new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

A Comprehensive Survey of Evaluation Techniques for Recommendation Systems

The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.

Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement

In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

Let AI Entertain You: Increasing User Engagement with Generative AI and Rejection Sampling

While generative AI excels in content generation, it does not always increase user engagement. This can be attributed to two main factors. First, generative AI generates content without incorporating explicit or implicit feedback about user interactions. Even if the generated content seems to be more informative or well-written, it does not necessarily lead to an increase in user activities, such as clicks. Second, there is a concern with the quality of the content generative AI produces, which often lacks the distinctiveness and authenticity that human-created content possesses. These two factors can lead to content that fails to meet specific needs and preferences of users, ultimately reducing its potential to be engaging. This paper presents a generic framework of how to improve user engagement with generative AI by leveraging user feedback. Our solutions employ rejection sampling, a technique used in reinforcement learning, to boost engagement metrics. We leveraged the framework in the context of email notification subject lines generation for an online social network, and achieved significant engagement metric lift including +1% Session and +0.4% Weekly Active Users. We believe our work offers a universal framework that enhances user engagement with generative AI, particularly when standard generative AI reaches its limits in terms of enhancing content to be more captivating. To the best of our knowledge, this represents an early milestone in the industry's successful use of generative AI to enhance user engagement.

LLM Agents for Psychology: A Study on Gamified Assessments

Psychological measurement is essential for mental health, self-understanding, and personal development. Traditional methods, such as self-report scales and psychologist interviews, often face challenges with engagement and accessibility. While game-based and LLM-based tools have been explored to improve user interest and automate assessment, they struggle to balance engagement with generalizability. In this work, we propose PsychoGAT (Psychological Game AgenTs) to achieve a generic gamification of psychological assessment. The main insight is that powerful LLMs can function both as adept psychologists and innovative game designers. By incorporating LLM agents into designated roles and carefully managing their interactions, PsychoGAT can transform any standardized scales into personalized and engaging interactive fiction games. To validate the proposed method, we conduct psychometric evaluations to assess its effectiveness and employ human evaluators to examine the generated content across various psychological constructs, including depression, cognitive distortions, and personality traits. Results demonstrate that PsychoGAT serves as an effective assessment tool, achieving statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity. Moreover, human evaluations confirm PsychoGAT's enhancements in content coherence, interactivity, interest, immersion, and satisfaction.

Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce

In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.

PASS: Presentation Automation for Slide Generation and Speech

In today's fast-paced world, effective presentations have become an essential tool for communication in both online and offline meetings. The crafting of a compelling presentation requires significant time and effort, from gathering key insights to designing slides that convey information clearly and concisely. However, despite the wealth of resources available, people often find themselves manually extracting crucial points, analyzing data, and organizing content in a way that ensures clarity and impact. Furthermore, a successful presentation goes beyond just the slides; it demands rehearsal and the ability to weave a captivating narrative to fully engage the audience. Although there has been some exploration of automating document-to-slide generation, existing research is largely centered on converting research papers. In addition, automation of the delivery of these presentations has yet to be addressed. We introduce PASS, a pipeline used to generate slides from general Word documents, going beyond just research papers, which also automates the oral delivery of the generated slides. PASS analyzes user documents to create a dynamic, engaging presentation with an AI-generated voice. Additionally, we developed an LLM-based evaluation metric to assess our pipeline across three critical dimensions of presentations: relevance, coherence, and redundancy. The data and codes are available at https://github.com/AggarwalTushar/PASS.

Can ChatGPT Assess Human Personalities? A General Evaluation Framework

Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and InstructGPT. Our experiments reveal ChatGPT's ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.

Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings

While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.

ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation

This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.

User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems

User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.

TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks

We present TIGERScore, a Trained metric that follows Instruction Guidance to perform Explainable, and Reference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output rightarrow error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.

Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa

Using LLMs to Establish Implicit User Sentiment of Software Desirability

This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.

What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation

With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations.

Improving Interpersonal Communication by Simulating Audiences with Language Models

How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.

PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements

In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research.

Is ChatGPT a Good NLG Evaluator? A Preliminary Study

Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Modeling Motivational Interviewing Strategies On An Online Peer-to-Peer Counseling Platform

Millions of people participate in online peer-to-peer support sessions, yet there has been little prior research on systematic psychology-based evaluations of fine-grained peer-counselor behavior in relation to client satisfaction. This paper seeks to bridge this gap by mapping peer-counselor chat-messages to motivational interviewing (MI) techniques. We annotate 14,797 utterances from 734 chat conversations using 17 MI techniques and introduce four new interviewing codes such as chit-chat and inappropriate to account for the unique conversational patterns observed on online platforms. We automate the process of labeling peer-counselor responses to MI techniques by fine-tuning large domain-specific language models and then use these automated measures to investigate the behavior of the peer counselors via correlational studies. Specifically, we study the impact of MI techniques on the conversation ratings to investigate the techniques that predict clients' satisfaction with their counseling sessions. When counselors use techniques such as reflection and affirmation, clients are more satisfied. Examining volunteer counselors' change in usage of techniques suggest that counselors learn to use more introduction and open questions as they gain experience. This work provides a deeper understanding of the use of motivational interviewing techniques on peer-to-peer counselor platforms and sheds light on how to build better training programs for volunteer counselors on online platforms.

Synthetic Dialogue Dataset Generation using LLM Agents

Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that "talk" to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.

Large Language Models Understand and Can be Enhanced by Emotional Stimuli

Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.

Assessing and Understanding Creativity in Large Language Models

In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.

Simulating User Satisfaction for the Evaluation of Task-oriented Dialogue Systems

Evaluation is crucial in the development process of task-oriented dialogue systems. As an evaluation method, user simulation allows us to tackle issues such as scalability and cost-efficiency, making it a viable choice for large-scale automatic evaluation. To help build a human-like user simulator that can measure the quality of a dialogue, we propose the following task: simulating user satisfaction for the evaluation of task-oriented dialogue systems. The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like. To overcome a lack of annotated data, we propose a user satisfaction annotation dataset, USS, that includes 6,800 dialogues sampled from multiple domains, spanning real-world e-commerce dialogues, task-oriented dialogues constructed through Wizard-of-Oz experiments, and movie recommendation dialogues. All user utterances in those dialogues, as well as the dialogues themselves, have been labeled based on a 5-level satisfaction scale. We also share three baseline methods for user satisfaction prediction and action prediction tasks. Experiments conducted on the USS dataset suggest that distributed representations outperform feature-based methods. A model based on hierarchical GRUs achieves the best performance in in-domain user satisfaction prediction, while a BERT-based model has better cross-domain generalization ability.

VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models

Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" - such as tone, formatting, or writing style - influence user preferences, yet traditional evaluations focus primarily on the single axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model ("vibes") that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discover vibes from model outputs, then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with llama-3-70b VS GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. Some of the vibes we find are that Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often over-explains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash.

Self-Assessment Tests are Unreliable Measures of LLM Personality

As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.

Towards A Better Metric for Text-to-Video Generation

Generative models have demonstrated remarkable capability in synthesizing high-quality text, images, and videos. For video generation, contemporary text-to-video models exhibit impressive capabilities, crafting visually stunning videos. Nonetheless, evaluating such videos poses significant challenges. Current research predominantly employs automated metrics such as FVD, IS, and CLIP Score. However, these metrics provide an incomplete analysis, particularly in the temporal assessment of video content, thus rendering them unreliable indicators of true video quality. Furthermore, while user studies have the potential to reflect human perception accurately, they are hampered by their time-intensive and laborious nature, with outcomes that are often tainted by subjective bias. In this paper, we investigate the limitations inherent in existing metrics and introduce a novel evaluation pipeline, the Text-to-Video Score (T2VScore). This metric integrates two pivotal criteria: (1) Text-Video Alignment, which scrutinizes the fidelity of the video in representing the given text description, and (2) Video Quality, which evaluates the video's overall production caliber with a mixture of experts. Moreover, to evaluate the proposed metrics and facilitate future improvements on them, we present the TVGE dataset, collecting human judgements of 2,543 text-to-video generated videos on the two criteria. Experiments on the TVGE dataset demonstrate the superiority of the proposed T2VScore on offering a better metric for text-to-video generation.

Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S

Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.

LEXI: Large Language Models Experimentation Interface

The recent developments in Large Language Models (LLM), mark a significant moment in the research and development of social interactions with artificial agents. These agents are widely deployed in a variety of settings, with potential impact on users. However, the study of social interactions with agents powered by LLM is still emerging, limited by access to the technology and to data, the absence of standardised interfaces, and challenges to establishing controlled experimental setups using the currently available business-oriented platforms. To answer these gaps, we developed LEXI, LLMs Experimentation Interface, an open-source tool enabling the deployment of artificial agents powered by LLM in social interaction behavioural experiments. Using a graphical interface, LEXI allows researchers to build agents, and deploy them in experimental setups along with forms and questionnaires while collecting interaction logs and self-reported data. The outcomes of usability testing indicate LEXI's broad utility, high usability and minimum mental workload requirement, with distinctive benefits observed across disciplines. A proof-of-concept study exploring the tool's efficacy in evaluating social HAIs was conducted, resulting in high-quality data. A comparison of empathetic versus neutral agents indicated that people perceive empathetic agents as more social, and write longer and more positive messages towards them.

Can AI Be as Creative as Humans?

Creativity serves as a cornerstone for societal progress and innovation, but its assessment remains a complex and often subjective endeavor. With the rise of advanced generative AI models capable of tasks once reserved for human creativity, the study of AI's creative potential becomes imperative for its responsible development and application. This paper addresses the complexities in defining and evaluating creativity by introducing a new concept called Relative Creativity. Instead of trying to define creativity universally, we shift the focus to whether AI can match the creative abilities of a hypothetical human. This perspective draws inspiration from the Turing Test, expanding upon it to address the challenges and subjectivities inherent in evaluating creativity. This methodological shift facilitates a statistically quantifiable evaluation of AI's creativity, which we term Statistical Creativity. This approach allows for direct comparisons of AI's creative abilities with those of specific human groups. Building on this foundation, we discuss the application of statistical creativity in contemporary prompt-conditioned autoregressive models. In addition to defining and analyzing a measure of creativity, we introduce an actionable training guideline, effectively bridging the gap between theoretical quantification of creativity and practical model training. Through these multifaceted contributions, the paper establishes a cohesive, continuously evolving, and transformative framework for assessing and fostering statistical creativity in AI models.

Explaining Large Language Models Decisions Using Shapley Values

The emergence of large language models (LLMs) has opened up exciting possibilities for simulating human behavior and cognitive processes, with potential applications in various domains, including marketing research and consumer behavior analysis. However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain due to glaring divergences that suggest fundamentally different underlying processes at play and the sensitivity of LLM responses to prompt variations. This paper presents a novel approach based on Shapley values from cooperative game theory to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output. Through two applications - a discrete choice experiment and an investigation of cognitive biases - we demonstrate how the Shapley value method can uncover what we term "token noise" effects, a phenomenon where LLM decisions are disproportionately influenced by tokens providing minimal informative content. This phenomenon raises concerns about the robustness and generalizability of insights obtained from LLMs in the context of human behavior simulation. Our model-agnostic approach extends its utility to proprietary LLMs, providing a valuable tool for practitioners and researchers to strategically optimize prompts and mitigate apparent cognitive biases. Our findings underscore the need for a more nuanced understanding of the factors driving LLM responses before relying on them as substitutes for human subjects in survey settings. We emphasize the importance of researchers reporting results conditioned on specific prompt templates and exercising caution when drawing parallels between human behavior and LLMs.

Human-Activity AGV Quality Assessment: A Benchmark Dataset and an Objective Evaluation Metric

AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 3,200 AGVs derived from 8 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released in public at https://github.com/zczhang-sjtu/GHVQ.git

IMBUE: Improving Interpersonal Effectiveness through Simulation and Just-in-time Feedback with Human-Language Model Interaction

Navigating certain communication situations can be challenging due to individuals' lack of skills and the interference of strong emotions. However, effective learning opportunities are rarely accessible. In this work, we conduct a human-centered study that uses language models to simulate bespoke communication training and provide just-in-time feedback to support the practice and learning of interpersonal effectiveness skills. We apply the interpersonal effectiveness framework from Dialectical Behavioral Therapy (DBT), DEAR MAN, which focuses on both conversational and emotional skills. We present IMBUE, an interactive training system that provides feedback 25% more similar to experts' feedback, compared to that generated by GPT-4. IMBUE is the first to focus on communication skills and emotion management simultaneously, incorporate experts' domain knowledge in providing feedback, and be grounded in psychology theory. Through a randomized trial of 86 participants, we find that IMBUE's simulation-only variant significantly improves participants' self-efficacy (up to 17%) and reduces negative emotions (up to 25%). With IMBUE's additional just-in-time feedback, participants demonstrate 17% improvement in skill mastery, along with greater enhancements in self-efficacy (27% more) and reduction of negative emotions (16% more) compared to simulation-only. The improvement in skill mastery is the only measure that is transferred to new and more difficult situations; situation specific training is necessary for improving self-efficacy and emotion reduction.

Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation

Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators' prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.

Controlling Personality Style in Dialogue with Zero-Shot Prompt-Based Learning

Prompt-based or in-context learning has achieved high zero-shot performance on many natural language generation (NLG) tasks. Here we explore the performance of prompt-based learning for simultaneously controlling the personality and the semantic accuracy of an NLG for task-oriented dialogue. We experiment with prompt-based learning on the PERSONAGE restaurant recommendation corpus to generate semantically and stylistically-controlled text for 5 different Big-5 personality types: agreeable, disagreeable, conscientious, unconscientious, and extravert. We test two different classes of discrete prompts to generate utterances for a particular personality style: (1) prompts that demonstrate generating directly from a meaning representation that includes a personality specification; and (2) prompts that rely on first converting the meaning representation to a textual pseudo-reference, and then using the pseudo-reference in a textual style transfer (TST) prompt. In each case, we show that we can vastly improve performance by over-generating outputs and ranking them, testing several ranking functions based on automatic metrics for semantic accuracy, personality-match, and fluency. We also test whether NLG personality demonstrations from the restaurant domain can be used with meaning representations for the video game domain to generate personality stylized utterances about video games. Our findings show that the TST prompts produces the highest semantic accuracy (78.46% for restaurants and 87.6% for video games) and personality accuracy (100% for restaurants and 97% for video games). Our results on transferring personality style to video game utterances are surprisingly good. To our knowledge, there is no previous work testing the application of prompt-based learning to simultaneously controlling both style and semantic accuracy in NLG.

Evaluating ChatGPT as a Recommender System: A Rigorous Approach

Recent popularity surrounds large AI language models due to their impressive natural language capabilities. They contribute significantly to language-related tasks, including prompt-based learning, making them valuable for various specific tasks. This approach unlocks their full potential, enhancing precision and generalization. Research communities are actively exploring their applications, with ChatGPT receiving recognition. Despite extensive research on large language models, their potential in recommendation scenarios still needs to be explored. This study aims to fill this gap by investigating ChatGPT's capabilities as a zero-shot recommender system. Our goals include evaluating its ability to use user preferences for recommendations, reordering existing recommendation lists, leveraging information from similar users, and handling cold-start situations. We assess ChatGPT's performance through comprehensive experiments using three datasets (MovieLens Small, Last.FM, and Facebook Book). We compare ChatGPT's performance against standard recommendation algorithms and other large language models, such as GPT-3.5 and PaLM-2. To measure recommendation effectiveness, we employ widely-used evaluation metrics like Mean Average Precision (MAP), Recall, Precision, F1, normalized Discounted Cumulative Gain (nDCG), Item Coverage, Expected Popularity Complement (EPC), Average Coverage of Long Tail (ACLT), Average Recommendation Popularity (ARP), and Popularity-based Ranking-based Equal Opportunity (PopREO). Through thoroughly exploring ChatGPT's abilities in recommender systems, our study aims to contribute to the growing body of research on the versatility and potential applications of large language models. Our experiment code is available on the GitHub repository: https://github.com/sisinflab/Recommender-ChatGPT

ROBBIE: Robust Bias Evaluation of Large Generative Language Models

As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.

On the Measure of Intelligence

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

PersonaGym: Evaluating Persona Agents and LLMs

Persona agents, which are LLM agents that act according to an assigned persona, have demonstrated impressive contextual response capabilities across various applications. These persona agents offer significant enhancements across diverse sectors, such as education, healthcare, and entertainment, where model developers can align agent responses to different user requirements thereby broadening the scope of agent applications. However, evaluating persona agent performance is incredibly challenging due to the complexity of assessing persona adherence in free-form interactions across various environments that are relevant to each persona agent. We introduce PersonaGym, the first dynamic evaluation framework for assessing persona agents, and PersonaScore, the first automated human-aligned metric grounded in decision theory for comprehensive large-scale evaluation of persona agents. Our evaluation of 6 open and closed-source LLMs, using a benchmark encompassing 200 personas and 10,000 questions, reveals significant opportunities for advancement in persona agent capabilities across state-of-the-art models. For example, Claude 3.5 Sonnet only has a 2.97% relative improvement in PersonaScore than GPT 3.5 despite being a much more advanced model. Importantly, we find that increased model size and complexity do not necessarily imply enhanced persona agent capabilities thereby highlighting the pressing need for algorithmic and architectural invention towards faithful and performant persona agents.

Predicting In-game Actions from Interviews of NBA Players

Sports competitions are widely researched in computer and social science, with the goal of understanding how players act under uncertainty. While there is an abundance of computational work on player metrics prediction based on past performance, very few attempts to incorporate out-of-game signals have been made. Specifically, it was previously unclear whether linguistic signals gathered from players' interviews can add information which does not appear in performance metrics. To bridge that gap, we define text classification tasks of predicting deviations from mean in NBA players' in-game actions, which are associated with strategic choices, player behavior and risk, using their choice of language prior to the game. We collected a dataset of transcripts from key NBA players' pre-game interviews and their in-game performance metrics, totalling in 5,226 interview-metric pairs. We design neural models for players' action prediction based on increasingly more complex aspects of the language signals in their open-ended interviews. Our models can make their predictions based on the textual signal alone, or on a combination with signals from past-performance metrics. Our text-based models outperform strong baselines trained on performance metrics only, demonstrating the importance of language usage for action prediction. Moreover, the models that employ both textual input and past-performance metrics produced the best results. Finally, as neural networks are notoriously difficult to interpret, we propose a method for gaining further insight into what our models have learned. Particularly, we present an LDA-based analysis, where we interpret model predictions in terms of correlated topics. We find that our best performing textual model is most associated with topics that are intuitively related to each prediction task and that better models yield higher correlation with more informative topics.

On the Conversational Persuasiveness of Large Language Models: A Randomized Controlled Trial

The development and popularization of large language models (LLMs) have raised concerns that they will be used to create tailor-made, convincing arguments to push false or misleading narratives online. Early work has found that language models can generate content perceived as at least on par and often more persuasive than human-written messages. However, there is still limited knowledge about LLMs' persuasive capabilities in direct conversations with human counterparts and how personalization can improve their performance. In this pre-registered study, we analyze the effect of AI-driven persuasion in a controlled, harmless setting. We create a web-based platform where participants engage in short, multiple-round debates with a live opponent. Each participant is randomly assigned to one of four treatment conditions, corresponding to a two-by-two factorial design: (1) Games are either played between two humans or between a human and an LLM; (2) Personalization might or might not be enabled, granting one of the two players access to basic sociodemographic information about their opponent. We found that participants who debated GPT-4 with access to their personal information had 81.7% (p < 0.01; N=820 unique participants) higher odds of increased agreement with their opponents compared to participants who debated humans. Without personalization, GPT-4 still outperforms humans, but the effect is lower and statistically non-significant (p=0.31). Overall, our results suggest that concerns around personalization are meaningful and have important implications for the governance of social media and the design of new online environments.

AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models

Large language models (LLMs) like ChatGPT have revealed amazing intelligence. How to evaluate the question-solving abilities of LLMs and their degrees of intelligence is a hot-spot but challenging issue. First, the question-solving abilities are interlaced with different ability branches like understanding and massive knowledge categories like mathematics. Second, the inputs of questions are multimodal that may involve text and images. Third, the response format of LLMs is diverse and thus poses great challenges for result extraction and evaluation. In this paper, we propose AGIBench -- a multi-granularity, multimodal, human-referenced, and auto-scoring benchmarking methodology for LLMs. Instead of a collection of blended questions, AGIBench focuses on three typical ability branches and adopts a four-tuple <ability branch, knowledge, difficulty, modal> to label the attributes of each question. First, it supports multi-granularity benchmarking, e.g., per-question, per-ability branch, per-knowledge, per-modal, per-dataset, and per-difficulty level granularities. Second, it contains multimodal input, including text and images. Third, it classifies all the questions into five degrees of difficulty according to the average accuracy rate of abundant educated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid introducing additional unpredictability and provides an auto-scoring method to extract and judge the result. Finally, it defines multi-dimensional metrics, including accuracy under the average, worst, best, and majority voting cases, and repeatability. AGIBench is publically available from https://www.benchcouncil.org/agibench.

Towards Fairness in Personalized Ads Using Impression Variance Aware Reinforcement Learning

Variances in ad impression outcomes across demographic groups are increasingly considered to be potentially indicative of algorithmic bias in personalized ads systems. While there are many definitions of fairness that could be applicable in the context of personalized systems, we present a framework which we call the Variance Reduction System (VRS) for achieving more equitable outcomes in Meta's ads systems. VRS seeks to achieve a distribution of impressions with respect to selected protected class (PC) attributes that more closely aligns the demographics of an ad's eligible audience (a function of advertiser targeting criteria) with the audience who sees that ad, in a privacy-preserving manner. We first define metrics to quantify fairness gaps in terms of ad impression variances with respect to PC attributes including gender and estimated race. We then present the VRS for re-ranking ads in an impression variance-aware manner. We evaluate VRS via extensive simulations over different parameter choices and study the effect of the VRS on the chosen fairness metric. We finally present online A/B testing results from applying VRS to Meta's ads systems, concluding with a discussion of future work. We have deployed the VRS to all users in the US for housing ads, resulting in significant improvement in our fairness metric. VRS is the first large-scale deployed framework for pursuing fairness for multiple PC attributes in online advertising.

CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge

Frontier large language models (LLMs) are developed by researchers and practitioners with skewed cultural backgrounds and on datasets with skewed sources. However, LLMs' (lack of) multicultural knowledge cannot be effectively assessed with current methods for developing benchmarks. Existing multicultural evaluations primarily rely on expensive and restricted human annotations or potentially outdated internet resources. Thus, they struggle to capture the intricacy, dynamics, and diversity of cultural norms. LLM-generated benchmarks are promising, yet risk propagating the same biases they are meant to measure. To synergize the creativity and expert cultural knowledge of human annotators and the scalability and standardizability of LLM-based automation, we introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build truly challenging evaluation dataset for assessing the multicultural knowledge of LLMs, while improving annotators' capabilities and experiences. Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner. Importantly, the increased level of AI assistance (e.g., LLM-generated revision hints) empowers users to create more difficult questions with enhanced perceived creativity of themselves, shedding light on the promises of involving heavier AI assistance in modern evaluation dataset creation procedures. Through a series of 1-hour workshop sessions, we gather CULTURALBENCH-V0.1, a compact yet high-quality evaluation dataset with users' red-teaming attempts, that different families of modern LLMs perform with accuracy ranging from 37.7% to 72.2%, revealing a notable gap in LLMs' multicultural proficiency.

Quantifying Variance in Evaluation Benchmarks

Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.

MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.

Eliciting Personality Traits in Large Language Models

Large Language Models (LLMs) are increasingly being utilized by both candidates and employers in the recruitment context. However, with this comes numerous ethical concerns, particularly related to the lack of transparency in these "black-box" models. Although previous studies have sought to increase the transparency of these models by investigating the personality traits of LLMs, many of the previous studies have provided them with personality assessments to complete. On the other hand, this study seeks to obtain a better understanding of such models by examining their output variations based on different input prompts. Specifically, we use a novel elicitation approach using prompts derived from common interview questions, as well as prompts designed to elicit particular Big Five personality traits to examine whether the models were susceptible to trait-activation like humans are, to measure their personality based on the language used in their outputs. To do so, we repeatedly prompted multiple LMs with different parameter sizes, including Llama-2, Falcon, Mistral, Bloom, GPT, OPT, and XLNet (base and fine tuned versions) and examined their personality using classifiers trained on the myPersonality dataset. Our results reveal that, generally, all LLMs demonstrate high openness and low extraversion. However, whereas LMs with fewer parameters exhibit similar behaviour in personality traits, newer and LMs with more parameters exhibit a broader range of personality traits, with increased agreeableness, emotional stability, and openness. Furthermore, a greater number of parameters is positively associated with openness and conscientiousness. Moreover, fine-tuned models exhibit minor modulations in their personality traits, contingent on the dataset. Implications and directions for future research are discussed.

HREF: Human Response-Guided Evaluation of Instruction Following in Language Models

Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.

A Novel Evaluation Framework for Image2Text Generation

Evaluating the quality of automatically generated image descriptions is challenging, requiring metrics that capture various aspects such as grammaticality, coverage, correctness, and truthfulness. While human evaluation offers valuable insights, its cost and time-consuming nature pose limitations. Existing automated metrics like BLEU, ROUGE, METEOR, and CIDEr aim to bridge this gap but often show weak correlations with human judgment. We address this challenge by introducing a novel evaluation framework rooted in a modern large language model (LLM), such as GPT-4 or Gemini, capable of image generation. In our proposed framework, we begin by feeding an input image into a designated image captioning model, chosen for evaluation, to generate a textual description. Using this description, an LLM then creates a new image. By extracting features from both the original and LLM-created images, we measure their similarity using a designated similarity metric. A high similarity score suggests that the image captioning model has accurately generated textual descriptions, while a low similarity score indicates discrepancies, revealing potential shortcomings in the model's performance. Human-annotated reference captions are not required in our proposed evaluation framework, which serves as a valuable tool for evaluating the effectiveness of image captioning models. Its efficacy is confirmed through human evaluation.

Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond

This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.

VideoGUI: A Benchmark for GUI Automation from Instructional Videos

Graphical User Interface (GUI) automation holds significant promise for enhancing human productivity by assisting with computer tasks. Existing task formulations primarily focus on simple tasks that can be specified by a single, language-only instruction, such as "Insert a new slide." In this work, we introduce VideoGUI, a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks. Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software (e.g., Adobe Photoshop or Stable Diffusion WebUI) and complex activities (e.g., video editing). VideoGUI evaluates GUI assistants through a hierarchical process, allowing for identification of the specific levels at which they may fail: (i) high-level planning: reconstruct procedural subtasks from visual conditions without language descriptions; (ii) middle-level planning: generate sequences of precise action narrations based on visual state (i.e., screenshot) and goals; (iii) atomic action execution: perform specific actions such as accurately clicking designated elements. For each level, we design evaluation metrics across individual dimensions to provide clear signals, such as individual performance in clicking, dragging, typing, and scrolling for atomic action execution. Our evaluation on VideoGUI reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks, especially for high-level planning.

PerSEval: Assessing Personalization in Text Summarizers

Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the degree of personalization of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the degree of responsiveness, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's r = 0.73; Spearman's rho = 0.62; Kendall's tau = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.

BARTScore: Evaluating Generated Text as Text Generation

A wide variety of NLP applications, such as machine translation, summarization, and dialog, involve text generation. One major challenge for these applications is how to evaluate whether such generated texts are actually fluent, accurate, or effective. In this work, we conceptualize the evaluation of generated text as a text generation problem, modeled using pre-trained sequence-to-sequence models. The general idea is that models trained to convert the generated text to/from a reference output or the source text will achieve higher scores when the generated text is better. We operationalize this idea using BART, an encoder-decoder based pre-trained model, and propose a metric BARTScore with a number of variants that can be flexibly applied in an unsupervised fashion to evaluation of text from different perspectives (e.g. informativeness, fluency, or factuality). BARTScore is conceptually simple and empirically effective. It can outperform existing top-scoring metrics in 16 of 22 test settings, covering evaluation of 16 datasets (e.g., machine translation, text summarization) and 7 different perspectives (e.g., informativeness, factuality). Code to calculate BARTScore is available at https://github.com/neulab/BARTScore, and we have released an interactive leaderboard for meta-evaluation at http://explainaboard.nlpedia.ai/leaderboard/task-meval/ on the ExplainaBoard platform, which allows us to interactively understand the strengths, weaknesses, and complementarity of each metric.

Alignment for Honesty

Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at https://github.com/GAIR-NLP/alignment-for-honesty, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.

Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs

Research on the 'cultural alignment' of Large Language Models (LLMs) has emerged in response to growing interest in understanding representation across diverse stakeholders. Current approaches to evaluating cultural alignment borrow social science methodologies but often overlook systematic robustness checks. Here, we identify and test three assumptions behind current evaluation methods: (1) Stability: that cultural alignment is a property of LLMs rather than an artifact of evaluation design, (2) Extrapolability: that alignment with one culture on a narrow set of issues predicts alignment with that culture on others, and (3) Steerability: that LLMs can be reliably prompted to represent specific cultural perspectives. Through experiments examining both explicit and implicit preferences of leading LLMs, we find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering. We show that these inconsistencies can cause the results of an evaluation to be very sensitive to minor variations in methodology. Finally, we demonstrate in a case study on evaluation design that narrow experiments and a selective assessment of evidence can be used to paint an incomplete picture of LLMs' cultural alignment properties. Overall, these results highlight significant limitations of current approaches for evaluating the cultural alignment of LLMs.

Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models

The revolution of artificial intelligence content generation has been rapidly accelerated with the booming text-to-image (T2I) diffusion models. Within just two years of development, it was unprecedentedly of high-quality, diversity, and creativity that the state-of-the-art models could generate. However, a prevalent limitation persists in the effective communication with these popular T2I models, such as Stable Diffusion, using natural language descriptions. This typically makes an engaging image hard to obtain without expertise in prompt engineering with complex word compositions, magic tags, and annotations. Inspired by the recently released DALLE3 - a T2I model directly built-in ChatGPT that talks human language, we revisit the existing T2I systems endeavoring to align human intent and introduce a new task - interactive text to image (iT2I), where people can interact with LLM for interleaved high-quality image generation/edit/refinement and question answering with stronger images and text correspondences using natural language. In addressing the iT2I problem, we present a simple approach that augments LLMs for iT2I with prompting techniques and off-the-shelf T2I models. We evaluate our approach for iT2I in a variety of common-used scenarios under different LLMs, e.g., ChatGPT, LLAMA, Baichuan, and InternLM. We demonstrate that our approach could be a convenient and low-cost way to introduce the iT2I ability for any existing LLMs and any text-to-image models without any training while bringing little degradation on LLMs' inherent capabilities in, e.g., question answering and code generation. We hope this work could draw broader attention and provide inspiration for boosting user experience in human-machine interactions alongside the image quality of the next-generation T2I systems.

Automatic Assessment of Divergent Thinking in Chinese Language with TransDis: A Transformer-Based Language Model Approach

Language models have been increasingly popular for automatic creativity assessment, generating semantic distances to objectively measure the quality of creative ideas. However, there is currently a lack of an automatic assessment system for evaluating creative ideas in the Chinese language. To address this gap, we developed TransDis, a scoring system using transformer-based language models, capable of providing valid originality (quality) and flexibility (variety) scores for Alternative Uses Task (AUT) responses in Chinese. Study 1 demonstrated that the latent model-rated originality factor, comprised of three transformer-based models, strongly predicted human originality ratings, and the model-rated flexibility strongly correlated with human flexibility ratings as well. Criterion validity analyses indicated that model-rated originality and flexibility positively correlated to other creativity measures, demonstrating similar validity to human ratings. Study 2 & 3 showed that TransDis effectively distinguished participants instructed to provide creative vs. common uses (Study 2) and participants instructed to generate ideas in a flexible vs. persistent way (Study 3). Our findings suggest that TransDis can be a reliable and low-cost tool for measuring idea originality and flexibility in Chinese language, potentially paving the way for automatic creativity assessment in other languages. We offer an open platform to compute originality and flexibility for AUT responses in Chinese and over 50 other languages (https://osf.io/59jv2/).

AI as Humanity's Salieri: Quantifying Linguistic Creativity of Language Models via Systematic Attribution of Machine Text against Web Text

Creativity has long been considered one of the most difficult aspect of human intelligence for AI to mimic. However, the rise of Large Language Models (LLMs), like ChatGPT, has raised questions about whether AI can match or even surpass human creativity. We present CREATIVITY INDEX as the first step to quantify the linguistic creativity of a text by reconstructing it from existing text snippets on the web. CREATIVITY INDEX is motivated by the hypothesis that the seemingly remarkable creativity of LLMs may be attributable in large part to the creativity of human-written texts on the web. To compute CREATIVITY INDEX efficiently, we introduce DJ SEARCH, a novel dynamic programming algorithm that can search verbatim and near-verbatim matches of text snippets from a given document against the web. Experiments reveal that the CREATIVITY INDEX of professional human authors is on average 66.2% higher than that of LLMs, and that alignment reduces the CREATIVITY INDEX of LLMs by an average of 30.1%. In addition, we find that distinguished authors like Hemingway exhibit measurably higher CREATIVITY INDEX compared to other human writers. Finally, we demonstrate that CREATIVITY INDEX can be used as a surprisingly effective criterion for zero-shot machine text detection, surpassing the strongest existing zero-shot system, DetectGPT, by a significant margin of 30.2%, and even outperforming the strongest supervised system, GhostBuster, in five out of six domains.

Better Zero-Shot Reasoning with Role-Play Prompting

Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.

Singapore Soundscape Site Selection Survey (S5): Identification of Characteristic Soundscapes of Singapore via Weighted k-means Clustering

The ecological validity of soundscape studies usually rests on a choice of soundscapes that are representative of the perceptual space under investigation. For example, a soundscape pleasantness study might investigate locations with soundscapes ranging from "pleasant" to "annoying". The choice of soundscapes is typically researcher-led, but a participant-led process can reduce selection bias and improve result reliability. Hence, we propose a robust participant-led method to pinpoint characteristic soundscapes possessing arbitrary perceptual attributes. We validate our method by identifying Singaporean soundscapes spanning the perceptual quadrants generated from the "Pleasantness" and "Eventfulness" axes of the ISO 12913-2 circumplex model of soundscape perception, as perceived by local experts. From memory and experience, 67 participants first selected locations corresponding to each perceptual quadrant in each major planning region of Singapore. We then performed weighted k-means clustering on the selected locations, with weights for each location derived from previous frequencies and durations spent in each location by each participant. Weights hence acted as proxies for participant confidence. In total, 62 locations were thereby identified as suitable locations with characteristic soundscapes for further research utilizing the ISO 12913-2 perceptual quadrants. Audio-visual recordings and acoustic characterization of the soundscapes will be made in a future study.

Uncovering Factor Level Preferences to Improve Human-Model Alignment

Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.

Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics

The idea of personality in descriptive psychology, traditionally defined through observable behavior, has now been extended to Large Language Models (LLMs) to better understand their behavior. This raises a question: do LLMs exhibit distinct and consistent personality traits, similar to humans? Existing self-assessment personality tests, while applicable, lack the necessary validity and reliability for precise personality measurements. To address this, we introduce TRAIT, a new tool consisting of 8K multi-choice questions designed to assess the personality of LLMs with validity and reliability. TRAIT is built on the psychometrically validated human questionnaire, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC10X knowledge graph for testing personality in a variety of real scenarios. TRAIT overcomes the reliability and validity issues when measuring personality of LLM with self-assessment, showing the highest scores across three metrics: refusal rate, prompt sensitivity, and option order sensitivity. It reveals notable insights into personality of LLM: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (i.e., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.

Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Self-Supervised Bot Play for Conversational Recommendation with Justifications

Conversational recommender systems offer the promise of interactive, engaging ways for users to find items they enjoy. We seek to improve conversational recommendation via three dimensions: 1) We aim to mimic a common mode of human interaction for recommendation: experts justify their suggestions, a seeker explains why they don't like the item, and both parties iterate through the dialog to find a suitable item. 2) We leverage ideas from conversational critiquing to allow users to flexibly interact with natural language justifications by critiquing subjective aspects. 3) We adapt conversational recommendation to a wider range of domains where crowd-sourced ground truth dialogs are not available. We develop a new two-part framework for training conversational recommender systems. First, we train a recommender system to jointly suggest items and justify its reasoning with subjective aspects. We then fine-tune this model to incorporate iterative user feedback via self-supervised bot-play. Experiments on three real-world datasets demonstrate that our system can be applied to different recommendation models across diverse domains to achieve superior performance in conversational recommendation compared to state-of-the-art methods. We also evaluate our model on human users, showing that systems trained under our framework provide more useful, helpful, and knowledgeable recommendations in warm- and cold-start settings.

BEAT: A Large-Scale Semantic and Emotional Multi-Modal Dataset for Conversational Gestures Synthesis

Achieving realistic, vivid, and human-like synthesized conversational gestures conditioned on multi-modal data is still an unsolved problem due to the lack of available datasets, models and standard evaluation metrics. To address this, we build Body-Expression-Audio-Text dataset, BEAT, which has i) 76 hours, high-quality, multi-modal data captured from 30 speakers talking with eight different emotions and in four different languages, ii) 32 millions frame-level emotion and semantic relevance annotations. Our statistical analysis on BEAT demonstrates the correlation of conversational gestures with facial expressions, emotions, and semantics, in addition to the known correlation with audio, text, and speaker identity. Based on this observation, we propose a baseline model, Cascaded Motion Network (CaMN), which consists of above six modalities modeled in a cascaded architecture for gesture synthesis. To evaluate the semantic relevancy, we introduce a metric, Semantic Relevance Gesture Recall (SRGR). Qualitative and quantitative experiments demonstrate metrics' validness, ground truth data quality, and baseline's state-of-the-art performance. To the best of our knowledge, BEAT is the largest motion capture dataset for investigating human gestures, which may contribute to a number of different research fields, including controllable gesture synthesis, cross-modality analysis, and emotional gesture recognition. The data, code and model are available on https://pantomatrix.github.io/BEAT/.