2 Clean Images are Hard to Reblur: Exploiting the Ill-Posed Inverse Task for Dynamic Scene Deblurring The goal of dynamic scene deblurring is to remove the motion blur in a given image. Typical learning-based approaches implement their solutions by minimizing the L1 or L2 distance between the output and the reference sharp image. Recent attempts adopt visual recognition features in training to improve the perceptual quality. However, those features are primarily designed to capture high-level contexts rather than low-level structures such as blurriness. Instead, we propose a more direct way to make images sharper by exploiting the inverse task of deblurring, namely, reblurring. Reblurring amplifies the remaining blur to rebuild the original blur, however, a well-deblurred clean image with zero-magnitude blur is hard to reblur. Thus, we design two types of reblurring loss functions for better deblurring. The supervised reblurring loss at training stage compares the amplified blur between the deblurred and the sharp images. The self-supervised reblurring loss at inference stage inspects if there noticeable blur remains in the deblurred. Our experimental results on large-scale benchmarks and real images demonstrate the effectiveness of the reblurring losses in improving the perceptual quality of the deblurred images in terms of NIQE and LPIPS scores as well as visual sharpness. 4 authors · Apr 26, 2021
- Retrieval Robust to Object Motion Blur Moving objects are frequently seen in daily life and usually appear blurred in images due to their motion. While general object retrieval is a widely explored area in computer vision, it primarily focuses on sharp and static objects, and retrieval of motion-blurred objects in large image collections remains unexplored. We propose a method for object retrieval in images that are affected by motion blur. The proposed method learns a robust representation capable of matching blurred objects to their deblurred versions and vice versa. To evaluate our approach, we present the first large-scale datasets for blurred object retrieval, featuring images with objects exhibiting varying degrees of blur in various poses and scales. We conducted extensive experiments, showing that our method outperforms state-of-the-art retrieval methods on the new blur-retrieval datasets, which validates the effectiveness of the proposed approach. Code, data, and model are available at https://github.com/Rong-Zou/Retrieval-Robust-to-Object-Motion-Blur. 3 authors · Apr 27, 2024
- Image Deblurring using GAN In recent years, deep generative models, such as Generative Adversarial Network (GAN), has grabbed significant attention in the field of computer vision. This project focuses on the application of GAN in image deblurring with the aim of generating clearer images from blurry inputs caused by factors such as motion blur. However, traditional image restoration techniques have limitations in handling complex blurring patterns. Hence, a GAN-based framework is proposed as a solution to generate high-quality deblurred images. The project defines a GAN model in Tensorflow and trains it with GoPRO dataset. The Generator will intake blur images directly to create fake images to convince the Discriminator which will receive clear images at the same time and distinguish between the real image and the fake image. After obtaining the trained parameters, the model was used to deblur motion-blur images taken in daily life as well as testing set for validation. The result shows that the pretrained network of GAN can obtain sharper pixels in image, achieving an average of 29.3 Peak Signal-to-Noise Ratio (PSNR) and 0.72 Structural Similarity Assessment (SSIM). This help to effectively address the challenges posed by image blurring, leading to the generation of visually pleasing and sharp images. By exploiting the adversarial learning framework, the proposed approach enhances the potential for real-world applications in image restoration. 1 authors · Dec 14, 2023