIP-guided refinement step to make corrections in the resulting residual latent codes, which further improves the alignment with the text prompt. Our method outperforms competing approaches in terms of manipulation accuracy and photo-realism on various domains including human faces, cats, and birds, as shown by our qualitative and quantitative results.

Generating Compositional Scenes via Text-to-image RGBA Instance Generation

Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering. Controllability can be improved by introducing layout conditioning, however existing methods lack layout editing ability and fine-grained control over object attributes. The concept of multi-layer generation holds great potential to address these limitations, however generating image instances concurrently to scene composition limits control over fine-grained object attributes, relative positioning in 3D space and scene manipulation abilities. In this work, we propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity. To ensure control over instance attributes, we devise a novel training paradigm to adapt a diffusion model to generate isolated scene components as RGBA images with transparency information. To build complex images, we employ these pre-generated instances and introduce a multi-layer composite generation process that smoothly assembles components in realistic scenes. Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes. Through multi-layer composition, we demonstrate that our approach allows to build and manipulate images from highly complex prompts with fine-grained control over object appearance and location, granting a higher degree of control than competing methods.

ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models

Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.

Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. (2016) showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227x227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models "Plug and Play Generative Networks". PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable "condition" network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization, which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.

FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models

Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.

Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion Models

Recently large-scale language-image models (e.g., text-guided diffusion models) have considerably improved the image generation capabilities to generate photorealistic images in various domains. Based on this success, current image editing methods use texts to achieve intuitive and versatile modification of images. To edit a real image using diffusion models, one must first invert the image to a noisy latent from which an edited image is sampled with a target text prompt. However, most methods lack one of the following: user-friendliness (e.g., additional masks or precise descriptions of the input image are required), generalization to larger domains, or high fidelity to the input image. In this paper, we design an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing. Specifically, our proposed editing method consists of a reconstruction stage and an editing stage. In the first stage, we encode the information of the input image into a learnable conditional embedding via Prompt Tuning Inversion. In the second stage, we apply classifier-free guidance to sample the edited image, where the conditional embedding is calculated by linearly interpolating between the target embedding and the optimized one obtained in the first stage. This technique ensures a superior trade-off between editability and high fidelity to the input image of our method. For example, we can change the color of a specific object while preserving its original shape and background under the guidance of only a target text prompt. Extensive experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.

Semi-Parametric Neural Image Synthesis

Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.

The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing

The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.

NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models

Generative models have been very popular in the recent years for their image generation capabilities. GAN-based models are highly regarded for their disentangled latent space, which is a key feature contributing to their success in controlled image editing. On the other hand, diffusion models have emerged as powerful tools for generating high-quality images. However, the latent space of diffusion models is not as thoroughly explored or understood. Existing methods that aim to explore the latent space of diffusion models usually relies on text prompts to pinpoint specific semantics. However, this approach may be restrictive in areas such as art, fashion, or specialized fields like medicine, where suitable text prompts might not be available or easy to conceive thus limiting the scope of existing work. In this paper, we propose an unsupervised method to discover latent semantics in text-to-image diffusion models without relying on text prompts. Our method takes a small set of unlabeled images from specific domains, such as faces or cats, and a pre-trained diffusion model, and discovers diverse semantics in unsupervised fashion using a contrastive learning objective. Moreover, the learned directions can be applied simultaneously, either within the same domain (such as various types of facial edits) or across different domains (such as applying cat and face edits within the same image) without interfering with each other. Our extensive experiments show that our method achieves highly disentangled edits, outperforming existing approaches in both diffusion-based and GAN-based latent space editing methods.

Personalized Image Generation with Deep Generative Models: A Decade Survey

Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.

InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists

Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.

Self-Distilled StyleGAN: Towards Generation from Internet Photos

StyleGAN is known to produce high-fidelity images, while also offering unprecedented semantic editing. However, these fascinating abilities have been demonstrated only on a limited set of datasets, which are usually structurally aligned and well curated. In this paper, we show how StyleGAN can be adapted to work on raw uncurated images collected from the Internet. Such image collections impose two main challenges to StyleGAN: they contain many outlier images, and are characterized by a multi-modal distribution. Training StyleGAN on such raw image collections results in degraded image synthesis quality. To meet these challenges, we proposed a StyleGAN-based self-distillation approach, which consists of two main components: (i) A generative-based self-filtering of the dataset to eliminate outlier images, in order to generate an adequate training set, and (ii) Perceptual clustering of the generated images to detect the inherent data modalities, which are then employed to improve StyleGAN's "truncation trick" in the image synthesis process. The presented technique enables the generation of high-quality images, while minimizing the loss in diversity of the data. Through qualitative and quantitative evaluation, we demonstrate the power of our approach to new challenging and diverse domains collected from the Internet. New datasets and pre-trained models are available at https://self-distilled-stylegan.github.io/ .

Coherent and Multi-modality Image Inpainting via Latent Space Optimization

With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (inPainting vIa Latent OpTimization), an optimization approach grounded on a novel semantic centralization and background preservation loss. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.

Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models

Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.

Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models

Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.

GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars

Photo-realistic and controllable 3D avatars are crucial for various applications such as virtual and mixed reality (VR/MR), telepresence, gaming, and film production. Traditional methods for avatar creation often involve time-consuming scanning and reconstruction processes for each avatar, which limits their scalability. Furthermore, these methods do not offer the flexibility to sample new identities or modify existing ones. On the other hand, by learning a strong prior from data, generative models provide a promising alternative to traditional reconstruction methods, easing the time constraints for both data capture and processing. Additionally, generative methods enable downstream applications beyond reconstruction, such as editing and stylization. Nonetheless, the research on generative 3D avatars is still in its infancy, and therefore current methods still have limitations such as creating static avatars, lacking photo-realism, having incomplete facial details, or having limited drivability. To address this, we propose a text-conditioned generative model that can generate photo-realistic facial avatars of diverse identities, with more complete details like hair, eyes and mouth interior, and which can be driven through a powerful non-parametric latent expression space. Specifically, we integrate the generative and editing capabilities of latent diffusion models with a strong prior model for avatar expression driving. Our model can generate and control high-fidelity avatars, even those out-of-distribution. We also highlight its potential for downstream applications, including avatar editing and single-shot avatar reconstruction.

Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models

Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.

Alfie: Democratising RGBA Image Generation With No $$$

Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.

SINE: SINgle Image Editing with Text-to-Image Diffusion Models

Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .

State of the Art on Diffusion Models for Visual Computing

The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains, diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based tools and applications has seen exponential growth and relevant papers are published across the computer graphics, computer vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview important aspects of these generative AI tools, including personalization, conditioning, inversion, among others. Moreover, we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore this exciting topic for researchers, artists, and practitioners alike.

FilterPrompt: Guiding Image Transfer in Diffusion Models

In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.

Flow Matching in Latent Space

Flow matching is a recent framework to train generative models that exhibits impressive empirical performance while being relatively easier to train compared with diffusion-based models. Despite its advantageous properties, prior methods still face the challenges of expensive computing and a large number of function evaluations of off-the-shelf solvers in the pixel space. Furthermore, although latent-based generative methods have shown great success in recent years, this particular model type remains underexplored in this area. In this work, we propose to apply flow matching in the latent spaces of pretrained autoencoders, which offers improved computational efficiency and scalability for high-resolution image synthesis. This enables flow-matching training on constrained computational resources while maintaining their quality and flexibility. Additionally, our work stands as a pioneering contribution in the integration of various conditions into flow matching for conditional generation tasks, including label-conditioned image generation, image inpainting, and semantic-to-image generation. Through extensive experiments, our approach demonstrates its effectiveness in both quantitative and qualitative results on various datasets, such as CelebA-HQ, FFHQ, LSUN Church & Bedroom, and ImageNet. We also provide a theoretical control of the Wasserstein-2 distance between the reconstructed latent flow distribution and true data distribution, showing it is upper-bounded by the latent flow matching objective. Our code will be available at https://github.com/VinAIResearch/LFM.git.

GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis

Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.

PatchCraft: Exploring Texture Patch for Efficient AI-generated Image Detection

Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. We observe that the texture patches of images tend to reveal more traces left by generative models compared to the global semantic information of the images. A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches. Furthermore, pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. Synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we leverage the inter-pixel correlation contrast between rich and poor texture regions within an image to further boost the detection performance. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 17 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

The inversion of real images into StyleGAN's latent space is a well-studied problem. Nevertheless, applying existing approaches to real-world scenarios remains an open challenge, due to an inherent trade-off between reconstruction and editability: latent space regions which can accurately represent real images typically suffer from degraded semantic control. Recent work proposes to mitigate this trade-off by fine-tuning the generator to add the target image to well-behaved, editable regions of the latent space. While promising, this fine-tuning scheme is impractical for prevalent use as it requires a lengthy training phase for each new image. In this work, we introduce this approach into the realm of encoder-based inversion. We propose HyperStyle, a hypernetwork that learns to modulate StyleGAN's weights to faithfully express a given image in editable regions of the latent space. A naive modulation approach would require training a hypernetwork with over three billion parameters. Through careful network design, we reduce this to be in line with existing encoders. HyperStyle yields reconstructions comparable to those of optimization techniques with the near real-time inference capabilities of encoders. Lastly, we demonstrate HyperStyle's effectiveness on several applications beyond the inversion task, including the editing of out-of-domain images which were never seen during training.

LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts

Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.

ITI-GEN: Inclusive Text-to-Image Generation

Text-to-image generative models often reflect the biases of the training data, leading to unequal representations of underrepresented groups. This study investigates inclusive text-to-image generative models that generate images based on human-written prompts and ensure the resulting images are uniformly distributed across attributes of interest. Unfortunately, directly expressing the desired attributes in the prompt often leads to sub-optimal results due to linguistic ambiguity or model misrepresentation. Hence, this paper proposes a drastically different approach that adheres to the maxim that "a picture is worth a thousand words". We show that, for some attributes, images can represent concepts more expressively than text. For instance, categories of skin tones are typically hard to specify by text but can be easily represented by example images. Building upon these insights, we propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration. The key idea is learning a set of prompt embeddings to generate images that can effectively represent all desired attribute categories. More importantly, ITI-GEN requires no model fine-tuning, making it computationally efficient to augment existing text-to-image models. Extensive experiments demonstrate that ITI-GEN largely improves over state-of-the-art models to generate inclusive images from a prompt. Project page: https://czhang0528.github.io/iti-gen.