new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Align and Prompt: Video-and-Language Pre-training with Entity Prompts

Video-and-language pre-training has shown promising improvements on various downstream tasks. Most previous methods capture cross-modal interactions with a transformer-based multimodal encoder, not fully addressing the misalignment between unimodal video and text features. Besides, learning fine-grained visual-language alignment usually requires off-the-shelf object detectors to provide object information, which is bottlenecked by the detector's limited vocabulary and expensive computation cost. We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment. First, we introduce a video-text contrastive (VTC) loss to align unimodal video-text features at the instance level, which eases the modeling of cross-modal interactions. Then, we propose a new visually-grounded pre-training task, prompting entity modeling (PEM), which aims to learn fine-grained region-entity alignment. To achieve this, we first introduce an entity prompter module, which is trained with VTC to produce the similarity between a video crop and text prompts instantiated with entity names. The PEM task then asks the model to predict the entity pseudo-labels (i.e~normalized similarity scores) for randomly-selected video crops. The resulting pre-trained model achieves state-of-the-art performance on both text-video retrieval and videoQA, outperforming prior work by a substantial margin. Our code and pre-trained models are available at https://github.com/salesforce/ALPRO.

A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.

Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques

Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.

Fine-grained Contract NER using instruction based model

Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .

PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming

Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.

Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases

Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.

Prompting Is Programming: A Query Language for Large Language Models

Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL(short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (26-85% cost savings).

NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval

Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.

Efficient and Interpretable Neural Models for Entity Tracking

What would it take for a natural language model to understand a novel, such as The Lord of the Rings? Among other things, such a model must be able to: (a) identify and record new characters (entities) and their attributes as they are introduced in the text, and (b) identify subsequent references to the characters previously introduced and update their attributes. This problem of entity tracking is essential for language understanding, and thus, useful for a wide array of downstream applications in NLP such as question-answering, summarization. In this thesis, we focus on two key problems in relation to facilitating the use of entity tracking models: (i) scaling entity tracking models to long documents, such as a novel, and (ii) integrating entity tracking into language models. Applying language technologies to long documents has garnered interest recently, but computational constraints are a significant bottleneck in scaling up current methods. In this thesis, we argue that computationally efficient entity tracking models can be developed by representing entities with rich, fixed-dimensional vector representations derived from pretrained language models, and by exploiting the ephemeral nature of entities. We also argue for the integration of entity tracking into language models as it will allow for: (i) wider application given the current ubiquitous use of pretrained language models in NLP applications, and (ii) easier adoption since it is much easier to swap in a new pretrained language model than to integrate a separate standalone entity tracking model.

Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing

Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at https://github.com/yanlinf/CASENT.

Large Language Models Are Human-Level Prompt Engineers

By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.

ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget

Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural Language Processing, serving as critical components in a wide range of applications. In this paper, we propose ReLiK, a Retriever-Reader architecture for both EL and RE, where, given an input text, the Retriever module undertakes the identification of candidate entities or relations that could potentially appear within the text. Subsequently, the Reader module is tasked to discern the pertinent retrieved entities or relations and establish their alignment with the corresponding textual spans. Notably, we put forward an innovative input representation that incorporates the candidate entities or relations alongside the text, making it possible to link entities or extract relations in a single forward pass and to fully leverage pre-trained language models contextualization capabilities, in contrast with previous Retriever-Reader-based methods, which require a forward pass for each candidate. Our formulation of EL and RE achieves state-of-the-art performance in both in-domain and out-of-domain benchmarks while using academic budget training and with up to 40x inference speed compared to competitors. Finally, we show how our architecture can be used seamlessly for Information Extraction (cIE), i.e. EL + RE, and setting a new state of the art by employing a shared Reader that simultaneously extracts entities and relations.

NER4all or Context is All You Need: Using LLMs for low-effort, high-performance NER on historical texts. A humanities informed approach

Named entity recognition (NER) is a core task for historical research in automatically establishing all references to people, places, events and the like. Yet, do to the high linguistic and genre diversity of sources, only limited canonisation of spellings, the level of required historical domain knowledge, and the scarcity of annotated training data, established approaches to natural language processing (NLP) have been both extremely expensive and yielded only unsatisfactory results in terms of recall and precision. Our paper introduces a new approach. We demonstrate how readily-available, state-of-the-art LLMs significantly outperform two leading NLP frameworks, spaCy and flair, for NER in historical documents by seven to twentytwo percent higher F1-Scores. Our ablation study shows how providing historical context to the task and a bit of persona modelling that turns focus away from a purely linguistic approach are core to a successful prompting strategy. We also demonstrate that, contrary to our expectations, providing increasing numbers of examples in few-shot approaches does not improve recall or precision below a threshold of 16-shot. In consequence, our approach democratises access to NER for all historians by removing the barrier of scripting languages and computational skills required for established NLP tools and instead leveraging natural language prompts and consumer-grade tools and frontends.

SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics

Prompt-based fine-tuning has become an essential method for eliciting information encoded in pre-trained language models for a variety of tasks, including text classification. For multi-class classification tasks, prompt-based fine-tuning under low-resource scenarios has resulted in performance levels comparable to those of fully fine-tuning methods. Previous studies have used crafted prompt templates and verbalizers, mapping from the label terms space to the class space, to solve the classification problem as a masked language modeling task. However, cross-domain and fine-grained prompt-based fine-tuning with an automatically enriched verbalizer remains unexplored, mainly due to the difficulty and costs of manually selecting domain label terms for the verbalizer, which requires humans with domain expertise. To address this challenge, we introduce SciPrompt, a framework designed to automatically retrieve scientific topic-related terms for low-resource text classification tasks. To this end, we select semantically correlated and domain-specific label terms within the context of scientific literature for verbalizer augmentation. Furthermore, we propose a new verbalization strategy that uses correlation scores as additional weights to enhance the prediction performance of the language model during model tuning. Our method outperforms state-of-the-art, prompt-based fine-tuning methods on scientific text classification tasks under few and zero-shot settings, especially in classifying fine-grained and emerging scientific topics.

A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models

Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.

Self-Supervised Prompt Optimization

Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/geekan/MetaGPT.

PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling

Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PRompt Optimization in Multi-Step Tasks (PROMST) that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6\%-29.3\% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.

Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph

There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Text Data Augmentation for Large Language Models: A Comprehensive Survey of Methods, Challenges, and Opportunities

The increasing size and complexity of pre-trained language models have demonstrated superior performance in many applications, but they usually require large training datasets to be adequately trained. Insufficient training sets could unexpectedly make the model overfit and fail to cope with complex tasks. Large language models (LLMs) trained on extensive corpora have prominent text generation capabilities, which improve the quality and quantity of data and play a crucial role in data augmentation. Specifically, distinctive prompt templates are given in personalised tasks to guide LLMs in generating the required content. Recent promising retrieval-based techniques further improve the expressive performance of LLMs in data augmentation by introducing external knowledge to enable them to produce more grounded-truth data. This survey provides an in-depth analysis of data augmentation in LLMs, classifying the techniques into Simple Augmentation, Prompt-based Augmentation, Retrieval-based Augmentation and Hybrid Augmentation. We summarise the post-processing approaches in data augmentation, which contributes significantly to refining the augmented data and enabling the model to filter out unfaithful content. Then, we provide the common tasks and evaluation metrics. Finally, we introduce existing challenges and future opportunities that could bring further improvement to data augmentation.

PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization

Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.

P-Adapters: Robustly Extracting Factual Information from Language Models with Diverse Prompts

Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the factual information extracted from Large Language Models (LLMs) depends on the prompts used to query them. This inconsistency is problematic because different users will query LLMs for the same information using different wording, but should receive the same, accurate responses regardless. In this work we aim to address this shortcoming by introducing P-Adapters: lightweight models that sit between the embedding layer and first attention layer of LLMs. They take LLM embeddings as input and output continuous prompts that are used to query the LLM. Additionally, we investigate Mixture of Experts (MoE) models that learn a set of continuous prompts ("experts") and select one to query the LLM. They require a separate classifier trained on human-annotated data to map natural language prompts to the continuous ones. P-Adapters perform comparably to the more complex MoE models in extracting factual information from BERT and RoBERTa while eliminating the need for additional annotations. P-Adapters show between 12-26% absolute improvement in precision and 36-50% absolute improvement in consistency over a baseline of only using natural language queries. Finally, we investigate what makes P-Adapters successful and conclude that a significant factor is access to the LLM's embeddings of the original natural language prompt, particularly the subject of the entity pair being queried.

Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias

Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance. Additionally, we present a comprehensive empirical study on data generation encompassing vital aspects like bias, diversity, and efficiency, and highlight three key observations: firstly, synthetic datasets generated by simple prompts exhibit significant biases, such as regional bias; secondly, attribute diversity plays a pivotal role in enhancing model performance; lastly, attributed prompts achieve the performance of simple class-conditional prompts while utilizing only 5\% of the querying cost of ChatGPT associated with the latter. We release the generated dataset and used prompts to facilitate future research. The data and code will be available on https://github.com/yueyu1030/AttrPrompt.

Prompt Engineering a Prompt Engineer

Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.

Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification

This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.

Mixture of Prompt Learning for Vision Language Models

As powerful pre-trained vision-language models (VLMs) like CLIP gain prominence, numerous studies have attempted to combine VLMs for downstream tasks. Among these, prompt learning has been validated as an effective method for adapting to new tasks, which only requiring a small number of parameters. However, current prompt learning methods face two challenges: first, a single soft prompt struggles to capture the diverse styles and patterns within a dataset; second, fine-tuning soft prompts is prone to overfitting. To address these challenges, we propose a mixture of soft prompt learning method incorporating a routing module. This module is able to capture a dataset's varied styles and dynamically selects the most suitable prompts for each instance. Additionally, we introduce a novel gating mechanism to ensure the router selects prompts based on their similarity to hard prompt templates, which both retaining knowledge from hard prompts and improving selection accuracy. We also implement semantically grouped text-level supervision, initializing each soft prompt with the token embeddings of manually designed templates from its group and applied a contrastive loss between the resulted text feature and hard prompt encoded text feature. This supervision ensures that the text features derived from soft prompts remain close to those from their corresponding hard prompts, preserving initial knowledge and mitigating overfitting. Our method has been validated on 11 datasets, demonstrating evident improvements in few-shot learning, domain generalization, and base-to-new generalization scenarios compared to existing baselines. The code will be available at https://anonymous.4open.science/r/mocoop-6387

Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.

Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models

Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.

ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation

This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.

Zero-shot information extraction from radiological reports using ChatGPT

Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.

Prompting Frameworks for Large Language Models: A Survey

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Autoregressive Entity Retrieval

Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.

Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning

Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.

Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting

Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.

A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis

Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.

Zero-Shot Code Representation Learning via Prompt Tuning

Learning code representations has been the core prerequisite of many software engineering tasks such as code clone detection and code generation. State-of-the-art program representation techniques mainly utilize pre-trained language models (PLMs) such as CodeBERT. A Transformer encoder is firstly pre-trained on a large-scale code corpus to acquire general knowledge about source code. The pre-trained model is then fine-tuned on specific tasks using an amount of labeled data. However, gathering training samples for the downstream tasks can be prohibitively expensive and impractical for domain-specific languages or project-specific tasks. Besides, pre-training and downstream tasks are usually heterogeneous, which makes it difficult to fully explore the knowledge learned during pre-training. In this paper, we propose Zecoler, a zero-shot approach for learning code representations. Zecoler is built upon a pre-trained programming language model. In order to elicit knowledge from the PLMs efficiently, Zecoler casts the downstream tasks to the same form of pre-training objectives by inserting train-able prompts into the original input. These prompts can guide PLMs on how to generate better results. Subsequently, we employ the prompt tuning technique to search for the optimal prompts for PLMs automatically. This enables the representation model to efficiently fit the downstream tasks through fine-tuning on the dataset in source language domain and then reuse the pre-trained knowledge for the target domain in a zero-shot style. We evaluate Zecoler in five code intelligence tasks including code clone detection, code search, method name prediction, code summarization, and code generation. The results show that our approach significantly outperforms baseline models under the zero-shot setting.

Selection of Prompt Engineering Techniques for Code Generation through Predicting Code Complexity

Large Language Models (LLMs) have demonstrated impressive performance in software engineering tasks. However, improving their accuracy in generating correct and reliable code remains challenging. Numerous prompt engineering techniques (PETs) have been developed to address this, but no single approach is universally optimal. Selecting the right PET for each query is difficult for two primary reasons: (1) interactive prompting techniques may not consistently deliver the expected benefits, especially for simpler queries, and (2) current automated prompt engineering methods lack adaptability and fail to fully utilize multi-stage responses. To overcome these challenges, we propose PET-Select, a PET-agnostic selection model that uses code complexity as a proxy to classify queries and select the most appropriate PET. By incorporating contrastive learning, PET-Select effectively distinguishes between simple and complex problems, allowing it to choose PETs that are best suited for each query's complexity level. Our evaluations on the MBPP and HumanEval benchmarks using GPT-3.5 Turbo and GPT-4o show up to a 1.9% improvement in pass@1 accuracy, along with a 74.8% reduction in token usage. Additionally, we provide both quantitative and qualitative results to demonstrate how PET-Select effectively selects the most appropriate techniques for each code generation query, further showcasing its efficiency in optimizing PET selection.

Controlling Personality Style in Dialogue with Zero-Shot Prompt-Based Learning

Prompt-based or in-context learning has achieved high zero-shot performance on many natural language generation (NLG) tasks. Here we explore the performance of prompt-based learning for simultaneously controlling the personality and the semantic accuracy of an NLG for task-oriented dialogue. We experiment with prompt-based learning on the PERSONAGE restaurant recommendation corpus to generate semantically and stylistically-controlled text for 5 different Big-5 personality types: agreeable, disagreeable, conscientious, unconscientious, and extravert. We test two different classes of discrete prompts to generate utterances for a particular personality style: (1) prompts that demonstrate generating directly from a meaning representation that includes a personality specification; and (2) prompts that rely on first converting the meaning representation to a textual pseudo-reference, and then using the pseudo-reference in a textual style transfer (TST) prompt. In each case, we show that we can vastly improve performance by over-generating outputs and ranking them, testing several ranking functions based on automatic metrics for semantic accuracy, personality-match, and fluency. We also test whether NLG personality demonstrations from the restaurant domain can be used with meaning representations for the video game domain to generate personality stylized utterances about video games. Our findings show that the TST prompts produces the highest semantic accuracy (78.46% for restaurants and 87.6% for video games) and personality accuracy (100% for restaurants and 97% for video games). Our results on transferring personality style to video game utterances are surprisingly good. To our knowledge, there is no previous work testing the application of prompt-based learning to simultaneously controlling both style and semantic accuracy in NLG.

Improving Few-Shot Cross-Domain Named Entity Recognition by Instruction Tuning a Word-Embedding based Retrieval Augmented Large Language Model

Few-Shot Cross-Domain NER is the process of leveraging knowledge from data-rich source domains to perform entity recognition on data scarce target domains. Most previous state-of-the-art (SOTA) approaches use pre-trained language models (PLMs) for cross-domain NER. However, these models are often domain specific. To successfully use these models for new target domains, we need to modify either the model architecture or perform model finetuning using data from the new domains. Both of these result in the creation of entirely new NER models for each target domain which is infeasible for practical scenarios. Recently,several works have attempted to use LLMs to solve Few-Shot Cross-Domain NER. However, most of these are either too expensive for practical purposes or struggle to follow LLM prompt instructions. In this paper, we propose IF-WRANER (Instruction Finetuned Word-embedding based Retrieval Augmented large language model for Named Entity Recognition), a retrieval augmented LLM, finetuned for the NER task. By virtue of the regularization techniques used during LLM finetuning and the adoption of word-level embedding over sentence-level embedding during the retrieval of in-prompt examples, IF-WRANER is able to outperform previous SOTA Few-Shot Cross-Domain NER approaches. We have demonstrated the effectiveness of our model by benchmarking its performance on the open source CrossNER dataset, on which it shows more than 2% F1 score improvement over the previous SOTA model. We have deployed the model for multiple customer care domains of an enterprise. Accurate entity prediction through IF-WRANER helps direct customers to automated workflows for the domains, thereby reducing escalations to human agents by almost 15% and leading to millions of dollars in yearly savings for the company.

Exploring Small Language Models with Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification

Domain-specific text classification faces the challenge of scarce labeled data due to the high cost of manual labeling. Prompt-learning, known for its efficiency in few-shot scenarios, is proposed as an alternative to traditional fine-tuning methods. And besides, although large language models (LLMs) have gained prominence, small language models (SLMs, with under 1B parameters) offer significant customizability, adaptability, and cost-effectiveness for domain-specific tasks, given industry constraints. In this study, we investigate the potential of SLMs combined with prompt-learning paradigm for domain-specific text classification, specifically within customer-agent interactions in retail. Our evaluations show that, in few-shot settings when prompt-based model fine-tuning is possible, T5-base, a typical SLM with 220M parameters, achieve approximately 75% accuracy with limited labeled data (up to 15% of full data), which shows great potentials of SLMs with prompt-learning. Based on this, We further validate the effectiveness of active few-shot sampling and the ensemble strategy in the prompt-learning pipeline that contribute to a remarkable performance gain. Besides, in zero-shot settings with a fixed model, we underscore a pivotal observation that, although the GPT-3.5-turbo equipped with around 154B parameters garners an accuracy of 55.16%, the power of well designed prompts becomes evident when the FLAN-T5-large, a model with a mere 0.5% of GPT-3.5-turbo's parameters, achieves an accuracy exceeding 31% with the optimized prompt, a leap from its sub-18% performance with an unoptimized one. Our findings underscore the promise of prompt-learning in classification tasks with SLMs, emphasizing the benefits of active few-shot sampling, and ensemble strategies in few-shot settings, and the importance of prompt engineering in zero-shot settings.

PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval

The current use of large language models (LLMs) for zero-shot document ranking follows one of two ways: 1) prompt-based re-ranking methods, which require no further training but are feasible for only re-ranking a handful of candidate documents due to the associated computational costs; and 2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated to the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.

Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.

Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements

Acknowledgments in scientific papers may give an insight into aspects of the scientific community, such as reward systems, collaboration patterns, and hidden research trends. The aim of the paper is to evaluate the performance of different embedding models for the task of automatic extraction and classification of acknowledged entities from the acknowledgment text in scientific papers. We trained and implemented a named entity recognition (NER) task using the Flair NLP framework. The training was conducted using three default Flair NER models with four differently-sized corpora and different versions of the Flair NLP framework. The Flair Embeddings model trained on the medium corpus with the latest FLAIR version showed the best accuracy of 0.79. Expanding the size of a training corpus from very small to medium size massively increased the accuracy of all training algorithms, but further expansion of the training corpus did not bring further improvement. Moreover, the performance of the model slightly deteriorated. Our model is able to recognize six entity types: funding agency, grant number, individuals, university, corporation, and miscellaneous. The model works more precisely for some entity types than for others; thus, individuals and grant numbers showed a very good F1-Score over 0.9. Most of the previous works on acknowledgment analysis were limited by the manual evaluation of data and therefore by the amount of processed data. This model can be applied for the comprehensive analysis of acknowledgment texts and may potentially make a great contribution to the field of automated acknowledgment analysis.

On Unsupervised Prompt Learning for Classification with Black-box Language Models

Large language models (LLMs) have achieved impressive success in text-formatted learning problems, and most popular LLMs have been deployed in a black-box fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream task to obtain better performance, and this functionality is provided by the owners of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always required to adjust the model parameters. However, in many real-world applications, LLMs can label textual datasets with even better quality than skilled human annotators, motivating us to explore the possibility of fine-tuning black-box LLMs with unlabeled data. In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where the learning parameters are the prompt itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled as a sequence of discrete tokens, and every token has its own to-be-learned categorical distribution. On the other hand, for learning the pseudo labels, we are the first to consider the in-context learning (ICL) capabilities of LLMs: we first identify reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as in-context demonstrations alongside the prompt. Those in-context demonstrations matter: previously, they are involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus, taking them into account during training makes the prompt-learning and prompt-using stages more consistent. Experiments on benchmark datasets show the effectiveness of our proposed algorithm. After unsupervised prompt learning, we can use the pseudo-labeled dataset for further fine-tuning by the owners of the black-box LLMs.

What Do You Want? User-centric Prompt Generation for Text-to-image Synthesis via Multi-turn Guidance

The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.

Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting

As large language models (LLMs) are adopted as a fundamental component of language technologies, it is crucial to accurately characterize their performance. Because choices in prompt design can strongly influence model behavior, this design process is critical in effectively using any modern pre-trained generative language model. In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting. We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt formatting in few-shot settings, with performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains even when increasing model size, the number of few-shot examples, or performing instruction tuning. Our analysis suggests that work evaluating LLMs with prompting-based methods would benefit from reporting a range of performance across plausible prompt formats, instead of the currently-standard practice of reporting performance on a single format. We also show that format performance only weakly correlates between models, which puts into question the methodological validity of comparing models with an arbitrarily chosen, fixed prompt format. To facilitate systematic analysis we propose FormatSpread, an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights. Furthermore, we present a suite of analyses that characterize the nature of this sensitivity, including exploring the influence of particular atomic perturbations and the internal representation of particular formats.

HintEval: A Comprehensive Framework for Hint Generation and Evaluation for Questions

Large Language Models (LLMs) are transforming how people find information, and many users turn nowadays to chatbots to obtain answers to their questions. Despite the instant access to abundant information that LLMs offer, it is still important to promote critical thinking and problem-solving skills. Automatic hint generation is a new task that aims to support humans in answering questions by themselves by creating hints that guide users toward answers without directly revealing them. In this context, hint evaluation focuses on measuring the quality of hints, helping to improve the hint generation approaches. However, resources for hint research are currently spanning different formats and datasets, while the evaluation tools are missing or incompatible, making it hard for researchers to compare and test their models. To overcome these challenges, we introduce HintEval, a Python library that makes it easy to access diverse datasets and provides multiple approaches to generate and evaluate hints. HintEval aggregates the scattered resources into a single toolkit that supports a range of research goals and enables a clear, multi-faceted, and reliable evaluation. The proposed library also includes detailed online documentation, helping users quickly explore its features and get started. By reducing barriers to entry and encouraging consistent evaluation practices, HintEval offers a major step forward for facilitating hint generation and analysis research within the NLP/IR community.