- Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns This paper describes our submission of the WMT 2020 Shared Task on Sentence Level Direct Assessment, Quality Estimation (QE). In this study, we empirically reveal the mismatching issue when directly adopting BERTScore to QE. Specifically, there exist lots of mismatching errors between the source sentence and translated candidate sentence with token pairwise similarity. In response to this issue, we propose to expose explicit cross-lingual patterns, e.g. word alignments and generation score, to our proposed zero-shot models. Experiments show that our proposed QE model with explicit cross-lingual patterns could alleviate the mismatching issue, thereby improving the performance. Encouragingly, our zero-shot QE method could achieve comparable performance with supervised QE method, and even outperforms the supervised counterpart on 2 out of 6 directions. We expect our work could shed light on the zero-shot QE model improvement. 3 authors · Oct 10, 2020
1 PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research. 2 authors · Mar 7 2
2 ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for Programming Languages Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We release our code and pre-trained checkpoints. 6 authors · Dec 13, 2022
- MIND Your Language: A Multilingual Dataset for Cross-lingual News Recommendation Digital news platforms use news recommenders as the main instrument to cater to the individual information needs of readers. Despite an increasingly language-diverse online community, in which many Internet users consume news in multiple languages, the majority of news recommendation focuses on major, resource-rich languages, and English in particular. Moreover, nearly all news recommendation efforts assume monolingual news consumption, whereas more and more users tend to consume information in at least two languages. Accordingly, the existing body of work on news recommendation suffers from a lack of publicly available multilingual benchmarks that would catalyze development of news recommenders effective in multilingual settings and for low-resource languages. Aiming to fill this gap, we introduce xMIND, an open, multilingual news recommendation dataset derived from the English MIND dataset using machine translation, covering a set of 14 linguistically and geographically diverse languages, with digital footprints of varying sizes. Using xMIND, we systematically benchmark several state-of-the-art content-based neural news recommenders (NNRs) in both zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer scenarios, considering both monolingual and bilingual news consumption patterns. Our findings reveal that (i) current NNRs, even when based on a multilingual language model, suffer from substantial performance losses under ZS-XLT and that (ii) inclusion of target-language data in FS-XLT training has limited benefits, particularly when combined with a bilingual news consumption. Our findings thus warrant a broader research effort in multilingual and cross-lingual news recommendation. The xMIND dataset is available at https://github.com/andreeaiana/xMIND. 3 authors · Mar 26, 2024
1 Probing LLMs for Joint Encoding of Linguistic Categories Large Language Models (LLMs) exhibit impressive performance on a range of NLP tasks, due to the general-purpose linguistic knowledge acquired during pretraining. Existing model interpretability research (Tenney et al., 2019) suggests that a linguistic hierarchy emerges in the LLM layers, with lower layers better suited to solving syntactic tasks and higher layers employed for semantic processing. Yet, little is known about how encodings of different linguistic phenomena interact within the models and to what extent processing of linguistically-related categories relies on the same, shared model representations. In this paper, we propose a framework for testing the joint encoding of linguistic categories in LLMs. Focusing on syntax, we find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy. Our cross-lingual experiments show that the same patterns hold across languages in multilingual LLMs. 7 authors · Oct 28, 2023
13 Studying Large Language Model Generalization with Influence Functions When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs. 17 authors · Aug 7, 2023
- Understanding Cross-Lingual Alignment -- A Survey Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a large number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key. 3 authors · Apr 9, 2024
- Cross-lingual Similarity of Multilingual Representations Revisited Related works used indexes like CKA and variants of CCA to measure the similarity of cross-lingual representations in multilingual language models. In this paper, we argue that assumptions of CKA/CCA align poorly with one of the motivating goals of cross-lingual learning analysis, i.e., explaining zero-shot cross-lingual transfer. We highlight what valuable aspects of cross-lingual similarity these indexes fail to capture and provide a motivating case study demonstrating the problem empirically. Then, we introduce Average Neuron-Wise Correlation (ANC) as a straightforward alternative that is exempt from the difficulties of CKA/CCA and is good specifically in a cross-lingual context. Finally, we use ANC to construct evidence that the previously introduced ``first align, then predict'' pattern takes place not only in masked language models (MLMs) but also in multilingual models with causal language modeling objectives (CLMs). Moreover, we show that the pattern extends to the scaled versions of the MLMs and CLMs (up to 85x original mBERT).Our code is publicly available at \url{https://github.com/TartuNLP/xsim} 2 authors · Dec 4, 2022
1 Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points. 6 authors · Dec 4, 2022
1 Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 266 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity. 3 authors · Jan 24
1 Cross-Lingual Consistency of Factual Knowledge in Multilingual Language Models Multilingual large-scale Pretrained Language Models (PLMs) have been shown to store considerable amounts of factual knowledge, but large variations are observed across languages. With the ultimate goal of ensuring that users with different language backgrounds obtain consistent feedback from the same model, we study the cross-lingual consistency (CLC) of factual knowledge in various multilingual PLMs. To this end, we propose a Ranking-based Consistency (RankC) metric to evaluate knowledge consistency across languages independently from accuracy. Using this metric, we conduct an in-depth analysis of the determining factors for CLC, both at model level and at language-pair level. Among other results, we find that increasing model size leads to higher factual probing accuracy in most languages, but does not improve cross-lingual consistency. Finally, we conduct a case study on CLC when new factual associations are inserted in the PLMs via model editing. Results on a small sample of facts inserted in English reveal a clear pattern whereby the new piece of knowledge transfers only to languages with which English has a high RankC score. 3 authors · Oct 16, 2023
1 Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese Multilingual language models have pushed state-of-the-art in cross-lingual NLP transfer. The majority of zero-shot cross-lingual transfer, however, use one and the same massively multilingual transformer (e.g., mBERT or XLM-R) to transfer to all target languages, irrespective of their typological, etymological, and phylogenetic relations to other languages. In particular, readily available data and models of resource-rich sibling languages are often ignored. In this work, we empirically show, in a case study for Faroese -- a low-resource language from a high-resource language family -- that by leveraging the phylogenetic information and departing from the 'one-size-fits-all' paradigm, one can improve cross-lingual transfer to low-resource languages. In particular, we leverage abundant resources of other Scandinavian languages (i.e., Danish, Norwegian, Swedish, and Icelandic) for the benefit of Faroese. Our evaluation results show that we can substantially improve the transfer performance to Faroese by exploiting data and models of closely-related high-resource languages. Further, we release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS), and new language models trained on all Scandinavian languages. 4 authors · Apr 18, 2023
2 Pixel Sentence Representation Learning Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist 10 authors · Feb 12, 2024
- Similarity of Sentence Representations in Multilingual LMs: Resolving Conflicting Literature and Case Study of Baltic Languages Low-resource languages, such as Baltic languages, benefit from Large Multilingual Models (LMs) that possess remarkable cross-lingual transfer performance capabilities. This work is an interpretation and analysis study into cross-lingual representations of Multilingual LMs. Previous works hypothesized that these LMs internally project representations of different languages into a shared cross-lingual space. However, the literature produced contradictory results. In this paper, we revisit the prior work claiming that "BERT is not an Interlingua" and show that different languages do converge to a shared space in such language models with another choice of pooling strategy or similarity index. Then, we perform cross-lingual representational analysis for the two most popular multilingual LMs employing 378 pairwise language comparisons. We discover that while most languages share joint cross-lingual space, some do not. However, we observe that Baltic languages do belong to that shared space. The code is available at https://github.com/TartuNLP/xsim. 2 authors · Sep 2, 2021
- An Empirical Study on Cross-X Transfer for Legal Judgment Prediction Cross-lingual transfer learning has proven useful in a variety of Natural Language Processing (NLP) tasks, but it is understudied in the context of legal NLP, and not at all in Legal Judgment Prediction (LJP). We explore transfer learning techniques on LJP using the trilingual Swiss-Judgment-Prediction dataset, including cases written in three languages. We find that cross-lingual transfer improves the overall results across languages, especially when we use adapter-based fine-tuning. Finally, we further improve the model's performance by augmenting the training dataset with machine-translated versions of the original documents, using a 3x larger training corpus. Further on, we perform an analysis exploring the effect of cross-domain and cross-regional transfer, i.e., train a model across domains (legal areas), or regions. We find that in both settings (legal areas, origin regions), models trained across all groups perform overall better, while they also have improved results in the worst-case scenarios. Finally, we report improved results when we ambitiously apply cross-jurisdiction transfer, where we further augment our dataset with Indian legal cases. 3 authors · Sep 25, 2022
- The Impact of Cross-Lingual Adjustment of Contextual Word Representations on Zero-Shot Transfer Large multilingual language models such as mBERT or XLM-R enable zero-shot cross-lingual transfer in various IR and NLP tasks. Cao et al. (2020) proposed a data- and compute-efficient method for cross-lingual adjustment of mBERT that uses a small parallel corpus to make embeddings of related words across languages similar to each other. They showed it to be effective in NLI for five European languages. In contrast we experiment with a typologically diverse set of languages (Spanish, Russian, Vietnamese, and Hindi) and extend their original implementations to new tasks (XSR, NER, and QA) and an additional training regime (continual learning). Our study reproduced gains in NLI for four languages, showed improved NER, XSR, and cross-lingual QA results in three languages (though some cross-lingual QA gains were not statistically significant), while mono-lingual QA performance never improved and sometimes degraded. Analysis of distances between contextualized embeddings of related and unrelated words (across languages) showed that fine-tuning leads to "forgetting" some of the cross-lingual alignment information. Based on this observation, we further improved NLI performance using continual learning. 4 authors · Apr 13, 2022
- CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs We present CrossSum, a large-scale cross-lingual abstractive summarization dataset comprising 1.7 million article-summary samples in 1500+ language pairs. We create CrossSum by aligning identical articles written in different languages via cross-lingual retrieval from a multilingual summarization dataset. We propose a multi-stage data sampling algorithm to effectively train a cross-lingual summarization model capable of summarizing an article in any target language. We also propose LaSE, a new metric for automatically evaluating model-generated summaries and showing a strong correlation with ROUGE. Performance on ROUGE and LaSE indicate that pretrained models fine-tuned on CrossSum consistently outperform baseline models, even when the source and target language pairs are linguistically distant. To the best of our knowledge, CrossSum is the largest cross-lingual summarization dataset and the first-ever that does not rely solely on English as the pivot language. We are releasing the dataset, alignment and training scripts, and the models to spur future research on cross-lingual abstractive summarization. The resources can be found at https://github.com/csebuetnlp/CrossSum. 6 authors · Dec 16, 2021
- XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks. 6 authors · Mar 24, 2020
- A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings. Our method integrates multiple word embeddings created from complementary techniques, textual sources, knowledge bases and languages. Existing word vectors are projected to a common semantic space using linear transformations and averaging. With our method the resulting meta-embeddings maintain the dimensionality of the original embeddings without losing information while dealing with the out-of-vocabulary problem. An extensive empirical evaluation demonstrates the effectiveness of our technique with respect to previous work on various intrinsic and extrinsic multilingual evaluations, obtaining competitive results for Semantic Textual Similarity and state-of-the-art performance for word similarity and POS tagging (English and Spanish). The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities. In other words, we can leverage pre-trained source embeddings from a resource-rich language in order to improve the word representations for under-resourced languages. 3 authors · Jan 17, 2020
- Towards a Common Understanding of Contributing Factors for Cross-Lingual Transfer in Multilingual Language Models: A Review In recent years, pre-trained Multilingual Language Models (MLLMs) have shown a strong ability to transfer knowledge across different languages. However, given that the aspiration for such an ability has not been explicitly incorporated in the design of the majority of MLLMs, it is challenging to obtain a unique and straightforward explanation for its emergence. In this review paper, we survey literature that investigates different factors contributing to the capacity of MLLMs to perform zero-shot cross-lingual transfer and subsequently outline and discuss these factors in detail. To enhance the structure of this review and to facilitate consolidation with future studies, we identify five categories of such factors. In addition to providing a summary of empirical evidence from past studies, we identify consensuses among studies with consistent findings and resolve conflicts among contradictory ones. Our work contextualizes and unifies existing research streams which aim at explaining the cross-lingual potential of MLLMs. This review provides, first, an aligned reference point for future research and, second, guidance for a better-informed and more efficient way of leveraging the cross-lingual capacity of MLLMs. 3 authors · May 26, 2023
- MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}. 11 authors · Aug 12, 2023
- XOR QA: Cross-lingual Open-Retrieval Question Answering Multilingual question answering tasks typically assume answers exist in the same language as the question. Yet in practice, many languages face both information scarcity -- where languages have few reference articles -- and information asymmetry -- where questions reference concepts from other cultures. This work extends open-retrieval question answering to a cross-lingual setting enabling questions from one language to be answered via answer content from another language. We construct a large-scale dataset built on questions from TyDi QA lacking same-language answers. Our task formulation, called Cross-lingual Open Retrieval Question Answering (XOR QA), includes 40k information-seeking questions from across 7 diverse non-English languages. Based on this dataset, we introduce three new tasks that involve cross-lingual document retrieval using multi-lingual and English resources. We establish baselines with state-of-the-art machine translation systems and cross-lingual pretrained models. Experimental results suggest that XOR QA is a challenging task that will facilitate the development of novel techniques for multilingual question answering. Our data and code are available at https://nlp.cs.washington.edu/xorqa. 6 authors · Oct 22, 2020
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy. 4 authors · Apr 18, 2024
- X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including token alignment from machine translation, textual entailment methods that localize their decisions, and prompting LLMs. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance. 3 authors · Sep 16, 2023
- Identifying the Correlation Between Language Distance and Cross-Lingual Transfer in a Multilingual Representation Space Prior research has investigated the impact of various linguistic features on cross-lingual transfer performance. In this study, we investigate the manner in which this effect can be mapped onto the representation space. While past studies have focused on the impact on cross-lingual alignment in multilingual language models during fine-tuning, this study examines the absolute evolution of the respective language representation spaces produced by MLLMs. We place a specific emphasis on the role of linguistic characteristics and investigate their inter-correlation with the impact on representation spaces and cross-lingual transfer performance. Additionally, this paper provides preliminary evidence of how these findings can be leveraged to enhance transfer to linguistically distant languages. 3 authors · May 3, 2023
- Event Extraction in Basque: Typologically motivated Cross-Lingual Transfer-Learning Analysis Cross-lingual transfer-learning is widely used in Event Extraction for low-resource languages and involves a Multilingual Language Model that is trained in a source language and applied to the target language. This paper studies whether the typological similarity between source and target languages impacts the performance of cross-lingual transfer, an under-explored topic. We first focus on Basque as the target language, which is an ideal target language because it is typologically different from surrounding languages. Our experiments on three Event Extraction tasks show that the shared linguistic characteristic between source and target languages does have an impact on transfer quality. Further analysis of 72 language pairs reveals that for tasks that involve token classification such as entity and event trigger identification, common writing script and morphological features produce higher quality cross-lingual transfer. In contrast, for tasks involving structural prediction like argument extraction, common word order is the most relevant feature. In addition, we show that when increasing the training size, not all the languages scale in the same way in the cross-lingual setting. To perform the experiments we introduce EusIE, an event extraction dataset for Basque, which follows the Multilingual Event Extraction dataset (MEE). The dataset and code are publicly available. 5 authors · Apr 9, 2024
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora. But can these models relate corresponding concepts across languages, effectively being crosslingual? This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks. We observe that while these models show promising surface-level crosslingual abilities on machine translation and embedding space analyses, they struggle with deeper crosslingual knowledge transfer, revealing a crosslingual knowledge barrier in both general (MMLU benchmark) and domain-specific (Harry Potter quiz) contexts. We observe that simple inference-time mitigation methods offer only limited improvement. On the other hand, we propose fine-tuning of LLMs on mixed-language data, which effectively reduces these gaps, even when using out-of-domain datasets like WikiText. Our findings suggest the need for explicit optimization to unlock the full crosslingual potential of LLMs. Our code is publicly available at https://github.com/google-research/crosslingual-knowledge-barriers. 9 authors · Jun 23, 2024
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm. 10 authors · Jul 15, 2020
- Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment Multilingual pre-trained models (mPLMs) have shown impressive performance on cross-lingual transfer tasks. However, the transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language, even though the two languages may be related or share parts of their vocabularies. Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method aiming to improve the cross-lingual alignment between languages using diverse scripts. We select two areal language groups, Mediterranean-Amharic-Farsi and South+East Asian Languages, wherein the languages are mutually influenced but use different scripts. We apply our method to these language groups and conduct extensive experiments on a spectrum of downstream tasks. The results show that after PPA, models consistently outperform the original model (up to 50% for some tasks) in English-centric transfer. In addition, when we use languages other than English as sources in transfer, our method obtains even larger improvements. We will make our code and models publicly available at https://github.com/cisnlp/Transliteration-PPA. 3 authors · Jun 28, 2024
- Sinhala-English Word Embedding Alignment: Introducing Datasets and Benchmark for a Low Resource Language Since their inception, embeddings have become a primary ingredient in many flavours of Natural Language Processing (NLP) tasks supplanting earlier types of representation. Even though multilingual embeddings have been used for the increasing number of multilingual tasks, due to the scarcity of parallel training data, low-resource languages such as Sinhala, tend to focus more on monolingual embeddings. Then when it comes to the aforementioned multi-lingual tasks, it is challenging to utilize these monolingual embeddings given that even if the embedding spaces have a similar geometric arrangement due to an identical training process, the embeddings of the languages considered are not aligned. This is solved by the embedding alignment task. Even in this, high-resource language pairs are in the limelight while low-resource languages such as Sinhala which is in dire need of help seem to have fallen by the wayside. In this paper, we try to align Sinhala and English word embedding spaces based on available alignment techniques and introduce a benchmark for Sinhala language embedding alignment. In addition to that, to facilitate the supervised alignment, as an intermediate task, we also introduce Sinhala-English alignment datasets. These datasets serve as our anchor datasets for supervised word embedding alignment. Even though we do not obtain results comparable to the high-resource languages such as French, German, or Chinese, we believe our work lays the groundwork for more specialized alignment between English and Sinhala embeddings. 2 authors · Nov 17, 2023
- A cost-benefit analysis of cross-lingual transfer methods An effective method for cross-lingual transfer is to fine-tune a bilingual or multilingual model on a supervised dataset in one language and evaluating it on another language in a zero-shot manner. Translating examples at training time or inference time are also viable alternatives. However, there are costs associated with these methods that are rarely addressed in the literature. In this work, we analyze cross-lingual methods in terms of their effectiveness (e.g., accuracy), development and deployment costs, as well as their latencies at inference time. Our experiments on three tasks indicate that the best cross-lingual method is highly task-dependent. Finally, by combining zero-shot and translation methods, we achieve the state-of-the-art in two of the three datasets used in this work. Based on these results, we question the need for manually labeled training data in a target language. Code and translated datasets are available at https://github.com/unicamp-dl/cross-lingual-analysis 5 authors · May 14, 2021
- Augmenting Passage Representations with Query Generation for Enhanced Cross-Lingual Dense Retrieval Effective cross-lingual dense retrieval methods that rely on multilingual pre-trained language models (PLMs) need to be trained to encompass both the relevance matching task and the cross-language alignment task. However, cross-lingual data for training is often scarcely available. In this paper, rather than using more cross-lingual data for training, we propose to use cross-lingual query generation to augment passage representations with queries in languages other than the original passage language. These augmented representations are used at inference time so that the representation can encode more information across the different target languages. Training of a cross-lingual query generator does not require additional training data to that used for the dense retriever. The query generator training is also effective because the pre-training task for the generator (T5 text-to-text training) is very similar to the fine-tuning task (generation of a query). The use of the generator does not increase query latency at inference and can be combined with any cross-lingual dense retrieval method. Results from experiments on a benchmark cross-lingual information retrieval dataset show that our approach can improve the effectiveness of existing cross-lingual dense retrieval methods. Implementation of our methods, along with all generated query files are made publicly available at https://github.com/ielab/xQG4xDR. 3 authors · May 6, 2023
- A Three-Pronged Approach to Cross-Lingual Adaptation with Multilingual LLMs Low-resource languages, by its very definition, tend to be under represented in the pre-training corpora of Large Language Models. In this work, we investigate three low-resource cross-lingual approaches that enable an LLM adapt to tasks in previously unseen languages. Llama-2 is an LLM where Indic languages, among many other language families, contribute to less than 0.005% of the total 2 trillion token pre-training corpora. In this work, we experiment with the English-dominated Llama-2 for cross-lingual transfer to three Indic languages, Bengali, Hindi, and Tamil as target languages. We study three approaches for cross-lingual transfer, under ICL and fine-tuning. One, we find that adding additional supervisory signals via a dominant language in the LLM, leads to improvements, both under in-context learning and fine-tuning. Two, adapting the target languages to word reordering may be beneficial under ICL, but its impact diminishes with fine tuning. Finally, continued pre-training in one low-resource language can improve model performance for other related low-resource languages. 4 authors · Jun 25, 2024
11 Multilingual Instruction Tuning With Just a Pinch of Multilinguality As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. One promising approach is cross-lingual transfer, where a model acquires specific functionality on some language by finetuning on another language. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in several languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that increasing the number of languages in the instruction tuning set from 1 to only 2, 3, or 4 increases cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses. 6 authors · Jan 3, 2024
- L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy. 5 authors · Apr 22, 2023
- mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models Recent multilingual pretrained language models (mPLMs) have been shown to encode strong language-specific signals, which are not explicitly provided during pretraining. It remains an open question whether it is feasible to employ mPLMs to measure language similarity, and subsequently use the similarity results to select source languages for boosting cross-lingual transfer. To investigate this, we propose mPLMSim, a language similarity measure that induces the similarities across languages from mPLMs using multi-parallel corpora. Our study shows that mPLM-Sim exhibits moderately high correlations with linguistic similarity measures, such as lexicostatistics, genealogical language family, and geographical sprachbund. We also conduct a case study on languages with low correlation and observe that mPLM-Sim yields more accurate similarity results. Additionally, we find that similarity results vary across different mPLMs and different layers within an mPLM. We further investigate whether mPLMSim is effective for zero-shot cross-lingual transfer by conducting experiments on both low-level syntactic tasks and high-level semantic tasks. The experimental results demonstrate that mPLM-Sim is capable of selecting better source languages than linguistic measures, resulting in a 1%-2% improvement in zero-shot cross-lingual transfer performance. 5 authors · May 23, 2023
- A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains. 6 authors · Apr 1, 2024
- The Less the Merrier? Investigating Language Representation in Multilingual Models Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them. 3 authors · Oct 19, 2023
- Model and Data Transfer for Cross-Lingual Sequence Labelling in Zero-Resource Settings Zero-resource cross-lingual transfer approaches aim to apply supervised models from a source language to unlabelled target languages. In this paper we perform an in-depth study of the two main techniques employed so far for cross-lingual zero-resource sequence labelling, based either on data or model transfer. Although previous research has proposed translation and annotation projection (data-based cross-lingual transfer) as an effective technique for cross-lingual sequence labelling, in this paper we experimentally demonstrate that high capacity multilingual language models applied in a zero-shot (model-based cross-lingual transfer) setting consistently outperform data-based cross-lingual transfer approaches. A detailed analysis of our results suggests that this might be due to important differences in language use. More specifically, machine translation often generates a textual signal which is different to what the models are exposed to when using gold standard data, which affects both the fine-tuning and evaluation processes. Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available. 3 authors · Oct 23, 2022
- XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite (MultiCheckList) and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models. The leaderboard and code for XTREME-R will be made available at https://sites.research.google/xtreme and https://github.com/google-research/xtreme respectively. 11 authors · Apr 15, 2021
- Bridging Cross-Lingual Gaps During Leveraging the Multilingual Sequence-to-Sequence Pretraining for Text Generation and Understanding For multilingual sequence-to-sequence pretrained language models (multilingual Seq2Seq PLMs), e.g. mBART, the self-supervised pretraining task is trained on a wide range of monolingual languages, e.g. 25 languages from CommonCrawl, while the downstream cross-lingual tasks generally progress on a bilingual language subset, e.g. English-German, making there exists the data discrepancy, namely domain discrepancy, and cross-lingual learning objective discrepancy, namely task discrepancy, between the pretraining and finetuning stages. To bridge the above cross-lingual domain and task gaps, we extend the vanilla pretrain-finetune pipeline with extra code-switching restore task. Specifically, the first stage employs the self-supervised code-switching restore task as a pretext task, allowing the multilingual Seq2Seq PLMs to acquire some in-domain alignment information. And for the second stage, we fine-tune the model on downstream data normally. Experiments on both NLG evaluation (12 bilingual translation tasks, 30 zero-shot translation tasks, and 2 cross-lingual summarization tasks) and NLU evaluation (7 cross-lingual natural language inference tasks) show our model outperforms the strong baseline mBART with standard finetuning strategy, consistently. Analyses indicate our approach could narrow the Euclidean distance of cross-lingual sentence representations, and improve the model generalization with trivial computational cost. We release the code at: https://github.com/zanchangtong/CSR4mBART. 6 authors · Apr 16, 2022
1 Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? The vast majority of today's large language models are English-centric, having been pretrained predominantly on English text. Yet, in order to meet user expectations, models need to be able to respond appropriately in multiple languages once deployed in downstream applications. Given limited exposure to other languages during pretraining, cross-lingual transfer is important for achieving decent performance in non-English settings. In this work, we investigate just how much multilinguality is required during finetuning to elicit strong cross-lingual generalisation across a range of tasks and target languages. We find that, compared to English-only finetuning, multilingual instruction tuning with as few as three languages significantly improves a model's cross-lingual transfer abilities on generative tasks that assume input/output language agreement, while being of less importance for highly structured tasks. Our code and data is available at https://github.com/ZurichNLP/multilingual-instruction-tuning. 3 authors · Dec 19, 2023
- Linear Cross-Lingual Mapping of Sentence Embeddings Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings. 3 authors · May 23, 2023
- One ruler to measure them all: Benchmarking multilingual long-context language models We present ONERULER, a multilingual benchmark designed to evaluate long-context language models across 26 languages. ONERULER adapts the English-only RULER benchmark (Hsieh et al., 2024) by including seven synthetic tasks that test both retrieval and aggregation, including new variations of the "needle-in-a-haystack" task that allow for the possibility of a nonexistent needle. We create ONERULER through a two-step process, first writing English instructions for each task and then collaborating with native speakers to translate them into 25 additional languages. Experiments with both open-weight and closed LLMs reveal a widening performance gap between low- and high-resource languages as context length increases from 8K to 128K tokens. Surprisingly, English is not the top-performing language on long-context tasks (ranked 6th out of 26), with Polish emerging as the top language. Our experiments also show that many LLMs (particularly OpenAI's o3-mini-high) incorrectly predict the absence of an answer, even in high-resource languages. Finally, in cross-lingual scenarios where instructions and context appear in different languages, performance can fluctuate by up to 20% depending on the instruction language. We hope the release of ONERULER will facilitate future research into improving multilingual and cross-lingual long-context training pipelines. 4 authors · Mar 3
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
6 BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs' responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM's response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges. We make our dataset and code publicly available at https://github.com/manestay/bordIRlines. 5 authors · Oct 1, 2024 4
- Hyperpolyglot LLMs: Cross-Lingual Interpretability in Token Embeddings Cross-lingual transfer learning is an important property of multilingual large language models (LLMs). But how do LLMs represent relationships between languages? Every language model has an input layer that maps tokens to vectors. This ubiquitous layer of language models is often overlooked. We find that similarities between these input embeddings are highly interpretable and that the geometry of these embeddings differs between model families. In one case (XLM-RoBERTa), embeddings encode language: tokens in different writing systems can be linearly separated with an average of 99.2% accuracy. Another family (mT5) represents cross-lingual semantic similarity: the 50 nearest neighbors for any token represent an average of 7.61 writing systems, and are frequently translations. This result is surprising given that there is no explicit parallel cross-lingual training corpora and no explicit incentive for translations in pre-training objectives. Our research opens the door for investigations in 1) The effect of pre-training and model architectures on representations of languages and 2) The applications of cross-lingual representations embedded in language models. 2 authors · Nov 29, 2023
- Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines. 5 authors · Jan 30, 2024
- Adapting Multilingual Embedding Models to Historical Luxembourgish The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models, typically evaluated on contemporary texts, face challenges with historical digitized content due to OCR noise and outdated spellings. We explore the use of multilingual embeddings for cross-lingual semantic search on historical Luxembourgish, a low-resource language. We collect historical Luxembourgish news articles spanning various time periods and use GPT-4o to segment and translate them into closely related languages, creating 20,000 parallel training sentences per language pair. We further create a historical bitext mining evaluation set and find that these models struggle to perform cross-lingual search on historical Luxembourgish. To address this, we propose a simple adaptation method using in-domain training data, achieving up to 98\% accuracy in cross-lingual evaluations. We release our adapted models and historical Luxembourgish-German/French bitexts to support further research. 4 authors · Feb 11
- Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI dataset), cross-lingual document classification (MLDoc dataset) and parallel corpus mining (BUCC dataset) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our implementation, the pre-trained encoder and the multilingual test set are available at https://github.com/facebookresearch/LASER 2 authors · Dec 26, 2018
- LLM for Everyone: Representing the Underrepresented in Large Language Models Natural language processing (NLP) has witnessed a profound impact of large language models (LLMs) that excel in a multitude of tasks. However, the limitation of LLMs in multilingual settings, particularly in underrepresented languages, remains a significant hurdle. This thesis aims to bridge the gap in NLP research and development by focusing on underrepresented languages. A comprehensive evaluation of LLMs is conducted to assess their capabilities in these languages, revealing the challenges of multilingual and multicultural generalization. Addressing the multilingual generalization gap, this thesis proposes data-and-compute-efficient methods to mitigate the disparity in LLM ability in underrepresented languages, allowing better generalization on underrepresented languages without the loss of task generalization ability. The proposed solutions cover cross-lingual continual instruction tuning, retrieval-based cross-lingual in-context learning, and in-context query alignment. Furthermore, a novel method to measure cultural values alignment between LLMs operating in different languages is proposed, ensuring cultural sensitivity and inclusivity. These contributions aim to enhance the multilingual and multicultural alignment of LLMs in underrepresented languages, ultimately advancing the NLP field toward greater equality and inclusiveness. 1 authors · Sep 20, 2024
- Multilingual Event Linking to Wikidata We present a task of multilingual linking of events to a knowledge base. We automatically compile a large-scale dataset for this task, comprising of 1.8M mentions across 44 languages referring to over 10.9K events from Wikidata. We propose two variants of the event linking task: 1) multilingual, where event descriptions are from the same language as the mention, and 2) crosslingual, where all event descriptions are in English. On the two proposed tasks, we compare multiple event linking systems including BM25+ (Lv and Zhai, 2011) and multilingual adaptations of the biencoder and crossencoder architectures from BLINK (Wu et al., 2020). In our experiments on the two task variants, we find both biencoder and crossencoder models significantly outperform the BM25+ baseline. Our results also indicate that the crosslingual task is in general more challenging than the multilingual task. To test the out-of-domain generalization of the proposed linking systems, we additionally create a Wikinews-based evaluation set. We present qualitative analysis highlighting various aspects captured by the proposed dataset, including the need for temporal reasoning over context and tackling diverse event descriptions across languages. 3 authors · Apr 13, 2022
- Are Multilingual Models Effective in Code-Switching? Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters. 6 authors · Mar 24, 2021
- Multilingual Large Language Models: A Systematic Survey This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers. 10 authors · Nov 17, 2024
1 How Transliterations Improve Crosslingual Alignment Recent studies have shown that post-aligning multilingual pretrained language models (mPLMs) using alignment objectives on both original and transliterated data can improve crosslingual alignment. This improvement further leads to better crosslingual transfer performance. However, it remains unclear how and why a better crosslingual alignment is achieved, as this technique only involves transliterations, and does not use any parallel data. This paper attempts to explicitly evaluate the crosslingual alignment and identify the key elements in transliteration-based approaches that contribute to better performance. For this, we train multiple models under varying setups for two pairs of related languages: (1) Polish and Ukrainian and (2) Hindi and Urdu. To assess alignment, we define four types of similarities based on sentence representations. Our experiments show that adding transliterations alone improves the overall similarities, even for random sentence pairs. With the help of auxiliary alignment objectives, especially the contrastive objective, the model learns to distinguish matched from random pairs, leading to better alignments. However, we also show that better alignment does not always yield better downstream performance, suggesting that further research is needed to clarify the connection between alignment and performance. 9 authors · Sep 25, 2024
- ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in. 14 authors · Feb 28
- XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apur\'imac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa. 6 authors · May 1, 2020
1 Empowering Cross-lingual Abilities of Instruction-tuned Large Language Models by Translation-following demonstrations The language ability of Large Language Models (LLMs) is often unbalanced towards English because of the imbalance in the distribution of the pre-training data. This disparity is demanded in further fine-tuning and affecting the cross-lingual abilities of LLMs. In this paper, we propose to empower Instructiontuned LLMs (It-LLMs) in languages other than English by building semantic alignment between them. Hence, we propose CrossAlpaca, an It-LLM with cross-lingual instruction-following and Translation-following demonstrations to improve semantic alignment between languages. We validate our approach on the multilingual Question Answering (QA) benchmarks XQUAD and MLQA and adapted versions of MMLU and BBH. Our models, tested over six different languages, outperform the It-LLMs tuned on monolingual data. The final results show that instruction tuning on non-English data is not enough and that semantic alignment can be further improved by Translation-following demonstrations. 3 authors · Aug 27, 2023
1 RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models models via Romanization This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages, specifically those using non-Latin scripts. We propose an innovative approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Focusing on Hindi, we demonstrate through Hindi-to-English translation and sentiment analysis tasks that romanized text not only significantly improves inference efficiency due to its lower fertility compared to native text but also achieves competitive performance with limited pre-training. Additionally, our novel multi-script prompting approach, which combines romanized and native texts, shows promise in further enhancing task performance. These findings suggest the potential of romanization in bridging the language gap for LLM applications, with future work aimed at expanding this approach to more languages and tasks. 5 authors · Jan 25, 2024
- XAlign: Cross-lingual Fact-to-Text Alignment and Generation for Low-Resource Languages Multiple critical scenarios (like Wikipedia text generation given English Infoboxes) need automated generation of descriptive text in low resource (LR) languages from English fact triples. Previous work has focused on English fact-to-text (F2T) generation. To the best of our knowledge, there has been no previous attempt on cross-lingual alignment or generation for LR languages. Building an effective cross-lingual F2T (XF2T) system requires alignment between English structured facts and LR sentences. We propose two unsupervised methods for cross-lingual alignment. We contribute XALIGN, an XF2T dataset with 0.45M pairs across 8 languages, of which 5402 pairs have been manually annotated. We also train strong baseline XF2T generation models on the XAlign dataset. 6 authors · Feb 1, 2022
- How multilingual is Multilingual BERT? In this paper, we show that Multilingual BERT (M-BERT), released by Devlin et al. (2018) as a single language model pre-trained from monolingual corpora in 104 languages, is surprisingly good at zero-shot cross-lingual model transfer, in which task-specific annotations in one language are used to fine-tune the model for evaluation in another language. To understand why, we present a large number of probing experiments, showing that transfer is possible even to languages in different scripts, that transfer works best between typologically similar languages, that monolingual corpora can train models for code-switching, and that the model can find translation pairs. From these results, we can conclude that M-BERT does create multilingual representations, but that these representations exhibit systematic deficiencies affecting certain language pairs. 3 authors · Jun 4, 2019
- How does a Multilingual LM Handle Multiple Languages? Multilingual language models have significantly advanced due to rapid progress in natural language processing. Models like BLOOM 1.7B, trained on diverse multilingual datasets, aim to bridge linguistic gaps. However, their effectiveness in capturing linguistic knowledge, particularly for low-resource languages, remains an open question. This study critically examines MLMs capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer. While these models perform well for high-resource languages, they struggle with less-represented ones. Additionally, traditional evaluation methods often overlook their internal syntactic and semantic encoding. This research addresses key limitations through three objectives. First, it assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity. Second, it examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures. Third, it explores cross-lingual knowledge transfer by evaluating generalization from high-resource to low-resource languages in sentiment analysis and text classification. By leveraging linguistic probing, performance metrics, and visualizations, this study provides insights into the strengths and limitations of MLMs. The findings aim to enhance multilingual NLP models, ensuring better support for both high- and low-resource languages, thereby promoting inclusivity in language technologies. 3 authors · Feb 6
4 ScandEval: A Benchmark for Scandinavian Natural Language Processing This paper introduces a Scandinavian benchmarking platform, ScandEval, which can benchmark any pretrained model on four different tasks in the Scandinavian languages. The datasets used in two of the tasks, linguistic acceptability and question answering, are new. We develop and release a Python package and command-line interface, scandeval, which can benchmark any model that has been uploaded to the Hugging Face Hub, with reproducible results. Using this package, we benchmark more than 100 Scandinavian or multilingual models and present the results of these in an interactive online leaderboard, as well as provide an analysis of the results. The analysis shows that there is substantial cross-lingual transfer among the Mainland Scandinavian languages (Danish, Swedish and Norwegian), with limited cross-lingual transfer between the group of Mainland Scandinavian languages and the group of Insular Scandinavian languages (Icelandic and Faroese). The benchmarking results also show that the investment in language technology in Norway, Sweden and Denmark has led to language models that outperform massively multilingual models such as XLM-RoBERTa and mDeBERTaV3. We release the source code for both the package and leaderboard. 1 authors · Apr 3, 2023
- mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke. 3 authors · Oct 15, 2021
- Massively Multilingual Transfer for NER In cross-lingual transfer, NLP models over one or more source languages are applied to a low-resource target language. While most prior work has used a single source model or a few carefully selected models, here we consider a `massive' setting with many such models. This setting raises the problem of poor transfer, particularly from distant languages. We propose two techniques for modulating the transfer, suitable for zero-shot or few-shot learning, respectively. Evaluating on named entity recognition, we show that our techniques are much more effective than strong baselines, including standard ensembling, and our unsupervised method rivals oracle selection of the single best individual model. 3 authors · Feb 1, 2019
- UniBridge: A Unified Approach to Cross-Lingual Transfer Learning for Low-Resource Languages In this paper, we introduce UniBridge (Cross-Lingual Transfer Learning with Optimized Embeddings and Vocabulary), a comprehensive approach developed to improve the effectiveness of Cross-Lingual Transfer Learning, particularly in languages with limited resources. Our approach tackles two essential elements of a language model: the initialization of embeddings and the optimal vocabulary size. Specifically, we propose a novel embedding initialization method that leverages both lexical and semantic alignment for a language. In addition, we present a method for systematically searching for the optimal vocabulary size, ensuring a balance between model complexity and linguistic coverage. Our experiments across multilingual datasets show that our approach greatly improves the F1-Score in several languages. UniBridge is a robust and adaptable solution for cross-lingual systems in various languages, highlighting the significance of initializing embeddings and choosing the right vocabulary size in cross-lingual environments. 3 authors · Jun 14, 2024
- Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation In this paper, we explore the challenging problem of performing a generative task in a target language when labeled data is only available in English, using summarization as a case study. We assume a strict setting with no access to parallel data or machine translation and find that common transfer learning approaches struggle in this setting, as a generative multilingual model fine-tuned purely on English catastrophically forgets how to generate non-English. Given the recent rise of parameter-efficient adaptation techniques, we conduct the first investigation into how one such method, prompt tuning (Lester et al., 2021), can overcome catastrophic forgetting to enable zero-shot cross-lingual generation. Our experiments show that parameter-efficient prompt tuning provides gains over standard fine-tuning when transferring between less-related languages, e.g., from English to Thai. However, a significant gap still remains between these methods and fully-supervised baselines. To improve cross-lingual transfer further, we explore several approaches, including: (1) mixing in unlabeled multilingual data, and (2) explicitly factoring prompts into recombinable language and task components. Our approaches can provide further quality gains, suggesting that robust zero-shot cross-lingual generation is within reach. 6 authors · May 25, 2022
1 Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs. 9 authors · Apr 7, 2024
2 Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention In this work, we study whether multilingual language models (MultiLMs) can transfer logical reasoning abilities to other languages when they are fine-tuned for reasoning in a different language. We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i.e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning). On two logical reasoning datasets, RuleTaker and LeapOfThought, we demonstrate that although MultiLMs can transfer reasoning ability across languages in a monolingual setting, they struggle to transfer reasoning abilities in a code-switched setting. Following this observation, we propose a novel attention mechanism that uses a dedicated set of parameters to encourage cross-lingual attention in code-switched sequences, which improves the reasoning performance by up to 14% and 4% on the RuleTaker and LeapOfThought datasets, respectively. 4 authors · Oct 23, 2023
- XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence Recent advances in machine learning have significantly improved the understanding of source code data and achieved good performance on a number of downstream tasks. Open source repositories like GitHub enable this process with rich unlabeled code data. However, the lack of high quality labeled data has largely hindered the progress of several code related tasks, such as program translation, summarization, synthesis, and code search. This paper introduces XLCoST, Cross-Lingual Code SnippeT dataset, a new benchmark dataset for cross-lingual code intelligence. Our dataset contains fine-grained parallel data from 8 languages (7 commonly used programming languages and English), and supports 10 cross-lingual code tasks. To the best of our knowledge, it is the largest parallel dataset for source code both in terms of size and the number of languages. We also provide the performance of several state-of-the-art baseline models for each task. We believe this new dataset can be a valuable asset for the research community and facilitate the development and validation of new methods for cross-lingual code intelligence. 6 authors · Jun 16, 2022
- TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available. 4 authors · Jan 12, 2024
- Multilingual LLMs Struggle to Link Orthography and Semantics in Bilingual Word Processing Bilingual lexical processing is shaped by the complex interplay of phonological, orthographic, and semantic features of two languages within an integrated mental lexicon. In humans, this is evident in the ease with which cognate words - words similar in both orthographic form and meaning (e.g., blind, meaning "sightless" in both English and German) - are processed, compared to the challenges posed by interlingual homographs, which share orthographic form but differ in meaning (e.g., gift, meaning "present" in English but "poison" in German). We investigate how multilingual Large Language Models (LLMs) handle such phenomena, focusing on English-Spanish, English-French, and English-German cognates, non-cognate, and interlingual homographs. Specifically, we evaluate their ability to disambiguate meanings and make semantic judgments, both when these word types are presented in isolation or within sentence contexts. Our findings reveal that while certain LLMs demonstrate strong performance in recognizing cognates and non-cognates in isolation, they exhibit significant difficulty in disambiguating interlingual homographs, often performing below random baselines. This suggests LLMs tend to rely heavily on orthographic similarities rather than semantic understanding when interpreting interlingual homographs. Further, we find LLMs exhibit difficulty in retrieving word meanings, with performance in isolative disambiguation tasks having no correlation with semantic understanding. Finally, we study how the LLM processes interlingual homographs in incongruent sentences. We find models to opt for different strategies in understanding English and non-English homographs, highlighting a lack of a unified approach to handling cross-lingual ambiguities. 3 authors · Jan 15
3 On the Acquisition of Shared Grammatical Representations in Bilingual Language Models While crosslingual transfer is crucial to contemporary language models' multilingual capabilities, how it occurs is not well understood. In this paper, we ask what happens to a monolingual language model when it begins to be trained on a second language. Specifically, we train small bilingual models for which we control the amount of data for each language and the order of language exposure. To find evidence of shared multilingual representations, we turn to structural priming, a method used to study grammatical representations in humans. We first replicate previous crosslingual structural priming results and find that after controlling for training data quantity and language exposure, there are asymmetrical effects across language pairs and directions. We argue that this asymmetry may shape hypotheses about human structural priming effects. We also find that structural priming effects are less robust for less similar language pairs, highlighting potential limitations of crosslingual transfer learning and shared representations for typologically diverse languages. 4 authors · Mar 5 1
- Cross-lingual Retrieval for Iterative Self-Supervised Training Recent studies have demonstrated the cross-lingual alignment ability of multilingual pretrained language models. In this work, we found that the cross-lingual alignment can be further improved by training seq2seq models on sentence pairs mined using their own encoder outputs. We utilized these findings to develop a new approach -- cross-lingual retrieval for iterative self-supervised training (CRISS), where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time. Using this method, we achieved state-of-the-art unsupervised machine translation results on 9 language directions with an average improvement of 2.4 BLEU, and on the Tatoeba sentence retrieval task in the XTREME benchmark on 16 languages with an average improvement of 21.5% in absolute accuracy. Furthermore, CRISS also brings an additional 1.8 BLEU improvement on average compared to mBART, when finetuned on supervised machine translation downstream tasks. 4 authors · Jun 16, 2020
15 Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment Aligning language models (LMs) based on human-annotated preference data is a crucial step in obtaining practical and performant LM-based systems. However, multilingual human preference data are difficult to obtain at scale, making it challenging to extend this framework to diverse languages. In this work, we evaluate a simple approach for zero-shot cross-lingual alignment, where a reward model is trained on preference data in one source language and directly applied to other target languages. On summarization and open-ended dialog generation, we show that this method is consistently successful under comprehensive evaluation settings, including human evaluation: cross-lingually aligned models are preferred by humans over unaligned models on up to >70% of evaluation instances. We moreover find that a different-language reward model sometimes yields better aligned models than a same-language reward model. We also identify best practices when there is no language-specific data for even supervised finetuning, another component in alignment. 5 authors · Apr 18, 2024 1
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems. 3 authors · May 25, 2022
- Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP. 4 authors · Oct 1, 2024
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity. 3 authors · Jul 9, 2023
- Enhancing Multilingual LLM Pretraining with Model-Based Data Selection Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we propose a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15% of the training tokens, while also improving across other benchmarks. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets. 3 authors · Feb 14
- Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models Despite their popularity in non-English NLP, multilingual language models often underperform monolingual ones due to inter-language competition for model parameters. We propose Cross-lingual Expert Language Models (X-ELM), which mitigate this competition by independently training language models on subsets of the multilingual corpus. This process specializes X-ELMs to different languages while remaining effective as a multilingual ensemble. Our experiments show that when given the same compute budget, X-ELM outperforms jointly trained multilingual models across all considered languages and that these gains transfer to downstream tasks. X-ELM provides additional benefits over performance improvements: new experts can be iteratively added, adapting X-ELM to new languages without catastrophic forgetting. Furthermore, training is asynchronous, reducing the hardware requirements for multilingual training and democratizing multilingual modeling. 7 authors · Jan 18, 2024 1
- InfoCTM: A Mutual Information Maximization Perspective of Cross-Lingual Topic Modeling Cross-lingual topic models have been prevalent for cross-lingual text analysis by revealing aligned latent topics. However, most existing methods suffer from producing repetitive topics that hinder further analysis and performance decline caused by low-coverage dictionaries. In this paper, we propose the Cross-lingual Topic Modeling with Mutual Information (InfoCTM). Instead of the direct alignment in previous work, we propose a topic alignment with mutual information method. This works as a regularization to properly align topics and prevent degenerate topic representations of words, which mitigates the repetitive topic issue. To address the low-coverage dictionary issue, we further propose a cross-lingual vocabulary linking method that finds more linked cross-lingual words for topic alignment beyond the translations of a given dictionary. Extensive experiments on English, Chinese, and Japanese datasets demonstrate that our method outperforms state-of-the-art baselines, producing more coherent, diverse, and well-aligned topics and showing better transferability for cross-lingual classification tasks. 6 authors · Apr 7, 2023
- Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility. 4 authors · Jun 1, 2023
- Cross-Lingual Transfer for Low-Resource Natural Language Processing Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications. 1 authors · Feb 4
- MLQA: Evaluating Cross-lingual Extractive Question Answering Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance. 5 authors · Oct 16, 2019
- Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by Learning to Rank Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences. 2 authors · Oct 7, 2020
1 A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs. 12 authors · May 17, 2024
- Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit. 3 authors · Feb 3, 2024 3
1 Extrapolating Large Language Models to Non-English by Aligning Languages Due to the unbalanced training data distribution, the language ability of large language models (LLMs) is often biased towards English. In this paper, we propose to empower pre-trained LLMs on non-English languages by building semantic alignment across languages. We perform instruction-tuning on LLaMA with both translation task data and cross-lingual general task data to obtain cross-lingual models (x-LLaMA). Experiment results on cross-lingual benchmark XQUAD and MLQA show that x-LLaMA models outperform the English instruction-tuned counterpart (Alpaca) by 42.50% on average on six non-English languages. Further experiments on Chinese benchmark C-Eval show that x-LLaMA achieves significant improvement on Chinese humanities tasks, outperforming Alpaca by 8.2%. We also discover that incorporating non-English text on the target side of translation data is particularly effective for boosting non-English ability. Besides, we find that semantic alignment within LLM can be further strengthened as translation task data scales up and we present the formulation of the underlying scaling law. Evaluation results on translation dataset Flores-101 show that \method outperforms previous LLaMA-based models in all evaluated directions. Code and data will be available at: https://github.com/OwenNJU/x-LLM. 9 authors · Aug 9, 2023
1 Multilingual Clinical NER: Translation or Cross-lingual Transfer? Natural language tasks like Named Entity Recognition (NER) in the clinical domain on non-English texts can be very time-consuming and expensive due to the lack of annotated data. Cross-lingual transfer (CLT) is a way to circumvent this issue thanks to the ability of multilingual large language models to be fine-tuned on a specific task in one language and to provide high accuracy for the same task in another language. However, other methods leveraging translation models can be used to perform NER without annotated data in the target language, by either translating the training set or test set. This paper compares cross-lingual transfer with these two alternative methods, to perform clinical NER in French and in German without any training data in those languages. To this end, we release MedNERF a medical NER test set extracted from French drug prescriptions and annotated with the same guidelines as an English dataset. Through extensive experiments on this dataset and on a German medical dataset (Frei and Kramer, 2021), we show that translation-based methods can achieve similar performance to CLT but require more care in their design. And while they can take advantage of monolingual clinical language models, those do not guarantee better results than large general-purpose multilingual models, whether with cross-lingual transfer or translation. 4 authors · Jun 7, 2023
- PreAlign: Boosting Cross-Lingual Transfer by Early Establishment of Multilingual Alignment Large language models demonstrate reasonable multilingual abilities, despite predominantly English-centric pretraining. However, the spontaneous multilingual alignment in these models is shown to be weak, leading to unsatisfactory cross-lingual transfer and knowledge sharing. Previous works attempt to address this issue by explicitly injecting multilingual alignment information during or after pretraining. Thus for the early stage in pretraining, the alignment is weak for sharing information or knowledge across languages. In this paper, we propose PreAlign, a framework that establishes multilingual alignment prior to language model pretraining. PreAlign injects multilingual alignment by initializing the model to generate similar representations of aligned words and preserves this alignment using a code-switching strategy during pretraining. Extensive experiments in a synthetic English to English-Clone setting demonstrate that PreAlign significantly outperforms standard multilingual joint training in language modeling, zero-shot cross-lingual transfer, and cross-lingual knowledge application. Further experiments in real-world scenarios further validate PreAlign's effectiveness across various model sizes. 5 authors · Jul 23, 2024
- Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer. 2 authors · Apr 19, 2019
13 Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance The integration of pretrained language models (PLMs) like BERT and GPT has revolutionized NLP, particularly for English, but it has also created linguistic imbalances. This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts. We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada. Our research identifies significant discrepancies in normal and merged models concerning cross-lingual consistency. We employ strategies like 'each language for itself' (ELFI) and 'each language for others' (ELFO) to stress-test these models. Our findings demonstrate the potential for LLMs to overcome linguistic barriers, laying the groundwork for future research in achieving linguistic inclusivity in AI technologies. 7 authors · Jun 16, 2024 1
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
1 MuRIL: Multilingual Representations for Indian Languages India is a multilingual society with 1369 rationalized languages and dialects being spoken across the country (INDIA, 2011). Of these, the 22 scheduled languages have a staggering total of 1.17 billion speakers and 121 languages have more than 10,000 speakers (INDIA, 2011). India also has the second largest (and an ever growing) digital footprint (Statista, 2020). Despite this, today's state-of-the-art multilingual systems perform suboptimally on Indian (IN) languages. This can be explained by the fact that multilingual language models (LMs) are often trained on 100+ languages together, leading to a small representation of IN languages in their vocabulary and training data. Multilingual LMs are substantially less effective in resource-lean scenarios (Wu and Dredze, 2020; Lauscher et al., 2020), as limited data doesn't help capture the various nuances of a language. One also commonly observes IN language text transliterated to Latin or code-mixed with English, especially in informal settings (for example, on social media platforms) (Rijhwani et al., 2017). This phenomenon is not adequately handled by current state-of-the-art multilingual LMs. To address the aforementioned gaps, we propose MuRIL, a multilingual LM specifically built for IN languages. MuRIL is trained on significantly large amounts of IN text corpora only. We explicitly augment monolingual text corpora with both translated and transliterated document pairs, that serve as supervised cross-lingual signals in training. MuRIL significantly outperforms multilingual BERT (mBERT) on all tasks in the challenging cross-lingual XTREME benchmark (Hu et al., 2020). We also present results on transliterated (native to Latin script) test sets of the chosen datasets and demonstrate the efficacy of MuRIL in handling transliterated data. 14 authors · Mar 19, 2021
- ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. 7 authors · Dec 31, 2020
1 Towards Cross-Lingual LLM Evaluation for European Languages The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation. 11 authors · Oct 11, 2024
- Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing. 8 authors · Jun 7, 2021
- The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive. 5 authors · Apr 11, 2024
- Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data. 6 authors · Apr 1, 2024 2
1 XNLI: Evaluating Cross-lingual Sentence Representations State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines. 7 authors · Sep 13, 2018
- Compositional Generalization in Multilingual Semantic Parsing over Wikidata Semantic parsing (SP) allows humans to leverage vast knowledge resources through natural interaction. However, parsers are mostly designed for and evaluated on English resources, such as CFQ (Keysers et al., 2020), the current standard benchmark based on English data generated from grammar rules and oriented towards Freebase, an outdated knowledge base. We propose a method for creating a multilingual, parallel dataset of question-query pairs, grounded in Wikidata. We introduce such a dataset, which we call Multilingual Compositional Wikidata Questions (MCWQ), and use it to analyze the compositional generalization of semantic parsers in Hebrew, Kannada, Chinese and English. While within-language generalization is comparable across languages, experiments on zero-shot cross-lingual transfer demonstrate that cross-lingual compositional generalization fails, even with state-of-the-art pretrained multilingual encoders. Furthermore, our methodology, dataset and results will facilitate future research on SP in more realistic and diverse settings than has been possible with existing resources. 4 authors · Aug 7, 2021
- Transfer Language Selection for Zero-Shot Cross-Lingual Abusive Language Detection We study the selection of transfer languages for automatic abusive language detection. Instead of preparing a dataset for every language, we demonstrate the effectiveness of cross-lingual transfer learning for zero-shot abusive language detection. This way we can use existing data from higher-resource languages to build better detection systems for low-resource languages. Our datasets are from seven different languages from three language families. We measure the distance between the languages using several language similarity measures, especially by quantifying the World Atlas of Language Structures. We show that there is a correlation between linguistic similarity and classifier performance. This discovery allows us to choose an optimal transfer language for zero shot abusive language detection. 6 authors · Jun 2, 2022
- Cross-lingual Language Model Pretraining Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available. 2 authors · Jan 22, 2019
- MonoByte: A Pool of Monolingual Byte-level Language Models The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models. 4 authors · Sep 22, 2022
1 LEIA: Facilitating Cross-Lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages. The source code is available at https://github.com/studio-ousia/leia. 2 authors · Feb 18, 2024
1 Speaking Multiple Languages Affects the Moral Bias of Language Models Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Mandarin Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions. 7 authors · Nov 14, 2022
1 Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM. 7 authors · Oct 31, 2024
- FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding Large-scale cross-lingual language models (LM), such as mBERT, Unicoder and XLM, have achieved great success in cross-lingual representation learning. However, when applied to zero-shot cross-lingual transfer tasks, most existing methods use only single-language input for LM finetuning, without leveraging the intrinsic cross-lingual alignment between different languages that proves essential for multilingual tasks. In this paper, we propose FILTER, an enhanced fusion method that takes cross-lingual data as input for XLM finetuning. Specifically, FILTER first encodes text input in the source language and its translation in the target language independently in the shallow layers, then performs cross-language fusion to extract multilingual knowledge in the intermediate layers, and finally performs further language-specific encoding. During inference, the model makes predictions based on the text input in the target language and its translation in the source language. For simple tasks such as classification, translated text in the target language shares the same label as the source language. However, this shared label becomes less accurate or even unavailable for more complex tasks such as question answering, NER and POS tagging. To tackle this issue, we further propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language. Extensive experiments demonstrate that FILTER achieves new state of the art on two challenging multilingual multi-task benchmarks, XTREME and XGLUE. 5 authors · Sep 10, 2020
2 xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap. 11 authors · Jan 13, 2024
- MLSUM: The Multilingual Summarization Corpus We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset. 5 authors · Apr 30, 2020
1 XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation In this paper, we introduce XGLUE, a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE(Wang et al., 2019), which is labeled in English for natural language understanding tasks only, XGLUE has two main advantages: (1) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (2) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder(Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison. 24 authors · Apr 3, 2020
7 Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public. 13 authors · Nov 15, 2023 1
1 Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT). In this paper, we systematically investigate the advantages and challenges of LLMs for MMT by answering two questions: 1) How well do LLMs perform in translating a massive number of languages? 2) Which factors affect LLMs' performance in translation? We evaluate popular LLMs, including XGLM, OPT, BLOOMZ, and ChatGPT, on 102 languages. Our empirical results show that even the best model ChatGPT still lags behind the supervised baseline NLLB in 83.33% of translation directions. Through further analysis, we discover that LLMs exhibit new working patterns when used for MMT. First, prompt semantics can surprisingly be ignored when given in-context exemplars, where LLMs still show strong performance even with unreasonable prompts. Second, cross-lingual exemplars can provide better task instruction for low-resource translation than exemplars in the same language pairs. Third, we observe the overestimated performance of BLOOMZ on dataset Flores-101, indicating the potential risk when using public datasets for evaluation. 8 authors · Apr 10, 2023
- Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin. 3 authors · Feb 1, 2021
1 Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages. In this work, we introduce a simple yet effective method, called cross-lingual-thought prompting (XLT), to systematically improve the multilingual capability of LLMs. Specifically, XLT is a generic template prompt that stimulates cross-lingual and logical reasoning skills to enhance task performance across languages. We conduct comprehensive evaluations on 7 typical benchmarks related to reasoning, understanding, and generation tasks, covering both high-resource and low-resource languages. Experimental results show that XLT not only remarkably enhances the performance of various multilingual tasks but also significantly reduces the gap between the average performance and the best performance of each task in different languages. Notably, XLT brings over 10 points of average improvement in arithmetic reasoning and open-domain question-answering tasks. 7 authors · May 11, 2023
1 MultiSlav: Using Cross-Lingual Knowledge Transfer to Combat the Curse of Multilinguality Does multilingual Neural Machine Translation (NMT) lead to The Curse of the Multlinguality or provides the Cross-lingual Knowledge Transfer within a language family? In this study, we explore multiple approaches for extending the available data-regime in NMT and we prove cross-lingual benefits even in 0-shot translation regime for low-resource languages. With this paper, we provide state-of-the-art open-source NMT models for translating between selected Slavic languages. We released our models on the HuggingFace Hub (https://hf.co/collections/allegro/multislav-6793d6b6419e5963e759a683) under the CC BY 4.0 license. Slavic language family comprises morphologically rich Central and Eastern European languages. Although counting hundreds of millions of native speakers, Slavic Neural Machine Translation is under-studied in our opinion. Recently, most NMT research focuses either on: high-resource languages like English, Spanish, and German - in WMT23 General Translation Task 7 out of 8 task directions are from or to English; massively multilingual models covering multiple language groups; or evaluation techniques. 7 authors · Feb 20
- Models and Datasets for Cross-Lingual Summarisation We present a cross-lingual summarisation corpus with long documents in a source language associated with multi-sentence summaries in a target language. The corpus covers twelve language pairs and directions for four European languages, namely Czech, English, French and German, and the methodology for its creation can be applied to several other languages. We derive cross-lingual document-summary instances from Wikipedia by combining lead paragraphs and articles' bodies from language aligned Wikipedia titles. We analyse the proposed cross-lingual summarisation task with automatic metrics and validate it with a human study. To illustrate the utility of our dataset we report experiments with multi-lingual pre-trained models in supervised, zero- and few-shot, and out-of-domain scenarios. 2 authors · Feb 19, 2022
1 X-METRA-ADA: Cross-lingual Meta-Transfer Learning Adaptation to Natural Language Understanding and Question Answering Multilingual models, such as M-BERT and XLM-R, have gained increasing popularity, due to their zero-shot cross-lingual transfer learning capabilities. However, their generalization ability is still inconsistent for typologically diverse languages and across different benchmarks. Recently, meta-learning has garnered attention as a promising technique for enhancing transfer learning under low-resource scenarios: particularly for cross-lingual transfer in Natural Language Understanding (NLU). In this work, we propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for NLU. Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages. We extensively evaluate our framework on two challenging cross-lingual NLU tasks: multilingual task-oriented dialog and typologically diverse question answering. We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages. Our analysis reveals that X-METRA-ADA can leverage limited data for faster adaptation. 6 authors · Apr 19, 2021
- C3: Continued Pretraining with Contrastive Weak Supervision for Cross Language Ad-Hoc Retrieval Pretrained language models have improved effectiveness on numerous tasks, including ad-hoc retrieval. Recent work has shown that continuing to pretrain a language model with auxiliary objectives before fine-tuning on the retrieval task can further improve retrieval effectiveness. Unlike monolingual retrieval, designing an appropriate auxiliary task for cross-language mappings is challenging. To address this challenge, we use comparable Wikipedia articles in different languages to further pretrain off-the-shelf multilingual pretrained models before fine-tuning on the retrieval task. We show that our approach yields improvements in retrieval effectiveness. 5 authors · Apr 25, 2022
- EntityCS: Improving Zero-Shot Cross-lingual Transfer with Entity-Centric Code Switching Accurate alignment between languages is fundamental for improving cross-lingual pre-trained language models (XLMs). Motivated by the natural phenomenon of code-switching (CS) in multilingual speakers, CS has been used as an effective data augmentation method that offers language alignment at the word- or phrase-level, in contrast to sentence-level via parallel instances. Existing approaches either use dictionaries or parallel sentences with word alignment to generate CS data by randomly switching words in a sentence. However, such methods can be suboptimal as dictionaries disregard semantics, and syntax might become invalid after random word switching. In this work, we propose EntityCS, a method that focuses on Entity-level Code-Switching to capture fine-grained cross-lingual semantics without corrupting syntax. We use Wikidata and English Wikipedia to construct an entity-centric CS corpus by switching entities to their counterparts in other languages. We further propose entity-oriented masking strategies during intermediate model training on the EntityCS corpus for improving entity prediction. Evaluation of the trained models on four entity-centric downstream tasks shows consistent improvements over the baseline with a notable increase of 10% in Fact Retrieval. We release the corpus and models to assist research on code-switching and enriching XLMs with external knowledge. 3 authors · Oct 22, 2022
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Towards Zero-shot Cross-lingual Image Retrieval There has been a recent spike in interest in multi-modal Language and Vision problems. On the language side, most of these models primarily focus on English since most multi-modal datasets are monolingual. We try to bridge this gap with a zero-shot approach for learning multi-modal representations using cross-lingual pre-training on the text side. We present a simple yet practical approach for building a cross-lingual image retrieval model which trains on a monolingual training dataset but can be used in a zero-shot cross-lingual fashion during inference. We also introduce a new objective function which tightens the text embedding clusters by pushing dissimilar texts from each other. Finally, we introduce a new 1K multi-lingual MSCOCO2014 caption test dataset (XTD10) in 7 languages that we collected using a crowdsourcing platform. We use this as the test set for evaluating zero-shot model performance across languages. XTD10 dataset is made publicly available here: https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10 2 authors · Nov 24, 2020
1 Prompt-Tuning Can Be Much Better Than Fine-Tuning on Cross-lingual Understanding With Multilingual Language Models Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries. 3 authors · Oct 22, 2022
- Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformerbased approaches can benefit from using sentences in two languages during fine-tuning. 4 authors · Sep 24, 2021
- Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions? The adaption of multilingual pre-trained Large Language Models (LLMs) into eloquent and helpful assistants is essential to facilitate their use across different language regions. In that spirit, we are the first to conduct an extensive study of the performance of multilingual models on parallel, multi-turn instruction-tuning benchmarks across a selection of the most-spoken Indo-European languages. We systematically examine the effects of language and instruction dataset size on a mid-sized, multilingual LLM by instruction-tuning it on parallel instruction-tuning datasets. Our results demonstrate that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 4.6%. Furthermore, we show that the Superficial Alignment Hypothesis does not hold in general, as the investigated multilingual 7B parameter model presents a counter-example requiring large-scale instruction-tuning datasets. Finally, we conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios. 7 authors · Feb 21, 2024
2 Cross-lingual Editing in Multilingual Language Models The training of large language models (LLMs) necessitates substantial data and computational resources, and updating outdated LLMs entails significant efforts and resources. While numerous model editing techniques (METs) have emerged to efficiently update model outputs without retraining, their effectiveness in multilingual LLMs, where knowledge is stored in diverse languages, remains an underexplored research area. This research paper introduces the cross-lingual model editing (XME) paradigm, wherein a fact is edited in one language, and the subsequent update propagation is observed across other languages. To investigate the XME paradigm, we conducted experiments using BLOOM, mBERT, and XLM-RoBERTa using the two writing scripts: Latin (English, French, and Spanish) and Indic (Hindi, Gujarati, and Bengali). The results reveal notable performance limitations of state-of-the-art METs under the XME setting, mainly when the languages involved belong to two distinct script families. These findings highlight the need for further research and development of XME techniques to address these challenges. For more comprehensive information, the dataset used in this research and the associated code are publicly available at the following URLhttps://github.com/lingo-iitgn/XME. 3 authors · Jan 19, 2024
- ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community. 4 authors · Feb 22, 2024
1 Exploring Methods for Cross-lingual Text Style Transfer: The Case of Text Detoxification Text detoxification is the task of transferring the style of text from toxic to neutral. While here are approaches yielding promising results in monolingual setup, e.g., (Dale et al., 2021; Hallinan et al., 2022), cross-lingual transfer for this task remains a challenging open problem (Moskovskiy et al., 2022). In this work, we present a large-scale study of strategies for cross-lingual text detoxification -- given a parallel detoxification corpus for one language; the goal is to transfer detoxification ability to another language for which we do not have such a corpus. Moreover, we are the first to explore a new task where text translation and detoxification are performed simultaneously, providing several strong baselines for this task. Finally, we introduce new automatic detoxification evaluation metrics with higher correlations with human judgments than previous benchmarks. We assess the most promising approaches also with manual markup, determining the answer for the best strategy to transfer the knowledge of text detoxification between languages. 4 authors · Nov 23, 2023
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need! Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at http://github.com/UKPLab/coling2018-xling_argument_mining. 4 authors · Jul 24, 2018
- MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling A major consideration in multilingual language modeling is how to best represent languages with diverse vocabularies and scripts. Although contemporary text encoding methods cover most of the world's writing systems, they exhibit bias towards the high-resource languages of the Global West. As a result, texts of underrepresented languages tend to be segmented into long sequences of linguistically meaningless units. To address the disparities, we introduce a new paradigm that encodes the same information with segments of consistent size across diverse languages. Our encoding convention (MYTE) is based on morphemes, as their inventories are more balanced across languages than characters, which are used in previous methods. We show that MYTE produces shorter encodings for all 99 analyzed languages, with the most notable improvements for non-European languages and non-Latin scripts. This, in turn, improves multilingual LM performance and diminishes the perplexity gap throughout diverse languages. 5 authors · Mar 15, 2024
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
- Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages. 12 authors · Nov 14, 2016
- Exploring Cross-lingual Textual Style Transfer with Large Multilingual Language Models Detoxification is a task of generating text in polite style while preserving meaning and fluency of the original toxic text. Existing detoxification methods are designed to work in one exact language. This work investigates multilingual and cross-lingual detoxification and the behavior of large multilingual models like in this setting. Unlike previous works we aim to make large language models able to perform detoxification without direct fine-tuning in given language. Experiments show that multilingual models are capable of performing multilingual style transfer. However, models are not able to perform cross-lingual detoxification and direct fine-tuning on exact language is inevitable. 3 authors · Jun 5, 2022
- LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback To democratize large language models (LLMs) to most natural languages, it is imperative to make these models capable of understanding and generating texts in many languages, in particular low-resource ones. While recent multilingual LLMs demonstrate remarkable performance in such capabilities, these LLMs still support a limited number of human languages due to the lack of training data for low-resource languages. Moreover, these LLMs are not yet aligned with human preference for downstream tasks, which is crucial for the success of LLMs in English. In this paper, we introduce xLLaMA-100 and xBLOOM-100 (collectively xLLMs-100), which scale the multilingual capabilities of LLaMA and BLOOM to 100 languages. To do so, we construct two datasets: a multilingual instruction dataset including 100 languages, which represents the largest language coverage to date, and a cross-lingual human feedback dataset encompassing 30 languages. We perform multilingual instruction tuning on the constructed instruction data and further align the LLMs with human feedback using the DPO algorithm on our cross-lingual human feedback dataset. We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks. Experimental results show that xLLMs-100 consistently outperforms its peers across the benchmarks by considerable margins, defining a new state-of-the-art multilingual LLM that supports 100 languages. 3 authors · Jun 3, 2024
- Multilingual Large Language Models Are Not (Yet) Code-Switchers Multilingual Large Language Models (LLMs) have recently shown great capabilities in a wide range of tasks, exhibiting state-of-the-art performance through zero-shot or few-shot prompting methods. While there have been extensive studies on their abilities in monolingual tasks, the investigation of their potential in the context of code-switching (CSW), the practice of alternating languages within an utterance, remains relatively uncharted. In this paper, we provide a comprehensive empirical analysis of various multilingual LLMs, benchmarking their performance across four tasks: sentiment analysis, machine translation, summarization and word-level language identification. Our results indicate that despite multilingual LLMs exhibiting promising outcomes in certain tasks using zero or few-shot prompting, they still underperform in comparison to fine-tuned models of much smaller scales. We argue that current "multilingualism" in LLMs does not inherently imply proficiency with code-switching texts, calling for future research to bridge this discrepancy. 5 authors · May 23, 2023 2
2 UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks. 11 authors · Feb 7, 2024
- Do Multilingual Language Models Capture Differing Moral Norms? Massively multilingual sentence representations are trained on large corpora of uncurated data, with a very imbalanced proportion of languages included in the training. This may cause the models to grasp cultural values including moral judgments from the high-resource languages and impose them on the low-resource languages. The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs. Both these issues can negatively influence zero-shot cross-lingual model transfer and potentially lead to harmful outcomes. Therefore, we aim to (1) detect and quantify these issues by comparing different models in different languages, (2) develop methods for improving undesirable properties of the models. Our initial experiments using the multilingual model XLM-R show that indeed multilingual LMs capture moral norms, even with potentially higher human-agreement than monolingual ones. However, it is not yet clear to what extent these moral norms differ between languages. 6 authors · Mar 18, 2022
- SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks. 17 authors · Mar 27, 2024
1 Constructing Multilingual Code Search Dataset Using Neural Machine Translation Code search is a task to find programming codes that semantically match the given natural language queries. Even though some of the existing datasets for this task are multilingual on the programming language side, their query data are only in English. In this research, we create a multilingual code search dataset in four natural and four programming languages using a neural machine translation model. Using our dataset, we pre-train and fine-tune the Transformer-based models and then evaluate them on multiple code search test sets. Our results show that the model pre-trained with all natural and programming language data has performed best in most cases. By applying back-translation data filtering to our dataset, we demonstrate that the translation quality affects the model's performance to a certain extent, but the data size matters more. 4 authors · Jun 27, 2023 1
1 Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers. 3 authors · Apr 5, 2022
- Do Large Language Models Have an English Accent? Evaluating and Improving the Naturalness of Multilingual LLMs Current Large Language Models (LLMs) are predominantly designed with English as the primary language, and even the few that are multilingual tend to exhibit strong English-centric biases. Much like speakers who might produce awkward expressions when learning a second language, LLMs often generate unnatural outputs in non-English languages, reflecting English-centric patterns in both vocabulary and grammar. Despite the importance of this issue, the naturalness of multilingual LLM outputs has received limited attention. In this paper, we address this gap by introducing novel automatic corpus-level metrics to assess the lexical and syntactic naturalness of LLM outputs in a multilingual context. Using our new metrics, we evaluate state-of-the-art LLMs on a curated benchmark in French and Chinese, revealing a tendency towards English-influenced patterns. To mitigate this issue, we also propose a simple and effective alignment method to improve the naturalness of an LLM in a target language and domain, achieving consistent improvements in naturalness without compromising the performance on general-purpose benchmarks. Our work highlights the importance of developing multilingual metrics, resources and methods for the new wave of multilingual LLMs. 6 authors · Oct 21, 2024
- MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages. 44 authors · May 23, 2023
- EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain Existing summarization datasets come with two main drawbacks: (1) They tend to focus on overly exposed domains, such as news articles or wiki-like texts, and (2) are primarily monolingual, with few multilingual datasets. In this work, we propose a novel dataset, called EUR-Lex-Sum, based on manually curated document summaries of legal acts from the European Union law platform (EUR-Lex). Documents and their respective summaries exist as cross-lingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. We obtain up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in all 24 languages. In this work, the data acquisition process is detailed and key characteristics of the resource are compared to existing summarization resources. In particular, we illustrate challenging sub-problems and open questions on the dataset that could help the facilitation of future research in the direction of domain-specific cross-lingual summarization. Limited by the extreme length and language diversity of samples, we further conduct experiments with suitable extractive monolingual and cross-lingual baselines for future work. Code for the extraction as well as access to our data and baselines is available online at: https://github.com/achouhan93/eur-lex-sum. 3 authors · Oct 24, 2022
- Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character n-grams and English when. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination. 1 authors · Apr 28, 2024
- Lucky 52: How Many Languages Are Needed to Instruction Fine-Tune Large Language Models? Fine-tuning large language models for multilingual downstream tasks requires a diverse set of languages to capture the nuances and structures of different linguistic contexts effectively. While the specific number varies depending on the desired scope and target languages, we argue that the number of languages, language exposure, and similarity that incorporate the selection of languages for fine-tuning are some important aspects to examine. By fine-tuning large multilingual models on 1 to 52 languages, this paper answers one question: How many languages are needed in instruction fine-tuning for multilingual tasks? We investigate how multilingual instruction fine-tuned models behave on multilingual benchmarks with an increasing number of languages and discuss our findings from the perspective of language exposure and similarity. 2 authors · Apr 7, 2024
- Align after Pre-train: Improving Multilingual Generative Models with Cross-lingual Alignment Multilingual generative models obtain remarkable cross-lingual capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages, and learn isolated distributions of sentence representations across languages. To bridge this gap, we propose a simple yet effective alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns model outputs by answering prompts in different languages. Experimental results demonstrate that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative models and mitigates the performance gap. Further analysis reveals that it results in a better internal multilingual representation distribution of multilingual models. 4 authors · Nov 14, 2023
10 Marco-LLM: Bridging Languages via Massive Multilingual Training for Cross-Lingual Enhancement Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages. 20 authors · Dec 5, 2024 2
- An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative LLM Inference The development of state-of-the-art generative large language models (LLMs) disproportionately relies on English-centric tokenizers, vocabulary and pre-training data. Despite the fact that some LLMs have multilingual capabilities, recent studies have shown that their inference efficiency deteriorates when generating text in languages other than English. This results in increased inference time and costs. Cross-lingual vocabulary adaptation methods have been proposed for adapting models to a target language aiming to improve downstream performance. However, the effectiveness of these methods on increasing inference efficiency of generative LLMs has yet to be explored. In this paper, we perform an empirical study of various cross-lingual vocabulary adaptation methods on five generative LLMs (including monolingual and multilingual models) across four typologically-diverse languages and four natural language understanding tasks. We find that cross-lingual vocabulary adaptation substantially contributes to LLM inference speedups of up to 271.5%. We also show that adapting LLMs that have been pre-trained on more balanced multilingual data results in downstream performance comparable to the original models. 3 authors · Feb 16, 2024
- Grammatical Error Correction for Code-Switched Sentences by Learners of English Code-switching (CSW) is a common phenomenon among multilingual speakers where multiple languages are used in a single discourse or utterance. Mixed language utterances may still contain grammatical errors however, yet most existing Grammar Error Correction (GEC) systems have been trained on monolingual data and not developed with CSW in mind. In this work, we conduct the first exploration into the use of GEC systems on CSW text. Through this exploration, we propose a novel method of generating synthetic CSW GEC datasets by translating different spans of text within existing GEC corpora. We then investigate different methods of selecting these spans based on CSW ratio, switch-point factor and linguistic constraints, and identify how they affect the performance of GEC systems on CSW text. Our best model achieves an average increase of 1.57 F_{0.5} across 3 CSW test sets (English-Chinese, English-Korean and English-Japanese) without affecting the model's performance on a monolingual dataset. We furthermore discovered that models trained on one CSW language generalise relatively well to other typologically similar CSW languages. 5 authors · Apr 18, 2024
1 How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language. 5 authors · Dec 31, 2020 1
- IndicXNLI: Evaluating Multilingual Inference for Indian Languages While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce IndicXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of IndicXNLI. By finetuning different pre-trained LMs on this IndicXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages. 3 authors · Apr 19, 2022
5 The Same But Different: Structural Similarities and Differences in Multilingual Language Modeling We employ new tools from mechanistic interpretability in order to ask whether the internal structure of large language models (LLMs) shows correspondence to the linguistic structures which underlie the languages on which they are trained. In particular, we ask (1) when two languages employ the same morphosyntactic processes, do LLMs handle them using shared internal circuitry? and (2) when two languages require different morphosyntactic processes, do LLMs handle them using different internal circuitry? Using English and Chinese multilingual and monolingual models, we analyze the internal circuitry involved in two tasks. We find evidence that models employ the same circuit to handle the same syntactic process independently of the language in which it occurs, and that this is the case even for monolingual models trained completely independently. Moreover, we show that multilingual models employ language-specific components (attention heads and feed-forward networks) when needed to handle linguistic processes (e.g., morphological marking) that only exist in some languages. Together, our results provide new insights into how LLMs trade off between exploiting common structures and preserving linguistic differences when tasked with modeling multiple languages simultaneously. 5 authors · Oct 11, 2024 2
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
2 Teaching Llama a New Language Through Cross-Lingual Knowledge Transfer This paper explores cost-efficient methods to adapt pretrained Large Language Models (LLMs) to new lower-resource languages, with a specific focus on Estonian. Leveraging the Llama 2 model, we investigate the impact of combining cross-lingual instruction-tuning with additional monolingual pretraining. Our results demonstrate that even a relatively small amount of additional monolingual pretraining followed by cross-lingual instruction-tuning significantly enhances results on Estonian. Furthermore, we showcase cross-lingual knowledge transfer from high-quality English instructions to Estonian, resulting in improvements in commonsense reasoning and multi-turn conversation capabilities. Our best model, named Llammas, represents the first open-source instruction-following LLM for Estonian. Additionally, we publish Alpaca-est, the first general task instruction dataset for Estonia. These contributions mark the initial progress in the direction of developing open-source LLMs for Estonian. 4 authors · Apr 5, 2024
- XNLIeu: a dataset for cross-lingual NLI in Basque XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses. 6 authors · Apr 10, 2024
8 Data Contamination Can Cross Language Barriers The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data. Existing contamination detection methods are typically based on the text overlap between training and evaluation data, which can be too superficial to reflect deeper forms of contamination. In this paper, we first present a cross-lingual form of contamination that inflates LLMs' performance while evading current detection methods, deliberately injected by overfitting LLMs on the translated versions of benchmark test sets. Then, we propose generalization-based approaches to unmask such deeply concealed contamination. Specifically, we examine the LLM's performance change after modifying the original benchmark by replacing the false answer choices with correct ones from other questions. Contaminated models can hardly generalize to such easier situations, where the false choices can be not even wrong, as all choices are correct in their memorization. Experimental results demonstrate that cross-lingual contamination can easily fool existing detection methods, but not ours. In addition, we discuss the potential utilization of cross-lingual contamination in interpreting LLMs' working mechanisms and in post-training LLMs for enhanced multilingual capabilities. The code and dataset we use can be obtained from https://github.com/ShangDataLab/Deep-Contam. 6 authors · Jun 19, 2024 3
- Cross-lingual transfer of multilingual models on low resource African Languages Large multilingual models have significantly advanced natural language processing (NLP) research. However, their high resource demands and potential biases from diverse data sources have raised concerns about their effectiveness across low-resource languages. In contrast, monolingual models, trained on a single language, may better capture the nuances of the target language, potentially providing more accurate results. This study benchmarks the cross-lingual transfer capabilities from a high-resource language to a low-resource language for both, monolingual and multilingual models, focusing on Kinyarwanda and Kirundi, two Bantu languages. We evaluate the performance of transformer based architectures like Multilingual BERT (mBERT), AfriBERT, and BantuBERTa against neural-based architectures such as BiGRU, CNN, and char-CNN. The models were trained on Kinyarwanda and tested on Kirundi, with fine-tuning applied to assess the extent of performance improvement and catastrophic forgetting. AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning, while BiGRU emerged as the best-performing neural model with 83.3% accuracy. We also analyze the degree of forgetting in the original language post-fine-tuning. While monolingual models remain competitive, this study highlights that multilingual models offer strong cross-lingual transfer capabilities in resource limited settings. 4 authors · Sep 17, 2024
1 Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art. 5 authors · Jun 26, 2024
8 AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology. 52 authors · May 11, 2023
- What makes multilingual BERT multilingual? Recently, multilingual BERT works remarkably well on cross-lingual transfer tasks, superior to static non-contextualized word embeddings. In this work, we provide an in-depth experimental study to supplement the existing literature of cross-lingual ability. We compare the cross-lingual ability of non-contextualized and contextualized representation model with the same data. We found that datasize and context window size are crucial factors to the transferability. 4 authors · Oct 20, 2020
3 LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content Large Language Models (LLMs) have demonstrated remarkable success as general-purpose task solvers across various fields, including NLP, healthcare, finance, and law. However, their capabilities remain limited when addressing domain-specific problems, particularly in downstream NLP tasks. Research has shown that models fine-tuned on instruction-based downstream NLP datasets outperform those that are not fine-tuned. While most efforts in this area have primarily focused on resource-rich languages like English and broad domains, little attention has been given to multilingual settings and specific domains. To address this gap, this study focuses on developing a specialized LLM, LlamaLens, for analyzing news and social media content in a multilingual context. To the best of our knowledge, this is the first attempt to tackle both domain specificity and multilinguality, with a particular focus on news and social media. Our experimental setup includes 19 tasks, represented by 52 datasets covering Arabic, English, and Hindi. We demonstrate that LlamaLens outperforms the current state-of-the-art (SOTA) on 16 testing sets, and achieves comparable performance on 10 sets. We make the models and resources publicly available for the research community.(https://huggingface.co/QCRI) 6 authors · Oct 20, 2024
- The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages, we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction. 9 authors · Jan 23, 2024
- POLYGLOT-NER: Massive Multilingual Named Entity Recognition The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation. 4 authors · Oct 14, 2014
1 CCT-Code: Cross-Consistency Training for Multilingual Clone Detection and Code Search We consider the clone detection and information retrieval problems for source code, well-known tasks important for any programming language. Although it is also an important and interesting problem to find code snippets that operate identically but are written in different programming languages, to the best of our knowledge multilingual clone detection has not been studied in literature. In this work, we formulate the multilingual clone detection problem and present XCD, a new benchmark dataset produced from the CodeForces submissions dataset. Moreover, we present a novel training procedure, called cross-consistency training (CCT), that we apply to train language models on source code in different programming languages. The resulting CCT-LM model, initialized with GraphCodeBERT and fine-tuned with CCT, achieves new state of the art, outperforming existing approaches on the POJ-104 clone detection benchmark with 95.67\% MAP and AdvTest code search benchmark with 47.18\% MRR; it also shows the best results on the newly created multilingual clone detection benchmark XCD across all programming languages. 4 authors · May 19, 2023
- Combining Static and Contextualised Multilingual Embeddings Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text. 3 authors · Mar 17, 2022
- Synchronous Bidirectional Learning for Multilingual Lip Reading Lip reading has received increasing attention in recent years. This paper focuses on the synergy of multilingual lip reading. There are about as many as 7000 languages in the world, which implies that it is impractical to train separate lip reading models with large-scale data for each language. Although each language has its own linguistic and pronunciation rules, the lip movements of all languages share similar patterns due to the common structures of human organs. Based on this idea, we try to explore the synergized learning of multilingual lip reading in this paper, and further propose a synchronous bidirectional learning (SBL) framework for effective synergy of multilingual lip reading. We firstly introduce phonemes as our modeling units for the multilingual setting here. Phonemes are more closely related with the lip movements than the alphabet letters. At the same time, similar phonemes always lead to similar visual patterns no matter which type the target language is. Then, a novel SBL block is proposed to learn the rules for each language in a fill-in-the-blank way. Specifically, the model has to learn to infer the target unit given its bidirectional context, which could represent the composition rules of phonemes for each language. To make the learning process more targeted at each particular language, an extra task of predicting the language identity is introduced in the learning process. Finally, a thorough comparison on LRW (English) and LRW-1000 (Mandarin) is performed, which shows the promising benefits from the synergized learning of different languages and also reports a new state-of-the-art result on both datasets. 5 authors · May 8, 2020
- JamPatoisNLI: A Jamaican Patois Natural Language Inference Dataset JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the effectiveness of transfer from large monolingual or multilingual pretrained models. While our work, along with previous work, shows that transfer from these models to low-resource languages that are unrelated to languages in their training set is not very effective, we would expect stronger results from transfer to creoles. Indeed, our experiments show considerably better results from few-shot learning of JamPatoisNLI than for such unrelated languages, and help us begin to understand how the unique relationship between creoles and their high-resource base languages affect cross-lingual transfer. JamPatoisNLI, which consists of naturally-occurring premises and expert-written hypotheses, is a step towards steering research into a traditionally underserved language and a useful benchmark for understanding cross-lingual NLP. 3 authors · Dec 6, 2022
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area. 19 authors · Oct 20, 2024
2 Making a MIRACL: Multilingual Information Retrieval Across a Continuum of Languages MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual dataset we have built for the WSDM 2023 Cup challenge that focuses on ad hoc retrieval across 18 different languages, which collectively encompass over three billion native speakers around the world. These languages have diverse typologies, originate from many different language families, and are associated with varying amounts of available resources -- including what researchers typically characterize as high-resource as well as low-resource languages. Our dataset is designed to support the creation and evaluation of models for monolingual retrieval, where the queries and the corpora are in the same language. In total, we have gathered over 700k high-quality relevance judgments for around 77k queries over Wikipedia in these 18 languages, where all assessments have been performed by native speakers hired by our team. Our goal is to spur research that will improve retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have been traditionally underserved. This overview paper describes the dataset and baselines that we share with the community. The MIRACL website is live at http://miracl.ai/. 9 authors · Oct 18, 2022
- KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and KIRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus . 4 authors · Oct 23, 2020
1 Distilling Efficient Language-Specific Models for Cross-Lingual Transfer Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil. 4 authors · Jun 2, 2023
- WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference. 4 authors · Oct 6, 2020
- Resources and Few-shot Learners for In-context Learning in Slavic Languages Despite the rapid recent progress in creating accurate and compact in-context learners, most recent work focuses on in-context learning (ICL) for tasks in English. However, the ability to interact with users of languages outside English presents a great potential for broadening the applicability of language technologies to non-English speakers. In this work, we collect the infrastructure necessary for training and evaluation of ICL in a selection of Slavic languages: Czech, Polish, and Russian. We link a diverse set of datasets and cast these into a unified instructional format through a set of transformations and newly-crafted templates written purely in target languages. Using the newly-curated dataset, we evaluate a set of the most recent in-context learners and compare their results to the supervised baselines. Finally, we train, evaluate and publish a set of in-context learning models that we train on the collected resources and compare their performance to previous work. We find that ICL models tuned in English are also able to learn some tasks from non-English contexts, but multilingual instruction fine-tuning consistently improves the ICL ability. We also find that the massive multitask training can be outperformed by single-task training in the target language, uncovering the potential for specializing in-context learners to the language(s) of their application. 4 authors · Apr 4, 2023
- UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation This paper describes the system we developed for SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages." The aim of the task is to build a model that can identify semantic textual relatedness (STR) between two sentences of a target language belonging to a collection of African and Asian languages. We participated in Subtasks A and C and explored supervised and cross-lingual training leveraging large language models (LLMs). Pre-trained large language models have been extensively used for machine translation and semantic similarity. Using a combination of machine translation and sentence embedding LLMs, we developed a unified STR model, TranSem, for subtask A and fine-tuned the T5 family of models on the STR data, FineSem, for use in subtask C. Our model results for 7 languages in subtask A were better than the official baseline for 3 languages and on par with the baseline for the remaining 4 languages. Our model results for the 12 languages in subtask C resulted in 1st place for Africaans, 2nd place for Indonesian, and 3rd place for English with low performance for the remaining 9 languages. 2 authors · Feb 20, 2024