Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCompositional Evaluation on Japanese Textual Entailment and Similarity
Natural Language Inference (NLI) and Semantic Textual Similarity (STS) are widely used benchmark tasks for compositional evaluation of pre-trained language models. Despite growing interest in linguistic universals, most NLI/STS studies have focused almost exclusively on English. In particular, there are no available multilingual NLI/STS datasets in Japanese, which is typologically different from English and can shed light on the currently controversial behavior of language models in matters such as sensitivity to word order and case particles. Against this background, we introduce JSICK, a Japanese NLI/STS dataset that was manually translated from the English dataset SICK. We also present a stress-test dataset for compositional inference, created by transforming syntactic structures of sentences in JSICK to investigate whether language models are sensitive to word order and case particles. We conduct baseline experiments on different pre-trained language models and compare the performance of multilingual models when applied to Japanese and other languages. The results of the stress-test experiments suggest that the current pre-trained language models are insensitive to word order and case marking.
Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs. The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object, consequently decreasing the classification performance towards novel compositions. Previous remarkable works primarily addressed this issue by focusing on disentangling strategy or utilizing object-based conditional probabilities to constrain the selection space of attributes. Unfortunately, few studies have explored the problem from the perspective of modeling the mechanism of visual primitive interactions. Inspired by the success of vanilla adversarial learning in Cross-Domain Few-Shot Learning, we take a step further and devise a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem. Besides, the latest studies highlight the weakness of the perception of hard compositions even under data-balanced conditions. To this end, we propose a novel over-sampling strategy with object-similarity guidance to augment target compositional training data. We performed detailed quantitative analysis and retrieval experiments on well-established datasets, such as UT-Zappos50K, MIT-States, and C-GQA, to validate the effectiveness of our proposed method, and the state-of-the-art (SOTA) performance demonstrates the superiority of our approach. The code is available at https://github.com/lisuyi/PBadv_czsl.
What makes a language easy to deep-learn? Deep neural networks and humans similarly benefit from compositional structure
Deep neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to systematically produce forms for new meanings. For humans, languages with more compositional and transparent structures are typically easier to learn than those with opaque and irregular structures. However, this learnability advantage has not yet been shown for deep neural networks, limiting their use as models for human language learning. Here, we directly test how neural networks compare to humans in learning and generalizing different languages that vary in their degree of compositional structure. We evaluate the memorization and generalization capabilities of a large language model and recurrent neural networks, and show that both deep neural networks exhibit a learnability advantage for more structured linguistic input: neural networks exposed to more compositional languages show more systematic generalization, greater agreement between different agents, and greater similarity to human learners.
IterComp: Iterative Composition-Aware Feedback Learning from Model Gallery for Text-to-Image Generation
Advanced diffusion models like RPG, Stable Diffusion 3 and FLUX have made notable strides in compositional text-to-image generation. However, these methods typically exhibit distinct strengths for compositional generation, with some excelling in handling attribute binding and others in spatial relationships. This disparity highlights the need for an approach that can leverage the complementary strengths of various models to comprehensively improve the composition capability. To this end, we introduce IterComp, a novel framework that aggregates composition-aware model preferences from multiple models and employs an iterative feedback learning approach to enhance compositional generation. Specifically, we curate a gallery of six powerful open-source diffusion models and evaluate their three key compositional metrics: attribute binding, spatial relationships, and non-spatial relationships. Based on these metrics, we develop a composition-aware model preference dataset comprising numerous image-rank pairs to train composition-aware reward models. Then, we propose an iterative feedback learning method to enhance compositionality in a closed-loop manner, enabling the progressive self-refinement of both the base diffusion model and reward models over multiple iterations. Theoretical proof demonstrates the effectiveness and extensive experiments show our significant superiority over previous SOTA methods (e.g., Omost and FLUX), particularly in multi-category object composition and complex semantic alignment. IterComp opens new research avenues in reward feedback learning for diffusion models and compositional generation. Code: https://github.com/YangLing0818/IterComp
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Compositionality, the notion that the meaning of an expression is constructed from the meaning of its parts and syntactic rules, permits the infinite productivity of human language. For the first time, artificial language models (LMs) are able to match human performance in a number of compositional generalization tasks. However, much remains to be understood about the representational mechanisms underlying these abilities. We take a high-level geometric approach to this problem by relating the degree of compositionality in a dataset to the intrinsic dimensionality of its representations under an LM, a measure of feature complexity. We find not only that the degree of dataset compositionality is reflected in representations' intrinsic dimensionality, but that the relationship between compositionality and geometric complexity arises due to learned linguistic features over training. Finally, our analyses reveal a striking contrast between linear and nonlinear dimensionality, showing that they respectively encode formal and semantic aspects of linguistic composition.
Linear Spaces of Meanings: Compositional Structures in Vision-Language Models
We investigate compositional structures in data embeddings from pre-trained vision-language models (VLMs). Traditionally, compositionality has been associated with algebraic operations on embeddings of words from a pre-existing vocabulary. In contrast, we seek to approximate representations from an encoder as combinations of a smaller set of vectors in the embedding space. These vectors can be seen as "ideal words" for generating concepts directly within the embedding space of the model. We first present a framework for understanding compositional structures from a geometric perspective. We then explain what these compositional structures entail probabilistically in the case of VLM embeddings, providing intuitions for why they arise in practice. Finally, we empirically explore these structures in CLIP's embeddings and we evaluate their usefulness for solving different vision-language tasks such as classification, debiasing, and retrieval. Our results show that simple linear algebraic operations on embedding vectors can be used as compositional and interpretable methods for regulating the behavior of VLMs.
MNet-Sim: A Multi-layered Semantic Similarity Network to Evaluate Sentence Similarity
Similarity is a comparative-subjective measure that varies with the domain within which it is considered. In several NLP applications such as document classification, pattern recognition, chatbot question-answering, sentiment analysis, etc., identifying an accurate similarity score for sentence pairs has become a crucial area of research. In the existing models that assess similarity, the limitation of effectively computing this similarity based on contextual comparisons, the localization due to the centering theory, and the lack of non-semantic textual comparisons have proven to be drawbacks. Hence, this paper presents a multi-layered semantic similarity network model built upon multiple similarity measures that render an overall sentence similarity score based on the principles of Network Science, neighboring weighted relational edges, and a proposed extended node similarity computation formula. The proposed multi-layered network model was evaluated and tested against established state-of-the-art models and is shown to have demonstrated better performance scores in assessing sentence similarity.
SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
State-of-the-art machine learning methods exhibit limited compositional generalization. At the same time, there is a lack of realistic benchmarks that comprehensively measure this ability, which makes it challenging to find and evaluate improvements. We introduce a novel method to systematically construct such benchmarks by maximizing compound divergence while guaranteeing a small atom divergence between train and test sets, and we quantitatively compare this method to other approaches for creating compositional generalization benchmarks. We present a large and realistic natural language question answering dataset that is constructed according to this method, and we use it to analyze the compositional generalization ability of three machine learning architectures. We find that they fail to generalize compositionally and that there is a surprisingly strong negative correlation between compound divergence and accuracy. We also demonstrate how our method can be used to create new compositionality benchmarks on top of the existing SCAN dataset, which confirms these findings.
Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models
Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.
Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
The Validity of Evaluation Results: Assessing Concurrence Across Compositionality Benchmarks
NLP models have progressed drastically in recent years, according to numerous datasets proposed to evaluate performance. Questions remain, however, about how particular dataset design choices may impact the conclusions we draw about model capabilities. In this work, we investigate this question in the domain of compositional generalization. We examine the performance of six modeling approaches across 4 datasets, split according to 8 compositional splitting strategies, ranking models by 18 compositional generalization splits in total. Our results show that: i) the datasets, although all designed to evaluate compositional generalization, rank modeling approaches differently; ii) datasets generated by humans align better with each other than they with synthetic datasets, or than synthetic datasets among themselves; iii) generally, whether datasets are sampled from the same source is more predictive of the resulting model ranking than whether they maintain the same interpretation of compositionality; and iv) which lexical items are used in the data can strongly impact conclusions. Overall, our results demonstrate that much work remains to be done when it comes to assessing whether popular evaluation datasets measure what they intend to measure, and suggest that elucidating more rigorous standards for establishing the validity of evaluation sets could benefit the field.
Generating Intermediate Representations for Compositional Text-To-Image Generation
Text-to-image diffusion models have demonstrated an impressive ability to produce high-quality outputs. However, they often struggle to accurately follow fine-grained spatial information in an input text. To this end, we propose a compositional approach for text-to-image generation based on two stages. In the first stage, we design a diffusion-based generative model to produce one or more aligned intermediate representations (such as depth or segmentation maps) conditioned on text. In the second stage, we map these representations, together with the text, to the final output image using a separate diffusion-based generative model. Our findings indicate that such compositional approach can improve image generation, resulting in a notable improvement in FID score and a comparable CLIP score, when compared to the standard non-compositional baseline.
No Word is an Island -- A Transformation Weighting Model for Semantic Composition
Composition models of distributional semantics are used to construct phrase representations from the representations of their words. Composition models are typically situated on two ends of a spectrum. They either have a small number of parameters but compose all phrases in the same way, or they perform word-specific compositions at the cost of a far larger number of parameters. In this paper we propose transformation weighting (TransWeight), a composition model that consistently outperforms existing models on nominal compounds, adjective-noun phrases and adverb-adjective phrases in English, German and Dutch. TransWeight drastically reduces the number of parameters needed compared to the best model in the literature by composing similar words in the same way.
Discovering modular solutions that generalize compositionally
Many complex tasks can be decomposed into simpler, independent parts. Discovering such underlying compositional structure has the potential to enable compositional generalization. Despite progress, our most powerful systems struggle to compose flexibly. It therefore seems natural to make models more modular to help capture the compositional nature of many tasks. However, it is unclear under which circumstances modular systems can discover hidden compositional structure. To shed light on this question, we study a teacher-student setting with a modular teacher where we have full control over the composition of ground truth modules. This allows us to relate the problem of compositional generalization to that of identification of the underlying modules. In particular we study modularity in hypernetworks representing a general class of multiplicative interactions. We show theoretically that identification up to linear transformation purely from demonstrations is possible without having to learn an exponential number of module combinations. We further demonstrate empirically that under the theoretically identified conditions, meta-learning from finite data can discover modular policies that generalize compositionally in a number of complex environments.
Compositional Generalization for Multi-label Text Classification: A Data-Augmentation Approach
Despite significant advancements in multi-label text classification, the ability of existing models to generalize to novel and seldom-encountered complex concepts, which are compositions of elementary ones, remains underexplored. This research addresses this gap. By creating unique data splits across three benchmarks, we assess the compositional generalization ability of existing multi-label text classification models. Our results show that these models often fail to generalize to compositional concepts encountered infrequently during training, leading to inferior performance on tests with these new combinations. To address this, we introduce a data augmentation method that leverages two innovative text generation models designed to enhance the classification models' capacity for compositional generalization. Our experiments show that this data augmentation approach significantly improves the compositional generalization capabilities of classification models on our benchmarks, with both generation models surpassing other text generation baselines.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation
Despite the stunning ability to generate high-quality images by recent text-to-image models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation. We introduce a new approach, Generative mOdel fine-tuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach. Project page is available at https://karine-h.github.io/T2I-CompBench/.
When and why vision-language models behave like bags-of-words, and what to do about it?
Despite the success of large vision and language models (VLMs) in many downstream applications, it is unclear how well they encode compositional information. Here, we create the Attribution, Relation, and Order (ARO) benchmark to systematically evaluate the ability of VLMs to understand different types of relationships, attributes, and order. ARO consists of Visual Genome Attribution, to test the understanding of objects' properties; Visual Genome Relation, to test for relational understanding; and COCO & Flickr30k-Order, to test for order sensitivity. ARO is orders of magnitude larger than previous benchmarks of compositionality, with more than 50,000 test cases. We show where state-of-the-art VLMs have poor relational understanding, can blunder when linking objects to their attributes, and demonstrate a severe lack of order sensitivity. VLMs are predominantly trained and evaluated on large datasets with rich compositional structure in the images and captions. Yet, training on these datasets has not been enough to address the lack of compositional understanding, and evaluating on these datasets has failed to surface this deficiency. To understand why these limitations emerge and are not represented in the standard tests, we zoom into the evaluation and training procedures. We demonstrate that it is possible to perform well on retrieval over existing datasets without using the composition and order information. Given that contrastive pretraining optimizes for retrieval on datasets with similar shortcuts, we hypothesize that this can explain why the models do not need to learn to represent compositional information. This finding suggests a natural solution: composition-aware hard negative mining. We show that a simple-to-implement modification of contrastive learning significantly improves the performance on tasks requiring understanding of order and compositionality.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
Can LLM find the green circle? Investigation and Human-guided tool manipulation for compositional generalization
The meaning of complex phrases in natural language is composed of their individual components. The task of compositional generalization evaluates a model's ability to understand new combinations of components. Previous studies trained smaller, task-specific models, which exhibited poor generalization. While large language models (LLMs) exhibit impressive generalization abilities on many tasks through in-context learning (ICL), their potential for compositional generalization remains unexplored. In this paper, we first empirically investigate prevailing ICL methods in compositional generalization. We find that they struggle with complex compositional questions due to cumulative errors in long reasoning steps and intricate logic required for tool-making. Consequently, we propose a human-guided tool manipulation framework (HTM) that generates tools for sub-questions and integrates multiple tools. Our method enhances the effectiveness of tool creation and usage with minimal human effort. Experiments show that our method achieves state-of-the-art performance on two compositional generalization benchmarks and outperforms existing methods on the most challenging test split by 70%.
Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
Towards Compositionality in Concept Learning
Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models
The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/
Composition-contrastive Learning for Sentence Embeddings
Vector representations of natural language are ubiquitous in search applications. Recently, various methods based on contrastive learning have been proposed to learn textual representations from unlabelled data; by maximizing alignment between minimally-perturbed embeddings of the same text, and encouraging a uniform distribution of embeddings across a broader corpus. Differently, we propose maximizing alignment between texts and a composition of their phrasal constituents. We consider several realizations of this objective and elaborate the impact on representations in each case. Experimental results on semantic textual similarity tasks show improvements over baselines that are comparable with state-of-the-art approaches. Moreover, this work is the first to do so without incurring costs in auxiliary training objectives or additional network parameters.
Aspect-based Document Similarity for Research Papers
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity for research papers. Paper citations indicate the aspect-based similarity, i.e., the section title in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. Our results show SciBERT as the best performing system. A qualitative examination validates our quantitative results. Our findings motivate future research of aspect-based document similarity and the development of a recommender system based on the evaluated techniques. We make our datasets, code, and trained models publicly available.
A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation
Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
Musical Audio Similarity with Self-supervised Convolutional Neural Networks
We have built a music similarity search engine that lets video producers search by listenable music excerpts, as a complement to traditional full-text search. Our system suggests similar sounding track segments in a large music catalog by training a self-supervised convolutional neural network with triplet loss terms and musical transformations. Semi-structured user interviews demonstrate that we can successfully impress professional video producers with the quality of the search experience, and perceived similarities to query tracks averaged 7.8/10 in user testing. We believe this search tool will make for a more natural search experience that is easier to find music to soundtrack videos with.
Building and Interpreting Deep Similarity Models
Many learning algorithms such as kernel machines, nearest neighbors, clustering, or anomaly detection, are based on the concept of 'distance' or 'similarity'. Before similarities are used for training an actual machine learning model, we would like to verify that they are bound to meaningful patterns in the data. In this paper, we propose to make similarities interpretable by augmenting them with an explanation in terms of input features. We develop BiLRP, a scalable and theoretically founded method to systematically decompose similarity scores on pairs of input features. Our method can be expressed as a composition of LRP explanations, which were shown in previous works to scale to highly nonlinear functions. Through an extensive set of experiments, we demonstrate that BiLRP robustly explains complex similarity models, e.g. built on VGG-16 deep neural network features. Additionally, we apply our method to an open problem in digital humanities: detailed assessment of similarity between historical documents such as astronomical tables. Here again, BiLRP provides insight and brings verifiability into a highly engineered and problem-specific similarity model.
Compositionality for Recursive Neural Networks
Modelling compositionality has been a longstanding area of research in the field of vector space semantics. The categorical approach to compositionality maps grammar onto vector spaces in a principled way, but comes under fire for requiring the formation of very high-dimensional matrices and tensors, and therefore being computationally infeasible. In this paper I show how a linear simplification of recursive neural tensor network models can be mapped directly onto the categorical approach, giving a way of computing the required matrices and tensors. This mapping suggests a number of lines of research for both categorical compositional vector space models of meaning and for recursive neural network models of compositionality.
CLIP Behaves like a Bag-of-Words Model Cross-modally but not Uni-modally
CLIP (Contrastive Language-Image Pretraining) has become a popular choice for various downstream tasks. However, recent studies have questioned its ability to represent compositional concepts effectively. These works suggest that CLIP often acts like a bag-of-words (BoW) model, interpreting images and text as sets of individual concepts without grasping the structural relationships. In particular, CLIP struggles to correctly bind attributes to their corresponding objects when multiple objects are present in an image or text. In this work, we investigate why CLIP exhibits this BoW-like behavior. We find that the correct attribute-object binding information is already present in individual text and image modalities. Instead, the issue lies in the cross-modal alignment, which relies on cosine similarity. To address this, we propose Linear Attribute Binding CLIP or LABCLIP. It applies a linear transformation to text embeddings before computing cosine similarity. This approach significantly improves CLIP's ability to bind attributes to correct objects, thereby enhancing its compositional understanding.
Compositional Generative Modeling: A Single Model is Not All You Need
Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
Object-level Visual Prompts for Compositional Image Generation
We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
Data Similarity is Not Enough to Explain Language Model Performance
Large language models achieve high performance on many but not all downstream tasks. The interaction between pretraining data and task data is commonly assumed to determine this variance: a task with data that is more similar to a model's pretraining data is assumed to be easier for that model. We test whether distributional and example-specific similarity measures (embedding-, token- and model-based) correlate with language model performance through a large-scale comparison of the Pile and C4 pretraining datasets with downstream benchmarks. Similarity correlates with performance for multilingual datasets, but in other benchmarks, we surprisingly find that similarity metrics are not correlated with accuracy or even each other. This suggests that the relationship between pretraining data and downstream tasks is more complex than often assumed.
Syntax-Guided Transformers: Elevating Compositional Generalization and Grounding in Multimodal Environments
Compositional generalization, the ability of intelligent models to extrapolate understanding of components to novel compositions, is a fundamental yet challenging facet in AI research, especially within multimodal environments. In this work, we address this challenge by exploiting the syntactic structure of language to boost compositional generalization. This paper elevates the importance of syntactic grounding, particularly through attention masking techniques derived from text input parsing. We introduce and evaluate the merits of using syntactic information in the multimodal grounding problem. Our results on grounded compositional generalization underscore the positive impact of dependency parsing across diverse tasks when utilized with Weight Sharing across the Transformer encoder. The results push the state-of-the-art in multimodal grounding and parameter-efficient modeling and provide insights for future research.
Vision-by-Language for Training-Free Compositional Image Retrieval
Given an image and a target modification (e.g an image of the Eiffel tower and the text "without people and at night-time"), Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database. While supervised approaches rely on annotating triplets that is costly (i.e. query image, textual modification, and target image), recent research sidesteps this need by using large-scale vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). However, state-of-the-art approaches in ZS-CIR still require training task-specific, customized models over large amounts of image-text pairs. In this work, we propose to tackle CIR in a training-free manner via our Compositional Image Retrieval through Vision-by-Language (CIReVL), a simple, yet human-understandable and scalable pipeline that effectively recombines large-scale VLMs with large language models (LLMs). By captioning the reference image using a pre-trained generative VLM and asking a LLM to recompose the caption based on the textual target modification for subsequent retrieval via e.g. CLIP, we achieve modular language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part state-of-the-art performance - improving over supervised methods. Moreover, the modularity of CIReVL offers simple scalability without re-training, allowing us to both investigate scaling laws and bottlenecks for ZS-CIR while easily scaling up to in parts more than double of previously reported results. Finally, we show that CIReVL makes CIR human-understandable by composing image and text in a modular fashion in the language domain, thereby making it intervenable, allowing to post-hoc re-align failure cases. Code will be released upon acceptance.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization
Compositional generalization is crucial for artificial intelligence agents to solve complex vision-language reasoning tasks. Neuro-symbolic approaches have demonstrated promise in capturing compositional structures, but they face critical challenges: (a) reliance on predefined predicates for symbolic representations that limit adaptability, (b) difficulty in extracting predicates from raw data, and (c) using non-differentiable operations for combining primitive concepts. To address these issues, we propose NeSyCoCo, a neuro-symbolic framework that leverages large language models (LLMs) to generate symbolic representations and map them to differentiable neural computations. NeSyCoCo introduces three innovations: (a) augmenting natural language inputs with dependency structures to enhance the alignment with symbolic representations, (b) employing distributed word representations to link diverse, linguistically motivated logical predicates to neural modules, and (c) using the soft composition of normalized predicate scores to align symbolic and differentiable reasoning. Our framework achieves state-of-the-art results on the ReaSCAN and CLEVR-CoGenT compositional generalization benchmarks and demonstrates robust performance with novel concepts in the CLEVR-SYN benchmark.
CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models
A fundamental characteristic of audio is its compositional nature. Audio-language models (ALMs) trained using a contrastive approach (e.g., CLAP) that learns a shared representation between audio and language modalities have improved performance in many downstream applications, including zero-shot audio classification, audio retrieval, etc. However, the ability of these models to effectively perform compositional reasoning remains largely unexplored and necessitates additional research. In this paper, we propose CompA, a collection of two expert-annotated benchmarks with a majority of real-world audio samples, to evaluate compositional reasoning in ALMs. Our proposed CompA-order evaluates how well an ALM understands the order or occurrence of acoustic events in audio, and CompA-attribute evaluates attribute binding of acoustic events. An instance from either benchmark consists of two audio-caption pairs, where both audios have the same acoustic events but with different compositions. An ALM is evaluated on how well it matches the right audio to the right caption. Using this benchmark, we first show that current ALMs perform only marginally better than random chance, thereby struggling with compositional reasoning. Next, we propose CompA-CLAP, where we fine-tune CLAP using a novel learning method to improve its compositional reasoning abilities. To train CompA-CLAP, we first propose improvements to contrastive training with composition-aware hard negatives, allowing for more focused training. Next, we propose a novel modular contrastive loss that helps the model learn fine-grained compositional understanding and overcomes the acute scarcity of openly available compositional audios. CompA-CLAP significantly improves over all our baseline models on the CompA benchmark, indicating its superior compositional reasoning capabilities.
COLA: How to adapt vision-language models to Compose Objects Localized with Attributes?
Compositional reasoning is a hallmark of human visual intelligence; yet despite the size of large vision-language models, they struggle to represent simple compositions by combining objects with their attributes. To measure this lack of compositional capability, we design Cola, a text-to-image retrieval benchmark to Compose Objects Localized with Attributes. Using Cola as a testbed, we explore modeling designs to adapt pre-trained vision-language models to reason compositionally about multiple attributes attached to multiple objects. We explore 6 finetuning strategies on 2 seminal vision-language models, using 3 finetuning datasets and 2 test benchmarks (Cola and CREPE). Surprisingly, our optimal finetuning strategy improves a 151M parameter CLIP, which disjointly encodes image and language during pretraining, to perform as well as a 241M parameter FLAVA, which uses a multi-modal transformer encoder during pretraining to attend over both vision and language modalities. This optimal finetuning strategy is a lightweight multi-modal adapter that jointly attends over both image and language features generated by the pretrained model. We show this works better than common strategies such as prompt/fine-tuning, or tuning a comparable number of unimodal layers.
CSTS: Conditional Semantic Textual Similarity
Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball." (both upward) and lower for "The size of the ball." (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
Compositional Visual Generation with Composable Diffusion Models
Large text-guided diffusion models, such as DALLE-2, are able to generate stunning photorealistic images given natural language descriptions. While such models are highly flexible, they struggle to understand the composition of certain concepts, such as confusing the attributes of different objects or relations between objects. In this paper, we propose an alternative structured approach for compositional generation using diffusion models. An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image. To do this, we interpret diffusion models as energy-based models in which the data distributions defined by the energy functions may be explicitly combined. The proposed method can generate scenes at test time that are substantially more complex than those seen in training, composing sentence descriptions, object relations, human facial attributes, and even generalizing to new combinations that are rarely seen in the real world. We further illustrate how our approach may be used to compose pre-trained text-guided diffusion models and generate photorealistic images containing all the details described in the input descriptions, including the binding of certain object attributes that have been shown difficult for DALLE-2. These results point to the effectiveness of the proposed method in promoting structured generalization for visual generation. Project page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
Evaluating Text to Image Synthesis: Survey and Taxonomy of Image Quality Metrics
Recent advances in text-to-image synthesis have been enabled by exploiting a combination of language and vision through foundation models. These models are pre-trained on tremendous amounts of text-image pairs sourced from the World Wide Web or other large-scale databases. As the demand for high-quality image generation shifts towards ensuring content alignment between text and image, novel evaluation metrics have been developed with the aim of mimicking human judgments. Thus, researchers have started to collect datasets with increasingly complex annotations to study the compositionality of vision-language models and their incorporation as a quality measure of compositional alignment between text and image contents. In this work, we provide a comprehensive overview of existing text-to-image evaluation metrics and propose a new taxonomy for categorizing these metrics. We also review frequently adopted text-image benchmark datasets before discussing techniques to optimize text-to-image synthesis models towards quality and human preferences. Ultimately, we derive guidelines for improving text-to-image evaluation and discuss the open challenges and current limitations.
Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model
Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
Re-Tuning: Overcoming the Compositionality Limits of Large Language Models with Recursive Tuning
We present a new method for large language models to solve compositional tasks. Although they have shown strong performance on traditional language understanding tasks, large language models struggle to solve compositional tasks, where the solution depends on solving smaller instances of the same problem. We propose a natural approach to solve compositional tasks recursively. Our method, Re-Tuning, tunes models to break down a problem into subproblems, solve those subproblems, and combine the results. We show that our method significantly improves model performance on three representative compositional tasks: integer addition, dynamic programming, and parity. Compared to state-of-the-art methods that keep intermediate steps towards solving the problems, Re-Tuning achieves significantly higher accuracy and is more GPU memory efficient.
Progressive Compositionality In Text-to-Image Generative Models
Despite the impressive text-to-image (T2I) synthesis capabilities of diffusion models, they often struggle to understand compositional relationships between objects and attributes, especially in complex settings. Existing solutions have tackled these challenges by optimizing the cross-attention mechanism or learning from the caption pairs with minimal semantic changes. However, can we generate high-quality complex contrastive images that diffusion models can directly discriminate based on visual representations? In this work, we leverage large-language models (LLMs) to compose realistic, complex scenarios and harness Visual-Question Answering (VQA) systems alongside diffusion models to automatically curate a contrastive dataset, ConPair, consisting of 15k pairs of high-quality contrastive images. These pairs feature minimal visual discrepancies and cover a wide range of attribute categories, especially complex and natural scenarios. To learn effectively from these error cases, i.e., hard negative images, we propose EvoGen, a new multi-stage curriculum for contrastive learning of diffusion models. Through extensive experiments across a wide range of compositional scenarios, we showcase the effectiveness of our proposed framework on compositional T2I benchmarks.
Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing Else
Recent advances in text-to-image diffusion models have enabled the photorealistic generation of images from text prompts. Despite the great progress, existing models still struggle to generate compositional multi-concept images naturally, limiting their ability to visualize human imagination. While several recent works have attempted to address this issue, they either introduce additional training or adopt guidance at inference time. In this work, we consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model, and with almost no extra cost. To achieve this goal, we identify the limitations in the text embeddings used for the pre-trained text-to-image diffusion models. Specifically, we observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance. We further design a minimal low-cost solution that overcomes the above issues by tweaking (not re-training) the text embeddings for more realistic multi-concept text-to-image generation. Our Correction by Similarities method tweaks the embedding of concepts by collecting semantic features from most similar tokens to localize the contribution. To avoid mixing features of concepts, we also apply Cross-Token Non-Maximum Suppression, which excludes the overlap of contributions from different concepts. Experiments show that our approach outperforms previous methods in text-to-image, image manipulation, and personalization tasks, despite not introducing additional training or inference costs to the diffusion steps.
Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval
Text-to-Music Retrieval, finding music based on a given natural language query, plays a pivotal role in content discovery within extensive music databases. To address this challenge, prior research has predominantly focused on a joint embedding of music audio and text, utilizing it to retrieve music tracks that exactly match descriptive queries related to musical attributes (i.e. genre, instrument) and contextual elements (i.e. mood, theme). However, users also articulate a need to explore music that shares similarities with their favorite tracks or artists, such as I need a similar track to Superstition by Stevie Wonder. To address these concerns, this paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++, which utilizes rich text descriptions generated with a finetuned large language model and metadata. To accomplish this, we obtained various types of seed text from several existing music tag and caption datasets and a knowledge graph dataset of artists and tracks. The experimental results show the effectiveness of TTMR++ in comparison to state-of-the-art music-text joint embedding models through a comprehensive evaluation involving various musical text queries.
ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance
Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Many recent works have discussed the propensity, or lack thereof, for emergent languages to exhibit properties of natural languages. A favorite in the literature is learning compositionality. We note that most of those works have focused on communicative bandwidth as being of primary importance. While important, it is not the only contributing factor. In this paper, we investigate the learning biases that affect the efficacy and compositionality of emergent languages. Our foremost contribution is to explore how capacity of a neural network impacts its ability to learn a compositional language. We additionally introduce a set of evaluation metrics with which we analyze the learned languages. Our hypothesis is that there should be a specific range of model capacity and channel bandwidth that induces compositional structure in the resulting language and consequently encourages systematic generalization. While we empirically see evidence for the bottom of this range, we curiously do not find evidence for the top part of the range and believe that this is an open question for the community.
Deconfounded Representation Similarity for Comparison of Neural Networks
Similarity metrics such as representational similarity analysis (RSA) and centered kernel alignment (CKA) have been used to compare layer-wise representations between neural networks. However, these metrics are confounded by the population structure of data items in the input space, leading to spuriously high similarity for even completely random neural networks and inconsistent domain relations in transfer learning. We introduce a simple and generally applicable fix to adjust for the confounder with covariate adjustment regression, which retains the intuitive invariance properties of the original similarity measures. We show that deconfounding the similarity metrics increases the resolution of detecting semantically similar neural networks. Moreover, in real-world applications, deconfounding improves the consistency of representation similarities with domain similarities in transfer learning, and increases correlation with out-of-distribution accuracy.
Turing Representational Similarity Analysis (RSA): A Flexible Method for Measuring Alignment Between Human and Artificial Intelligence
As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons to human understanding across diverse tasks. To meet this need, we developed Turing Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Turing RSA enables the efficient and flexible quantification of human-AI alignment and complements existing accuracy-based benchmark tasks. We demonstrate its utility across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.
Towards Understanding the Relationship between In-context Learning and Compositional Generalization
According to the principle of compositional generalization, the meaning of a complex expression can be understood as a function of the meaning of its parts and of how they are combined. This principle is crucial for human language processing and also, arguably, for NLP models in the face of out-of-distribution data. However, many neural network models, including Transformers, have been shown to struggle with compositional generalization. In this paper, we hypothesize that forcing models to in-context learn can provide an inductive bias to promote compositional generalization. To test this hypothesis, we train a causal Transformer in a setting that renders ordinary learning very difficult: we present it with different orderings of the training instance and shuffle instance labels. This corresponds to training the model on all possible few-shot learning problems attainable from the dataset. The model can solve the task, however, by utilizing earlier examples to generalize to later ones (i.e. in-context learning). In evaluations on the datasets, SCAN, COGS, and GeoQuery, models trained in this manner indeed show improved compositional generalization. This indicates the usefulness of in-context learning problems as an inductive bias for generalization.
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
A Corpus for Reasoning About Natural Language Grounded in Photographs
We introduce a new dataset for joint reasoning about natural language and images, with a focus on semantic diversity, compositionality, and visual reasoning challenges. The data contains 107,292 examples of English sentences paired with web photographs. The task is to determine whether a natural language caption is true about a pair of photographs. We crowdsource the data using sets of visually rich images and a compare-and-contrast task to elicit linguistically diverse language. Qualitative analysis shows the data requires compositional joint reasoning, including about quantities, comparisons, and relations. Evaluation using state-of-the-art visual reasoning methods shows the data presents a strong challenge.
Prompt Engineering for Transformer-based Chemical Similarity Search Identifies Structurally Distinct Functional Analogues
Chemical similarity searches are widely used in-silico methods for identifying new drug-like molecules. These methods have historically relied on structure-based comparisons to compute molecular similarity. Here, we use a chemical language model to create a vector-based chemical search. We extend implementations by creating a prompt engineering strategy that utilizes two different chemical string representation algorithms: one for the query and the other for the database. We explore this method by reviewing the search results from five drug-like query molecules (penicillin G, nirmatrelvir, zidovudine, lysergic acid diethylamide, and fentanyl) and three dye-like query molecules (acid blue 25, avobenzone, and 2-diphenylaminocarbazole). We find that this novel method identifies molecules that are functionally similar to the query, indicated by the associated patent literature, and that many of these molecules are structurally distinct from the query, making them unlikely to be found with traditional chemical similarity search methods. This method may aid in the discovery of novel structural classes of molecules that achieve target functionality.
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire
Structurally Diverse Sampling for Sample-Efficient Training and Comprehensive Evaluation
A growing body of research has demonstrated the inability of NLP models to generalize compositionally and has tried to alleviate it through specialized architectures, training schemes, and data augmentation, among other approaches. In this work, we study a different approach: training on instances with diverse structures. We propose a model-agnostic algorithm for subsampling such sets of instances from a labeled instance pool with structured outputs. Evaluating on both compositional template splits and traditional IID splits of 5 semantic parsing datasets of varying complexity, we show that structurally diverse training using our algorithm leads to comparable or better generalization than prior algorithms in 9 out of 10 dataset-split type pairs. In general, we find structural diversity to consistently improve sample efficiency compared to random train sets. Moreover, we show that structurally diverse sampling yields comprehensive test sets that are a lot more challenging than IID test sets. Finally, we provide two explanations for improved generalization from diverse train sets: 1) improved coverage of output substructures, and 2) a reduction in spurious correlations between these substructures.
Specialized Document Embeddings for Aspect-based Similarity of Research Papers
Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.
Domain and Function: A Dual-Space Model of Semantic Relations and Compositions
Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.
SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations
Despite their remarkable successes, state-of-the-art large language models (LLMs), including vision-and-language models (VLMs) and unimodal language models (ULMs), fail to understand precise semantics. For example, semantically equivalent sentences expressed using different lexical compositions elicit diverging representations. The degree of this divergence and its impact on encoded semantics is not very well understood. In this paper, we introduce the SUGARCREPE++ dataset to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations. Each sample in SUGARCREPE++ dataset consists of an image and a corresponding triplet of captions: a pair of semantically equivalent but lexically different positive captions and one hard negative caption. This poses a 3-way semantic (in)equivalence problem to the language models. We comprehensively evaluate VLMs and ULMs that differ in architecture, pre-training objectives and datasets to benchmark the performance of SUGARCREPE++ dataset. Experimental results highlight the difficulties of VLMs in distinguishing between lexical and semantic variations, particularly in object attributes and spatial relations. Although VLMs with larger pre-training datasets, model sizes, and multiple pre-training objectives achieve better performance on SUGARCREPE++, there is a significant opportunity for improvement. We show that all the models which achieve better performance on compositionality datasets need not perform equally well on SUGARCREPE++, signifying that compositionality alone may not be sufficient for understanding semantic and lexical alterations. Given the importance of the property that the SUGARCREPE++ dataset targets, it serves as a new challenge to the vision-and-language community.
Training-free Subject-Enhanced Attention Guidance for Compositional Text-to-image Generation
Existing subject-driven text-to-image generation models suffer from tedious fine-tuning steps and struggle to maintain both text-image alignment and subject fidelity. For generating compositional subjects, it often encounters problems such as object missing and attribute mixing, where some subjects in the input prompt are not generated or their attributes are incorrectly combined. To address these limitations, we propose a subject-driven generation framework and introduce training-free guidance to intervene in the generative process during inference time. This approach strengthens the attention map, allowing for precise attribute binding and feature injection for each subject. Notably, our method exhibits exceptional zero-shot generation ability, especially in the challenging task of compositional generation. Furthermore, we propose a novel metric GroundingScore to evaluate subject alignment thoroughly. The obtained quantitative results serve as compelling evidence showcasing the effectiveness of our proposed method. The code will be released soon.
Measuring Style Similarity in Diffusion Models
Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD.
Unobserved Local Structures Make Compositional Generalization Hard
While recent work has convincingly showed that sequence-to-sequence models struggle to generalize to new compositions (termed compositional generalization), little is known on what makes compositional generalization hard on a particular test instance. In this work, we investigate what are the factors that make generalization to certain test instances challenging. We first substantiate that indeed some examples are more difficult than others by showing that different models consistently fail or succeed on the same test instances. Then, we propose a criterion for the difficulty of an example: a test instance is hard if it contains a local structure that was not observed at training time. We formulate a simple decision rule based on this criterion and empirically show it predicts instance-level generalization well across 5 different semantic parsing datasets, substantially better than alternative decision rules. Last, we show local structures can be leveraged for creating difficult adversarial compositional splits and also to improve compositional generalization under limited training budgets by strategically selecting examples for the training set.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
DreamCom: Finetuning Text-guided Inpainting Model for Image Composition
The goal of image composition is merging a foreground object into a background image to obtain a realistic composite image. Recently, generative composition methods are built on large pretrained diffusion models, due to their unprecedented image generation ability. They train a model on abundant pairs of foregrounds and backgrounds, so that it can be directly applied to a new pair of foreground and background at test time. However, the generated results often lose the foreground details and exhibit noticeable artifacts. In this work, we propose an embarrassingly simple approach named DreamCom inspired by DreamBooth. Specifically, given a few reference images for a subject, we finetune text-guided inpainting diffusion model to associate this subject with a special token and inpaint this subject in the specified bounding box. We also construct a new dataset named MureCom well-tailored for this task.
Compositional preference models for aligning LMs
As language models (LMs) become more capable, it is increasingly important to align them with human preferences. However, the dominant paradigm for training Preference Models (PMs) for that purpose suffers from fundamental limitations, such as lack of transparency and scalability, along with susceptibility to overfitting the preference dataset. We propose Compositional Preference Models (CPMs), a novel PM framework that decomposes one global preference assessment into several interpretable features, obtains scalar scores for these features from a prompted LM, and aggregates these scores using a logistic regression classifier. Through these simple steps, CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment. Our experiments show that CPMs not only improve generalization and are more robust to overoptimization than standard PMs, but also that best-of-n samples obtained using CPMs tend to be preferred over samples obtained using conventional PMs. Overall, our approach demonstrates the benefits of endowing PMs with priors about which features determine human preferences while relying on LM capabilities to extract those features in a scalable and robust way.
Compositional Text-to-Image Generation with Dense Blob Representations
Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks. Project page: https://blobgen-2d.github.io.
ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis
When writing programs, people have the ability to tackle a new complex task by decomposing it into smaller and more familiar subtasks. While it is difficult to measure whether neural program synthesis methods have similar capabilities, we can measure whether they compositionally generalize, that is, whether a model that has been trained on the simpler subtasks is subsequently able to solve more complex tasks. In this paper, we characterize several different forms of compositional generalization that are desirable in program synthesis, forming a meta-benchmark which we use to create generalization tasks for two popular datasets, RobustFill and DeepCoder. We then propose ExeDec, a novel decomposition-based synthesis strategy that predicts execution subgoals to solve problems step-by-step informed by program execution at each step. ExeDec has better synthesis performance and greatly improved compositional generalization ability compared to baselines.
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation
While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We will release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.
A Toy Model of Universality: Reverse Engineering How Networks Learn Group Operations
Universality is a key hypothesis in mechanistic interpretability -- that different models learn similar features and circuits when trained on similar tasks. In this work, we study the universality hypothesis by examining how small neural networks learn to implement group composition. We present a novel algorithm by which neural networks may implement composition for any finite group via mathematical representation theory. We then show that networks consistently learn this algorithm by reverse engineering model logits and weights, and confirm our understanding using ablations. By studying networks of differing architectures trained on various groups, we find mixed evidence for universality: using our algorithm, we can completely characterize the family of circuits and features that networks learn on this task, but for a given network the precise circuits learned -- as well as the order they develop -- are arbitrary.
ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image Diffusion Models
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts, we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, 5K unique concept compositions, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in ground truth images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Framework
Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle EvaLuation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
The Impact of Depth and Width on Transformer Language Model Generalization
To process novel sentences, language models (LMs) must generalize compositionally -- combine familiar elements in new ways. What aspects of a model's structure promote compositional generalization? Focusing on transformers, we test the hypothesis, motivated by recent theoretical and empirical work, that transformers generalize more compositionally when they are deeper (have more layers). Because simply adding layers increases the total number of parameters, confounding depth and size, we construct three classes of models which trade off depth for width such that the total number of parameters is kept constant (41M, 134M and 374M parameters). We pretrain all models as LMs and fine-tune them on tasks that test for compositional generalization. We report three main conclusions: (1) after fine-tuning, deeper models generalize better out-of-distribution than shallower models do, but the relative benefit of additional layers diminishes rapidly; (2) within each family, deeper models show better language modeling performance, but returns are similarly diminishing; (3) the benefits of depth for compositional generalization cannot be attributed solely to better performance on language modeling or on in-distribution data.
T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video Generation
Text-to-video (T2V) generation models have advanced significantly, yet their ability to compose different objects, attributes, actions, and motions into a video remains unexplored. Previous text-to-video benchmarks also neglect this important ability for evaluation. In this work, we conduct the first systematic study on compositional text-to-video generation. We propose T2V-CompBench, the first benchmark tailored for compositional text-to-video generation. T2V-CompBench encompasses diverse aspects of compositionality, including consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding, action binding, object interactions, and generative numeracy. We further carefully design evaluation metrics of MLLM-based metrics, detection-based metrics, and tracking-based metrics, which can better reflect the compositional text-to-video generation quality of seven proposed categories with 700 text prompts. The effectiveness of the proposed metrics is verified by correlation with human evaluations. We also benchmark various text-to-video generative models and conduct in-depth analysis across different models and different compositional categories. We find that compositional text-to-video generation is highly challenging for current models, and we hope that our attempt will shed light on future research in this direction.
PDV: Prompt Directional Vectors for Zero-shot Composed Image Retrieval
Zero-shot composed image retrieval (ZS-CIR) enables image search using a reference image and text prompt without requiring specialized text-image composition networks trained on large-scale paired data. However, current ZS-CIR approaches face three critical limitations in their reliance on composed text embeddings: static query embedding representations, insufficient utilization of image embeddings, and suboptimal performance when fusing text and image embeddings. To address these challenges, we introduce the Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts. PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings that enhances retrieval by balancing visual and semantic similarity. Our approach serves as a plug-and-play enhancement for existing ZS-CIR methods with minimal computational overhead. Extensive experiments across multiple benchmarks demonstrate that PDV consistently improves retrieval performance when integrated with state-of-the-art ZS-CIR approaches, particularly for methods that generate accurate compositional embeddings. The code will be publicly available.
Fractal Patterns May Unravel the Intelligence in Next-Token Prediction
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.
Best Prompts for Text-to-Image Models and How to Find Them
Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons
We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research.
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration
Phrase representations derived from BERT often do not exhibit complex phrasal compositionality, as the model relies instead on lexical similarity to determine semantic relatedness. In this paper, we propose a contrastive fine-tuning objective that enables BERT to produce more powerful phrase embeddings. Our approach (Phrase-BERT) relies on a dataset of diverse phrasal paraphrases, which is automatically generated using a paraphrase generation model, as well as a large-scale dataset of phrases in context mined from the Books3 corpus. Phrase-BERT outperforms baselines across a variety of phrase-level similarity tasks, while also demonstrating increased lexical diversity between nearest neighbors in the vector space. Finally, as a case study, we show that Phrase-BERT embeddings can be easily integrated with a simple autoencoder to build a phrase-based neural topic model that interprets topics as mixtures of words and phrases by performing a nearest neighbor search in the embedding space. Crowdsourced evaluations demonstrate that this phrase-based topic model produces more coherent and meaningful topics than baseline word and phrase-level topic models, further validating the utility of Phrase-BERT.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
Assessing the Unitary RNN as an End-to-End Compositional Model of Syntax
We show that both an LSTM and a unitary-evolution recurrent neural network (URN) can achieve encouraging accuracy on two types of syntactic patterns: context-free long distance agreement, and mildly context-sensitive cross serial dependencies. This work extends recent experiments on deeply nested context-free long distance dependencies, with similar results. URNs differ from LSTMs in that they avoid non-linear activation functions, and they apply matrix multiplication to word embeddings encoded as unitary matrices. This permits them to retain all information in the processing of an input string over arbitrary distances. It also causes them to satisfy strict compositionality. URNs constitute a significant advance in the search for explainable models in deep learning applied to NLP.
mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
Recent multilingual pretrained language models (mPLMs) have been shown to encode strong language-specific signals, which are not explicitly provided during pretraining. It remains an open question whether it is feasible to employ mPLMs to measure language similarity, and subsequently use the similarity results to select source languages for boosting cross-lingual transfer. To investigate this, we propose mPLMSim, a language similarity measure that induces the similarities across languages from mPLMs using multi-parallel corpora. Our study shows that mPLM-Sim exhibits moderately high correlations with linguistic similarity measures, such as lexicostatistics, genealogical language family, and geographical sprachbund. We also conduct a case study on languages with low correlation and observe that mPLM-Sim yields more accurate similarity results. Additionally, we find that similarity results vary across different mPLMs and different layers within an mPLM. We further investigate whether mPLMSim is effective for zero-shot cross-lingual transfer by conducting experiments on both low-level syntactic tasks and high-level semantic tasks. The experimental results demonstrate that mPLM-Sim is capable of selecting better source languages than linguistic measures, resulting in a 1%-2% improvement in zero-shot cross-lingual transfer performance.
Can Models Learn Skill Composition from Examples?
As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.
Do Music Generation Models Encode Music Theory?
Music foundation models possess impressive music generation capabilities. When people compose music, they may infuse their understanding of music into their work, by using notes and intervals to craft melodies, chords to build progressions, and tempo to create a rhythmic feel. To what extent is this true of music generation models? More specifically, are fundamental Western music theory concepts observable within the "inner workings" of these models? Recent work proposed leveraging latent audio representations from music generation models towards music information retrieval tasks (e.g. genre classification, emotion recognition), which suggests that high-level musical characteristics are encoded within these models. However, probing individual music theory concepts (e.g. tempo, pitch class, chord quality) remains under-explored. Thus, we introduce SynTheory, a synthetic MIDI and audio music theory dataset, consisting of tempos, time signatures, notes, intervals, scales, chords, and chord progressions concepts. We then propose a framework to probe for these music theory concepts in music foundation models (Jukebox and MusicGen) and assess how strongly they encode these concepts within their internal representations. Our findings suggest that music theory concepts are discernible within foundation models and that the degree to which they are detectable varies by model size and layer.
MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition
We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
SemEval-2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation
Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017).
Identifying Informational Sources in News Articles
News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists.
A Comprehensive Survey on Composed Image Retrieval
Composed Image Retrieval (CIR) is an emerging yet challenging task that allows users to search for target images using a multimodal query, comprising a reference image and a modification text specifying the user's desired changes to the reference image. Given its significant academic and practical value, CIR has become a rapidly growing area of interest in the computer vision and machine learning communities, particularly with the advances in deep learning. To the best of our knowledge, there is currently no comprehensive review of CIR to provide a timely overview of this field. Therefore, we synthesize insights from over 120 publications in top conferences and journals, including ACM TOIS, SIGIR, and CVPR In particular, we systematically categorize existing supervised CIR and zero-shot CIR models using a fine-grained taxonomy. For a comprehensive review, we also briefly discuss approaches for tasks closely related to CIR, such as attribute-based CIR and dialog-based CIR. Additionally, we summarize benchmark datasets for evaluation and analyze existing supervised and zero-shot CIR methods by comparing experimental results across multiple datasets. Furthermore, we present promising future directions in this field, offering practical insights for researchers interested in further exploration. The curated collection of related works is maintained and continuously updated in https://github.com/haokunwen/Awesome-Composed-Image-Retrieval.
Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals
There have been many successful applications of sentence embedding methods. However, it has not been well understood what properties are captured in the resulting sentence embeddings depending on the supervision signals. In this paper, we focus on two types of sentence embedding methods with similar architectures and tasks: one fine-tunes pre-trained language models on the natural language inference task, and the other fine-tunes pre-trained language models on word prediction task from its definition sentence, and investigate their properties. Specifically, we compare their performances on semantic textual similarity (STS) tasks using STS datasets partitioned from two perspectives: 1) sentence source and 2) superficial similarity of the sentence pairs, and compare their performances on the downstream and probing tasks. Furthermore, we attempt to combine the two methods and demonstrate that combining the two methods yields substantially better performance than the respective methods on unsupervised STS tasks and downstream tasks.
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Music Transformer
Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.
Music-to-Text Synaesthesia: Generating Descriptive Text from Music Recordings
In this paper, we consider a novel research problem: music-to-text synaesthesia. Different from the classical music tagging problem that classifies a music recording into pre-defined categories, music-to-text synaesthesia aims to generate descriptive texts from music recordings with the same sentiment for further understanding. As existing music-related datasets do not contain the semantic descriptions on music recordings, we collect a new dataset that contains 1,955 aligned pairs of classical music recordings and text descriptions. Based on this, we build a computational model to generate sentences that can describe the content of the music recording. To tackle the highly non-discriminative classical music, we design a group topology-preservation loss, which considers more samples as a group reference and preserves the relative topology among different samples. Extensive experimental results qualitatively and quantitatively demonstrate the effectiveness of our proposed model over five heuristics or pre-trained competitive methods and their variants on our collected dataset.
Ablating Concepts in Text-to-Image Diffusion Models
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability. However, these models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos. Furthermore, they have been found to replicate the style of various living artists or memorize exact training samples. How can we remove such copyrighted concepts or images without retraining the model from scratch? To achieve this goal, we propose an efficient method of ablating concepts in the pretrained model, i.e., preventing the generation of a target concept. Our algorithm learns to match the image distribution for a target style, instance, or text prompt we wish to ablate to the distribution corresponding to an anchor concept. This prevents the model from generating target concepts given its text condition. Extensive experiments show that our method can successfully prevent the generation of the ablated concept while preserving closely related concepts in the model.
Words are all you need? Language as an approximation for human similarity judgments
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
Faith and Fate: Limits of Transformers on Compositionality
Transformer large language models (LLMs) have sparked admiration for their exceptional performance on tasks that demand intricate multi-step reasoning. Yet, these models simultaneously show failures on surprisingly trivial problems. This begs the question: Are these errors incidental, or do they signal more substantial limitations? In an attempt to demystify Transformers, we investigate the limits of these models across three representative compositional tasks -- multi-digit multiplication, logic grid puzzles, and a classic dynamic programming problem. These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer. We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures. Our empirical findings suggest that Transformers solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching, without necessarily developing systematic problem-solving skills. To round off our empirical study, we provide theoretical arguments on abstract multi-step reasoning problems that highlight how Transformers' performance will rapidly decay with increased task complexity.
Meta Compositional Referring Expression Segmentation
Referring expression segmentation aims to segment an object described by a language expression from an image. Despite the recent progress on this task, existing models tackling this task may not be able to fully capture semantics and visual representations of individual concepts, which limits their generalization capability, especially when handling novel compositions of learned concepts. In this work, through the lens of meta learning, we propose a Meta Compositional Referring Expression Segmentation (MCRES) framework to enhance model compositional generalization performance. Specifically, to handle various levels of novel compositions, our framework first uses training data to construct a virtual training set and multiple virtual testing sets, where data samples in each virtual testing set contain a level of novel compositions w.r.t. the virtual training set. Then, following a novel meta optimization scheme to optimize the model to obtain good testing performance on the virtual testing sets after training on the virtual training set, our framework can effectively drive the model to better capture semantics and visual representations of individual concepts, and thus obtain robust generalization performance even when handling novel compositions. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our framework.
Comateformer: Combined Attention Transformer for Semantic Sentence Matching
The Transformer-based model have made significant strides in semantic matching tasks by capturing connections between phrase pairs. However, to assess the relevance of sentence pairs, it is insufficient to just examine the general similarity between the sentences. It is crucial to also consider the tiny subtleties that differentiate them from each other. Regrettably, attention softmax operations in transformers tend to miss these subtle differences. To this end, in this work, we propose a novel semantic sentence matching model named Combined Attention Network based on Transformer model (Comateformer). In Comateformer model, we design a novel transformer-based quasi-attention mechanism with compositional properties. Unlike traditional attention mechanisms that merely adjust the weights of input tokens, our proposed method learns how to combine, subtract, or resize specific vectors when building a representation. Moreover, our proposed approach builds on the intuition of similarity and dissimilarity (negative affinity) when calculating dual affinity scores. This allows for a more meaningful representation of relationships between sentences. To evaluate the performance of our proposed model, we conducted extensive experiments on ten public real-world datasets and robustness testing. Experimental results show that our method achieves consistent improvements.
Contrastive Loss is All You Need to Recover Analogies as Parallel Lines
While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
What Looks Good with my Sofa: Multimodal Search Engine for Interior Design
In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public.
GeneCIS: A Benchmark for General Conditional Image Similarity
We argue that there are many notions of 'similarity' and that models, like humans, should be able to adapt to these dynamically. This contrasts with most representation learning methods, supervised or self-supervised, which learn a fixed embedding function and hence implicitly assume a single notion of similarity. For instance, models trained on ImageNet are biased towards object categories, while a user might prefer the model to focus on colors, textures or specific elements in the scene. In this paper, we propose the GeneCIS ('genesis') benchmark, which measures models' ability to adapt to a range of similarity conditions. Extending prior work, our benchmark is designed for zero-shot evaluation only, and hence considers an open-set of similarity conditions. We find that baselines from powerful CLIP models struggle on GeneCIS and that performance on the benchmark is only weakly correlated with ImageNet accuracy, suggesting that simply scaling existing methods is not fruitful. We further propose a simple, scalable solution based on automatically mining information from existing image-caption datasets. We find our method offers a substantial boost over the baselines on GeneCIS, and further improves zero-shot performance on related image retrieval benchmarks. In fact, though evaluated zero-shot, our model surpasses state-of-the-art supervised models on MIT-States. Project page at https://sgvaze.github.io/genecis/.
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning
We introduce compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) like CLIP. We develop CSP for compositional zero-shot learning, the task of predicting unseen attribute-object compositions (e.g., old cat and young tiger). VLMs have a flexible text encoder that can represent arbitrary classes as natural language prompts but they often underperform task-specific architectures on the compositional zero-shot benchmark datasets. CSP treats the attributes and objects that define classes as learnable tokens of vocabulary. During training, the vocabulary is tuned to recognize classes that compose tokens in multiple ways (e.g., old cat and white cat). At test time, we recompose the learned attribute-object vocabulary in new combinations to recognize novel classes. We show that CSP outperforms the CLIP on benchmark datasets by an average of 10.9 percentage points on AUC. CSP also outperforms CoOp, a soft prompting method that fine-tunes the prefix context tokens, by an average of 5.8 percentage points on AUC. We perform additional experiments to show that CSP improves generalization to higher-order attribute-attribute-object compositions (e.g., old white cat) and combinations of pretrained attributes and fine-tuned objects. The code is available at https://github.com/BatsResearch/csp.
Reasoning to Attend: Try to Understand How <SEG> Token Works
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
Sentence-level Prompts Benefit Composed Image Retrieval
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption. Most existing CIR models adopt the late-fusion strategy to combine visual and language features. Besides, several approaches have also been suggested to generate a pseudo-word token from the reference image, which is further integrated into the relative caption for CIR. However, these pseudo-word-based prompting methods have limitations when target image encompasses complex changes on reference image, e.g., object removal and attribute modification. In this work, we demonstrate that learning an appropriate sentence-level prompt for the relative caption (SPRC) is sufficient for achieving effective composed image retrieval. Instead of relying on pseudo-word-based prompts, we propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts. By concatenating the learned sentence-level prompt with the relative caption, one can readily use existing text-based image retrieval models to enhance CIR performance. Furthermore, we introduce both image-text contrastive loss and text prompt alignment loss to enforce the learning of suitable sentence-level prompts. Experiments show that our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets. The source code and pretrained model are publicly available at https://github.com/chunmeifeng/SPRC
Music Style Transfer with Time-Varying Inversion of Diffusion Models
With the development of diffusion models, text-guided image style transfer has demonstrated high-quality controllable synthesis results. However, the utilization of text for diverse music style transfer poses significant challenges, primarily due to the limited availability of matched audio-text datasets. Music, being an abstract and complex art form, exhibits variations and intricacies even within the same genre, thereby making accurate textual descriptions challenging. This paper presents a music style transfer approach that effectively captures musical attributes using minimal data. We introduce a novel time-varying textual inversion module to precisely capture mel-spectrogram features at different levels. During inference, we propose a bias-reduced stylization technique to obtain stable results. Experimental results demonstrate that our method can transfer the style of specific instruments, as well as incorporate natural sounds to compose melodies. Samples and source code are available at https://lsfhuihuiff.github.io/MusicTI/.
Cross-level Requirement Traceability: A Novel Approach Integrating Bag-of-Words and Word Embedding for Enhanced Similarity Functionality
Requirement traceability is the process of identifying the inter-dependencies between requirements. It poses a significant challenge when conducted manually, especially when dealing with requirements at various levels of abstraction. In this work, we propose a novel approach to automate the task of linking high-level business requirements with more technical system requirements. The proposed approach begins by representing each requirement using a Bag of-Words (BOW) model combined with the Term Frequency-Inverse Document Frequency (TF-IDF) scoring function. Then, we suggested an enhanced cosine similarity that uses recent advances in word embedding representation to correct traditional cosine similarity function limitations. To evaluate the effectiveness of our approach, we conducted experiments on three well-known datasets: COEST, WARC(NFR), and WARC(FRS). The results demonstrate that our approach significantly improves efficiency compared to existing methods. We achieved better results with an increase of approximately 18.4% in one of the datasets, as measured by the F2 score.
Moûsai: Text-to-Music Generation with Long-Context Latent Diffusion
Recent years have seen the rapid development of large generative models for text; however, much less research has explored the connection between text and another "language" of communication -- music. Music, much like text, can convey emotions, stories, and ideas, and has its own unique structure and syntax. In our work, we bridge text and music via a text-to-music generation model that is highly efficient, expressive, and can handle long-term structure. Specifically, we develop Mo\^usai, a cascading two-stage latent diffusion model that can generate multiple minutes of high-quality stereo music at 48kHz from textual descriptions. Moreover, our model features high efficiency, which enables real-time inference on a single consumer GPU with a reasonable speed. Through experiments and property analyses, we show our model's competence over a variety of criteria compared with existing music generation models. Lastly, to promote the open-source culture, we provide a collection of open-source libraries with the hope of facilitating future work in the field. We open-source the following: Codes: https://github.com/archinetai/audio-diffusion-pytorch; music samples for this paper: http://bit.ly/44ozWDH; all music samples for all models: https://bit.ly/audio-diffusion.
Compositional Image Retrieval via Instruction-Aware Contrastive Learning
Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference. CIR is inherently an instruction-following task, as the model needs to interpret and apply modifications to the image. In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable. While existing ZS-CIR models based on CLIP have shown promising results, their capability in interpreting and following modification instructions remains limited. Some research attempts to address this by incorporating Large Language Models (LLMs). However, these approaches still face challenges in effectively integrating multimodal information and instruction understanding. To tackle above challenges, we propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation, which significantly enhance the instruction following capability for a comprehensive integration between images and instructions. Nevertheless, directly applying MLLMs introduces a new challenge since MLLMs are primarily designed for text generation rather than embedding extraction as required in CIR. To address this, we introduce a two-stage training strategy to efficiently learn a joint multimodal embedding space and further refining the ability to follow modification instructions by tuning the model in a triplet dataset similar to the CIR format. Extensive experiments on four public datasets: FashionIQ, CIRR, GeneCIS, and CIRCO demonstrates the superior performance of our model, outperforming state-of-the-art baselines by a significant margin. Codes are available at the GitHub repository.
WikiMuTe: A web-sourced dataset of semantic descriptions for music audio
Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia's rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations and performs cross-modal retrieval. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, but still observe a difference in performance depending on the data used for training.
How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Large language models (LLMs) with enormous pre-training tokens and parameter amounts emerge abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). The open-source community has studied on ad-hoc SFT for each ability, while proprietary LLMs are versatile for all abilities. It is important to investigate how to unlock them with multiple abilities via SFT. In this study, we specifically focus on the data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. From a scaling perspective, we investigate the relationship between model abilities and various factors including data amounts, data composition ratio, model parameters, and SFT strategies. Our experiments reveal that different abilities exhibit different scaling patterns, and larger models generally show superior performance with the same amount of data. Mathematical reasoning and code generation improve as data amounts increase consistently, while the general ability is enhanced with about a thousand samples and improves slowly. We find data composition results in various abilities improvements with low data amounts, while conflicts of abilities with high data amounts. Our experiments further show that composition data amount impacts performance, while the influence of composition ratio is insignificant. Regarding the SFT strategies, we evaluate sequential learning multiple abilities are prone to catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy learns specialized abilities first and then learns general abilities with a small amount of specialized data to prevent forgetting, offering a promising solution to learn multiple abilities with different scaling patterns.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Analyze Feature Flow to Enhance Interpretation and Steering in Language Models
We introduce a new approach to systematically map features discovered by sparse autoencoder across consecutive layers of large language models, extending earlier work that examined inter-layer feature links. By using a data-free cosine similarity technique, we trace how specific features persist, transform, or first appear at each stage. This method yields granular flow graphs of feature evolution, enabling fine-grained interpretability and mechanistic insights into model computations. Crucially, we demonstrate how these cross-layer feature maps facilitate direct steering of model behavior by amplifying or suppressing chosen features, achieving targeted thematic control in text generation. Together, our findings highlight the utility of a causal, cross-layer interpretability framework that not only clarifies how features develop through forward passes but also provides new means for transparent manipulation of large language models.
Love Me, Love Me, Say (and Write!) that You Love Me: Enriching the WASABI Song Corpus with Lyrics Annotations
We present the WASABI Song Corpus, a large corpus of songs enriched with metadata extracted from music databases on the Web, and resulting from the processing of song lyrics and from audio analysis. More specifically, given that lyrics encode an important part of the semantics of a song, we focus here on the description of the methods we proposed to extract relevant information from the lyrics, such as their structure segmentation, their topics, the explicitness of the lyrics content, the salient passages of a song and the emotions conveyed. The creation of the resource is still ongoing: so far, the corpus contains 1.73M songs with lyrics (1.41M unique lyrics) annotated at different levels with the output of the above mentioned methods. Such corpus labels and the provided methods can be exploited by music search engines and music professionals (e.g. journalists, radio presenters) to better handle large collections of lyrics, allowing an intelligent browsing, categorization and segmentation recommendation of songs.
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user's musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.
Efficient Estimation of Word Representations in Vector Space
We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Contextualizing the Limits of Model & Evaluation Dataset Curation on Semantic Similarity Classification Tasks
This paper demonstrates how the limitations of pre-trained models and open evaluation datasets factor into assessing the performance of binary semantic similarity classification tasks. As (1) end-user-facing documentation around the curation of these datasets and pre-trained model training regimes is often not easily accessible and (2) given the lower friction and higher demand to quickly deploy such systems in real-world contexts, our study reinforces prior work showing performance disparities across datasets, embedding techniques and distance metrics, while highlighting the importance of understanding how data is collected, curated and analyzed in semantic similarity classification.
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/
Learning to Describe Differences Between Pairs of Similar Images
In this paper, we introduce the task of automatically generating text to describe the differences between two similar images. We collect a new dataset by crowd-sourcing difference descriptions for pairs of image frames extracted from video-surveillance footage. Annotators were asked to succinctly describe all the differences in a short paragraph. As a result, our novel dataset provides an opportunity to explore models that align language and vision, and capture visual salience. The dataset may also be a useful benchmark for coherent multi-sentence generation. We perform a firstpass visual analysis that exposes clusters of differing pixels as a proxy for object-level differences. We propose a model that captures visual salience by using a latent variable to align clusters of differing pixels with output sentences. We find that, for both single-sentence generation and as well as multi-sentence generation, the proposed model outperforms the models that use attention alone.
Compositional Generalization and Natural Language Variation: Can a Semantic Parsing Approach Handle Both?
Sequence-to-sequence models excel at handling natural language variation, but have been shown to struggle with out-of-distribution compositional generalization. This has motivated new specialized architectures with stronger compositional biases, but most of these approaches have only been evaluated on synthetically-generated datasets, which are not representative of natural language variation. In this work we ask: can we develop a semantic parsing approach that handles both natural language variation and compositional generalization? To better assess this capability, we propose new train and test splits of non-synthetic datasets. We demonstrate that strong existing approaches do not perform well across a broad set of evaluations. We also propose NQG-T5, a hybrid model that combines a high-precision grammar-based approach with a pre-trained sequence-to-sequence model. It outperforms existing approaches across several compositional generalization challenges on non-synthetic data, while also being competitive with the state-of-the-art on standard evaluations. While still far from solving this problem, our study highlights the importance of diverse evaluations and the open challenge of handling both compositional generalization and natural language variation in semantic parsing.
VisualGPTScore: Visio-Linguistic Reasoning with Multimodal Generative Pre-Training Scores
Vision-language models (VLMs) discriminatively pre-trained with contrastive image-text matching losses such as P(match|text, image) have been criticized for lacking compositional understanding. This means they might output similar scores even if the original caption is rearranged into a different semantic statement. To address this, we propose to use the {bf V}isual {bf G}enerative {bf P}re-{bf T}raining Score ({bf VisualGPTScore}) of P(text|image), a multimodal generative score that captures the likelihood of a text caption conditioned on an image using an image-conditioned language model. Contrary to the belief that VLMs are mere bag-of-words models, our off-the-shelf VisualGPTScore demonstrates top-tier performance on recently proposed image-text retrieval benchmarks like ARO and Crepe that assess compositional reasoning. Furthermore, we factorize VisualGPTScore into a product of the marginal P(text) and the Pointwise Mutual Information (PMI). This helps to (a) diagnose datasets with strong language bias, and (b) debias results on other benchmarks like Winoground using an information-theoretic framework. VisualGPTScore provides valuable insights and serves as a strong baseline for future evaluation of visio-linguistic compositionality.
Why is Winoground Hard? Investigating Failures in Visuolinguistic Compositionality
Recent visuolinguistic pre-trained models show promising progress on various end tasks such as image retrieval and video captioning. Yet, they fail miserably on the recently proposed Winoground dataset, which challenges models to match paired images and English captions, with items constructed to overlap lexically but differ in meaning (e.g., "there is a mug in some grass" vs. "there is some grass in a mug"). By annotating the dataset using new fine-grained tags, we show that solving the Winoground task requires not just compositional language understanding, but a host of other abilities like commonsense reasoning or locating small, out-of-focus objects in low-resolution images. In this paper, we identify the dataset's main challenges through a suite of experiments on related tasks (probing task, image retrieval task), data augmentation, and manual inspection of the dataset. Our analysis suggests that a main challenge in visuolinguistic models may lie in fusing visual and textual representations, rather than in compositional language understanding. We release our annotation and code at https://github.com/ajd12342/why-winoground-hard .
Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models
We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.
GriTS: Grid table similarity metric for table structure recognition
In this paper, we propose a new class of metric for table structure recognition (TSR) evaluation, called grid table similarity (GriTS). Unlike prior metrics, GriTS evaluates the correctness of a predicted table directly in its natural form as a matrix. To create a similarity measure between matrices, we generalize the two-dimensional largest common substructure (2D-LCS) problem, which is NP-hard, to the 2D most similar substructures (2D-MSS) problem and propose a polynomial-time heuristic for solving it. This algorithm produces both an upper and a lower bound on the true similarity between matrices. We show using evaluation on a large real-world dataset that in practice there is almost no difference between these bounds. We compare GriTS to other metrics and empirically validate that matrix similarity exhibits more desirable behavior than alternatives for TSR performance evaluation. Finally, GriTS unifies all three subtasks of cell topology recognition, cell location recognition, and cell content recognition within the same framework, which simplifies the evaluation and enables more meaningful comparisons across different types of TSR approaches. Code will be released at https://github.com/microsoft/table-transformer.
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
On the Compositional Generalization of Multimodal LLMs for Medical Imaging
Multimodal large language models (MLLMs) hold significant potential in the medical field, but their capabilities are often limited by insufficient data in certain medical domains, highlighting the need for understanding what kinds of images can be used by MLLMs for generalization. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks, providing limited guidance on selecting datasets to enhance specific tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG)-the ability of models to understand novel combinations by recombining learned elements-as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG. Therefore, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability. Med-MAT is publicly available at https://github.com/FreedomIntelligence/Med-MAT.
SongComposer: A Large Language Model for Lyric and Melody Composition in Song Generation
We present SongComposer, an innovative LLM designed for song composition. It could understand and generate melodies and lyrics in symbolic song representations, by leveraging the capability of LLM. Existing music-related LLM treated the music as quantized audio signals, while such implicit encoding leads to inefficient encoding and poor flexibility. In contrast, we resort to symbolic song representation, the mature and efficient way humans designed for music, and enable LLM to explicitly compose songs like humans. In practice, we design a novel tuple design to format lyric and three note attributes (pitch, duration, and rest duration) in the melody, which guarantees the correct LLM understanding of musical symbols and realizes precise alignment between lyrics and melody. To impart basic music understanding to LLM, we carefully collected SongCompose-PT, a large-scale song pretraining dataset that includes lyrics, melodies, and paired lyrics-melodies in either Chinese or English. After adequate pre-training, 10K carefully crafted QA pairs are used to empower the LLM with the instruction-following capability and solve diverse tasks. With extensive experiments, SongComposer demonstrates superior performance in lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation, outperforming advanced LLMs like GPT-4.
Zero-Shot Recommendation as Language Modeling
Recommendation is the task of ranking items (e.g. movies or products) according to individual user needs. Current systems rely on collaborative filtering and content-based techniques, which both require structured training data. We propose a framework for recommendation with off-the-shelf pretrained language models (LM) that only used unstructured text corpora as training data. If a user u liked Matrix and Inception, we construct a textual prompt, e.g. "Movies like Matrix, Inception, {<m{>}"} to estimate the affinity between u and m with LM likelihood. We motivate our idea with a corpus analysis, evaluate several prompt structures, and we compare LM-based recommendation with standard matrix factorization trained on different data regimes. The code for our experiments is publicly available (https://colab.research.google.com/drive/1f1mlZ-FGaLGdo5rPzxf3vemKllbh2esT?usp=sharing).
DiffMorph: Text-less Image Morphing with Diffusion Models
Text-conditioned image generation models are a prevalent use of AI image synthesis, yet intuitively controlling output guided by an artist remains challenging. Current methods require multiple images and textual prompts for each object to specify them as concepts to generate a single customized image. On the other hand, our work, \verb|DiffMorph|, introduces a novel approach that synthesizes images that mix concepts without the use of textual prompts. Our work integrates a sketch-to-image module to incorporate user sketches as input. \verb|DiffMorph| takes an initial image with conditioning artist-drawn sketches to generate a morphed image. We employ a pre-trained text-to-image diffusion model and fine-tune it to reconstruct each image faithfully. We seamlessly merge images and concepts from sketches into a cohesive composition. The image generation capability of our work is demonstrated through our results and a comparison of these with prompt-based image generation.
Compose & Embellish: Well-Structured Piano Performance Generation via A Two-Stage Approach
Even with strong sequence models like Transformers, generating expressive piano performances with long-range musical structures remains challenging. Meanwhile, methods to compose well-structured melodies or lead sheets (melody + chords), i.e., simpler forms of music, gained more success. Observing the above, we devise a two-stage Transformer-based framework that Composes a lead sheet first, and then Embellishes it with accompaniment and expressive touches. Such a factorization also enables pretraining on non-piano data. Our objective and subjective experiments show that Compose & Embellish shrinks the gap in structureness between a current state of the art and real performances by half, and improves other musical aspects such as richness and coherence as well.
CounterCurate: Enhancing Physical and Semantic Visio-Linguistic Compositional Reasoning via Counterfactual Examples
We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two under-explored critical problems: the neglect of the physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach that addresses these gaps. We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using a grounded image generation model, GLIGEN, to generate finetuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.
DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models
Recent progresses in large-scale text-to-image models have yielded remarkable accomplishments, finding various applications in art domain. However, expressing unique characteristics of an artwork (e.g. brushwork, colortone, or composition) with text prompts alone may encounter limitations due to the inherent constraints of verbal description. To this end, we introduce DreamStyler, a novel framework designed for artistic image synthesis, proficient in both text-to-image synthesis and style transfer. DreamStyler optimizes a multi-stage textual embedding with a context-aware text prompt, resulting in prominent image quality. In addition, with content and style guidance, DreamStyler exhibits flexibility to accommodate a range of style references. Experimental results demonstrate its superior performance across multiple scenarios, suggesting its promising potential in artistic product creation.
Semantic Answer Similarity for Evaluating Question Answering Models
The evaluation of question answering models compares ground-truth annotations with model predictions. However, as of today, this comparison is mostly lexical-based and therefore misses out on answers that have no lexical overlap but are still semantically similar, thus treating correct answers as false. This underestimation of the true performance of models hinders user acceptance in applications and complicates a fair comparison of different models. Therefore, there is a need for an evaluation metric that is based on semantics instead of pure string similarity. In this short paper, we present SAS, a cross-encoder-based metric for the estimation of semantic answer similarity, and compare it to seven existing metrics. To this end, we create an English and a German three-way annotated evaluation dataset containing pairs of answers along with human judgment of their semantic similarity, which we release along with an implementation of the SAS metric and the experiments. We find that semantic similarity metrics based on recent transformer models correlate much better with human judgment than traditional lexical similarity metrics on our two newly created datasets and one dataset from related work.
Structural Inductive Biases in Emergent Communication
In order to communicate, humans flatten a complex representation of ideas and their attributes into a single word or a sentence. We investigate the impact of representation learning in artificial agents by developing graph referential games. We empirically show that agents parametrized by graph neural networks develop a more compositional language compared to bag-of-words and sequence models, which allows them to systematically generalize to new combinations of familiar features.
A Large Encoder-Decoder Family of Foundation Models For Chemical Language
Large-scale pre-training methodologies for chemical language models represent a breakthrough in cheminformatics. These methods excel in tasks such as property prediction and molecule generation by learning contextualized representations of input tokens through self-supervised learning on large unlabeled corpora. Typically, this involves pre-training on unlabeled data followed by fine-tuning on specific tasks, reducing dependence on annotated datasets and broadening chemical language representation understanding. This paper introduces a large encoder-decoder chemical foundation models pre-trained on a curated dataset of 91 million SMILES samples sourced from PubChem, which is equivalent to 4 billion of molecular tokens. The proposed foundation model supports different complex tasks, including quantum property prediction, and offer flexibility with two main variants (289M and 8times289M). Our experiments across multiple benchmark datasets validate the capacity of the proposed model in providing state-of-the-art results for different tasks. We also provide a preliminary assessment of the compositionality of the embedding space as a prerequisite for the reasoning tasks. We demonstrate that the produced latent space is separable compared to the state-of-the-art with few-shot learning capabilities.
GalleryGPT: Analyzing Paintings with Large Multimodal Models
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability. Understanding artworks is challenging due to its subjective nature, diverse interpretations, and complex visual elements, requiring expertise in art history, cultural background, and aesthetic theory. However, limited by the data collection and model ability, previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI. To facilitate the research progress, in this paper, we step further to compose comprehensive analysis inspired by the remarkable perception and generation ability of large multimodal models. Specifically, we first propose a task of composing paragraph analysis for artworks, i.e., painting in this paper, only focusing on visual characteristics to formulate more comprehensive understanding of artworks. To support the research on formal analysis, we collect a large dataset PaintingForm, with about 19k painting images and 50k analysis paragraphs. We further introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture leveraging our collected data. We conduct formal analysis generation and zero-shot experiments across several datasets to assess the capacity of our model. The results show remarkable performance improvements comparing with powerful baseline LMMs, demonstrating its superb ability of art analysis and generalization. blue{The codes and model are available at: https://github.com/steven640pixel/GalleryGPT.
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
Zero-Shot Composed Image Retrieval with Textual Inversion
Composed Image Retrieval (CIR) aims to retrieve a target image based on a query composed of a reference image and a relative caption that describes the difference between the two images. The high effort and cost required for labeling datasets for CIR hamper the widespread usage of existing methods, as they rely on supervised learning. In this work, we propose a new task, Zero-Shot CIR (ZS-CIR), that aims to address CIR without requiring a labeled training dataset. Our approach, named zero-Shot composEd imAge Retrieval with textuaL invErsion (SEARLE), maps the visual features of the reference image into a pseudo-word token in CLIP token embedding space and integrates it with the relative caption. To support research on ZS-CIR, we introduce an open-domain benchmarking dataset named Composed Image Retrieval on Common Objects in context (CIRCO), which is the first dataset for CIR containing multiple ground truths for each query. The experiments show that SEARLE exhibits better performance than the baselines on the two main datasets for CIR tasks, FashionIQ and CIRR, and on the proposed CIRCO. The dataset, the code and the model are publicly available at https://github.com/miccunifi/SEARLE.
Memory Mosaics
Memory Mosaics are networks of associative memories working in concert to achieve a prediction task of interest. Like transformers, memory mosaics possess compositional capabilities and in-context learning capabilities. Unlike transformers, memory mosaics achieve these capabilities in comparatively transparent ways. We demonstrate these capabilities on toy examples and we also show that memory mosaics perform as well or better than transformers on medium-scale language modeling tasks.
Explaining Text Similarity in Transformer Models
As Transformers have become state-of-the-art models for natural language processing (NLP) tasks, the need to understand and explain their predictions is increasingly apparent. Especially in unsupervised applications, such as information retrieval tasks, similarity models built on top of foundation model representations have been widely applied. However, their inner prediction mechanisms have mostly remained opaque. Recent advances in explainable AI have made it possible to mitigate these limitations by leveraging improved explanations for Transformers through layer-wise relevance propagation (LRP). Using BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, we investigate which feature interactions drive similarity in NLP models. We validate the resulting explanations and demonstrate their utility in three corpus-level use cases, analyzing grammatical interactions, multilingual semantics, and biomedical text retrieval. Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
TreeMix: Compositional Constituency-based Data Augmentation for Natural Language Understanding
Data augmentation is an effective approach to tackle over-fitting. Many previous works have proposed different data augmentations strategies for NLP, such as noise injection, word replacement, back-translation etc. Though effective, they missed one important characteristic of language--compositionality, meaning of a complex expression is built from its sub-parts. Motivated by this, we propose a compositional data augmentation approach for natural language understanding called TreeMix. Specifically, TreeMix leverages constituency parsing tree to decompose sentences into constituent sub-structures and the Mixup data augmentation technique to recombine them to generate new sentences. Compared with previous approaches, TreeMix introduces greater diversity to the samples generated and encourages models to learn compositionality of NLP data. Extensive experiments on text classification and SCAN demonstrate that TreeMix outperforms current state-of-the-art data augmentation methods.
A Meta-Evaluation of Style and Attribute Transfer Metrics
LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.
Brain2Music: Reconstructing Music from Human Brain Activity
The process of reconstructing experiences from human brain activity offers a unique lens into how the brain interprets and represents the world. In this paper, we introduce a method for reconstructing music from brain activity, captured using functional magnetic resonance imaging (fMRI). Our approach uses either music retrieval or the MusicLM music generation model conditioned on embeddings derived from fMRI data. The generated music resembles the musical stimuli that human subjects experienced, with respect to semantic properties like genre, instrumentation, and mood. We investigate the relationship between different components of MusicLM and brain activity through a voxel-wise encoding modeling analysis. Furthermore, we discuss which brain regions represent information derived from purely textual descriptions of music stimuli. We provide supplementary material including examples of the reconstructed music at https://google-research.github.io/seanet/brain2music
Intelligent Director: An Automatic Framework for Dynamic Visual Composition using ChatGPT
With the rise of short video platforms represented by TikTok, the trend of users expressing their creativity through photos and videos has increased dramatically. However, ordinary users lack the professional skills to produce high-quality videos using professional creation software. To meet the demand for intelligent and user-friendly video creation tools, we propose the Dynamic Visual Composition (DVC) task, an interesting and challenging task that aims to automatically integrate various media elements based on user requirements and create storytelling videos. We propose an Intelligent Director framework, utilizing LENS to generate descriptions for images and video frames and combining ChatGPT to generate coherent captions while recommending appropriate music names. Then, the best-matched music is obtained through music retrieval. Then, materials such as captions, images, videos, and music are integrated to seamlessly synthesize the video. Finally, we apply AnimeGANv2 for style transfer. We construct UCF101-DVC and Personal Album datasets and verified the effectiveness of our framework in solving DVC through qualitative and quantitative comparisons, along with user studies, demonstrating its substantial potential.
Shared Imagination: LLMs Hallucinate Alike
Despite the recent proliferation of large language models (LLMs), their training recipes -- model architecture, pre-training data and optimization algorithm -- are often very similar. This naturally raises the question of the similarity among the resulting models. In this paper, we propose a novel setting, imaginary question answering (IQA), to better understand model similarity. In IQA, we ask one model to generate purely imaginary questions (e.g., on completely made-up concepts in physics) and prompt another model to answer. Surprisingly, despite the total fictionality of these questions, all models can answer each other's questions with remarkable success, suggesting a "shared imagination space" in which these models operate during such hallucinations. We conduct a series of investigations into this phenomenon and discuss implications on model homogeneity, hallucination, and computational creativity.
LAION-SG: An Enhanced Large-Scale Dataset for Training Complex Image-Text Models with Structural Annotations
Recent advances in text-to-image (T2I) generation have shown remarkable success in producing high-quality images from text. However, existing T2I models show decayed performance in compositional image generation involving multiple objects and intricate relationships. We attribute this problem to limitations in existing datasets of image-text pairs, which lack precise inter-object relationship annotations with prompts only. To address this problem, we construct LAION-SG, a large-scale dataset with high-quality structural annotations of scene graphs (SG), which precisely describe attributes and relationships of multiple objects, effectively representing the semantic structure in complex scenes. Based on LAION-SG, we train a new foundation model SDXL-SG to incorporate structural annotation information into the generation process. Extensive experiments show advanced models trained on our LAION-SG boast significant performance improvements in complex scene generation over models on existing datasets. We also introduce CompSG-Bench, a benchmark that evaluates models on compositional image generation, establishing a new standard for this domain.
GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis
Text-to-image (T2I) generation has seen significant progress with diffusion models, enabling generation of photo-realistic images from text prompts. Despite this progress, existing methods still face challenges in following complex text prompts, especially those requiring compositional and multi-step reasoning. Given such complex instructions, SOTA models often make mistakes in faithfully modeling object attributes, and relationships among them. In this work, we present an alternate paradigm for T2I synthesis, decomposing the task of complex multi-step generation into three steps, (a) Generate: we first generate an image using existing diffusion models (b) Plan: we make use of Multi-Modal LLMs (MLLMs) to identify the mistakes in the generated image expressed in terms of individual objects and their properties, and produce a sequence of corrective steps required in the form of an edit-plan. (c) Edit: we make use of an existing text-guided image editing models to sequentially execute our edit-plan over the generated image to get the desired image which is faithful to the original instruction. Our approach derives its strength from the fact that it is modular in nature, is training free, and can be applied over any combination of image generation and editing models. As an added contribution, we also develop a model capable of compositional editing, which further helps improve the overall accuracy of our proposed approach. Our method flexibly trades inference time compute with performance on compositional text prompts. We perform extensive experimental evaluation across 3 benchmarks and 10 T2I models including DALLE-3 and the latest -- SD-3.5-Large. Our approach not only improves the performance of the SOTA models, by upto 3 points, it also reduces the performance gap between weaker and stronger models. https://dair-iitd.github.io/GraPE/{https://dair-iitd.github.io/GraPE/}
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
iSEARLE: Improving Textual Inversion for Zero-Shot Composed Image Retrieval
Given a query consisting of a reference image and a relative caption, Composed Image Retrieval (CIR) aims to retrieve target images visually similar to the reference one while incorporating the changes specified in the relative caption. The reliance of supervised methods on labor-intensive manually labeled datasets hinders their broad applicability. In this work, we introduce a new task, Zero-Shot CIR (ZS-CIR), that addresses CIR without the need for a labeled training dataset. We propose an approach named iSEARLE (improved zero-Shot composEd imAge Retrieval with textuaL invErsion) that involves mapping the visual information of the reference image into a pseudo-word token in CLIP token embedding space and combining it with the relative caption. To foster research on ZS-CIR, we present an open-domain benchmarking dataset named CIRCO (Composed Image Retrieval on Common Objects in context), the first CIR dataset where each query is labeled with multiple ground truths and a semantic categorization. The experimental results illustrate that iSEARLE obtains state-of-the-art performance on three different CIR datasets -- FashionIQ, CIRR, and the proposed CIRCO -- and two additional evaluation settings, namely domain conversion and object composition. The dataset, the code, and the model are publicly available at https://github.com/miccunifi/SEARLE.
Toward Universal Text-to-Music Retrieval
This paper introduces effective design choices for text-to-music retrieval systems. An ideal text-based retrieval system would support various input queries such as pre-defined tags, unseen tags, and sentence-level descriptions. In reality, most previous works mainly focused on a single query type (tag or sentence) which may not generalize to another input type. Hence, we review recent text-based music retrieval systems using our proposed benchmark in two main aspects: input text representation and training objectives. Our findings enable a universal text-to-music retrieval system that achieves comparable retrieval performances in both tag- and sentence-level inputs. Furthermore, the proposed multimodal representation generalizes to 9 different downstream music classification tasks. We present the code and demo online.
SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages
We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
A Probabilistic Framework for Modular Continual Learning
Modular approaches, which use a different composition of modules for each problem and avoid forgetting by design, have been shown to be a promising direction in continual learning (CL). However, searching through the large, discrete space of possible module compositions is a challenge because evaluating a composition's performance requires a round of neural network training. To address this challenge, we develop a modular CL framework, called PICLE, that accelerates search by using a probabilistic model to cheaply compute the fitness of each composition. The model combines prior knowledge about good module compositions with dataset-specific information. Its use is complemented by splitting up the search space into subsets, such as perceptual and latent subsets. We show that PICLE is the first modular CL algorithm to achieve different types of transfer while scaling to large search spaces. We evaluate it on two benchmark suites designed to capture different desiderata of CL techniques. On these benchmarks, PICLE offers significantly better performance than state-of-the-art CL baselines.
Reliable Measures of Spread in High Dimensional Latent Spaces
Understanding geometric properties of natural language processing models' latent spaces allows the manipulation of these properties for improved performance on downstream tasks. One such property is the amount of data spread in a model's latent space, or how fully the available latent space is being used. In this work, we define data spread and demonstrate that the commonly used measures of data spread, Average Cosine Similarity and a partition function min/max ratio I(V), do not provide reliable metrics to compare the use of latent space across models. We propose and examine eight alternative measures of data spread, all but one of which improve over these current metrics when applied to seven synthetic data distributions. Of our proposed measures, we recommend one principal component-based measure and one entropy-based measure that provide reliable, relative measures of spread and can be used to compare models of different sizes and dimensionalities.
It's not Rocket Science : Interpreting Figurative Language in Narratives
Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, we study the interpretation of two non-compositional figurative languages (idioms and similes). We collected datasets of fictional narratives containing a figurative expression along with crowd-sourced plausible and implausible continuations relying on the correct interpretation of the expression. We then trained models to choose or generate the plausible continuation. Our experiments show that models based solely on pre-trained language models perform substantially worse than humans on these tasks. We additionally propose knowledge-enhanced models, adopting human strategies for interpreting figurative language types : inferring meaning from the context and relying on the constituent words' literal meanings. The knowledge-enhanced models improve the performance on both the discriminative and generative tasks, further bridging the gap from human performance.
IsoScore: Measuring the Uniformity of Embedding Space Utilization
The recent success of distributed word representations has led to an increased interest in analyzing the properties of their spatial distribution. Several studies have suggested that contextualized word embedding models do not isotropically project tokens into vector space. However, current methods designed to measure isotropy, such as average random cosine similarity and the partition score, have not been thoroughly analyzed and are not appropriate for measuring isotropy. We propose IsoScore: a novel tool that quantifies the degree to which a point cloud uniformly utilizes the ambient vector space. Using rigorously designed tests, we demonstrate that IsoScore is the only tool available in the literature that accurately measures how uniformly distributed variance is across dimensions in vector space. Additionally, we use IsoScore to challenge a number of recent conclusions in the NLP literature that have been derived using brittle metrics of isotropy. We caution future studies from using existing tools to measure isotropy in contextualized embedding space as resulting conclusions will be misleading or altogether inaccurate.
Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines
Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts requires further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines.
Debiased Contrastive Learning of Unsupervised Sentence Representations
Recently, contrastive learning has been shown to be effective in improving pre-trained language models (PLM) to derive high-quality sentence representations. It aims to pull close positive examples to enhance the alignment while push apart irrelevant negatives for the uniformity of the whole representation space. However, previous works mostly adopt in-batch negatives or sample from training data at random. Such a way may cause the sampling bias that improper negatives (e.g. false negatives and anisotropy representations) are used to learn sentence representations, which will hurt the uniformity of the representation space. To address it, we present a new framework DCLR (Debiased Contrastive Learning of unsupervised sentence Representations) to alleviate the influence of these improper negatives. In DCLR, we design an instance weighting method to punish false negatives and generate noise-based negatives to guarantee the uniformity of the representation space. Experiments on seven semantic textual similarity tasks show that our approach is more effective than competitive baselines. Our code and data are publicly available at the link: blue{https://github.com/RUCAIBox/DCLR}.
Reducing Task Discrepancy of Text Encoders for Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve a target image based on a reference image and conditioning text, enabling controllable searches. Due to the expensive dataset construction cost for CIR triplets, a zero-shot (ZS) CIR setting has been actively studied to eliminate the need for human-collected triplet datasets. The mainstream of ZS-CIR employs an efficient projection module that projects a CLIP image embedding to the CLIP text token embedding space, while fixing the CLIP encoders. Using the projected image embedding, these methods generate image-text composed features by using the pre-trained text encoder. However, their CLIP image and text encoders suffer from the task discrepancy between the pre-training task (text leftrightarrow image) and the target CIR task (image + text leftrightarrow image). Conceptually, we need expensive triplet samples to reduce the discrepancy, but we use cheap text triplets instead and update the text encoder. To that end, we introduce the Reducing Task Discrepancy of text encoders for Composed Image Retrieval (RTD), a plug-and-play training scheme for the text encoder that enhances its capability using a novel target-anchored text contrastive learning. We also propose two additional techniques to improve the proposed learning scheme: a hard negatives-based refined batch sampling strategy and a sophisticated concatenation scheme. Integrating RTD into the state-of-the-art projection-based ZS-CIR methods significantly improves performance across various datasets and backbones, demonstrating its efficiency and generalizability.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Improving Composed Image Retrieval via Contrastive Learning with Scaling Positives and Negatives
The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query consisting of a reference image and a modified text. Advanced methods often utilize contrastive learning as the optimization objective, which benefits from adequate positive and negative examples. However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces the negative number available for the model. To address the problem of lack of positives, we propose a data generation method by leveraging a multi-modal large language model to construct triplets for CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework for CIR, whose second stage introduces plenty of static representations of negatives to optimize the representation space rapidly. The above two improvements can be effectively stacked and designed to be plug-and-play, easily applied to existing CIR models without changing their original architectures. Extensive experiments and ablation analysis demonstrate that our method effectively scales positives and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition, our method also performs well in zero-shot composed image retrieval, providing a new CIR solution for the low-resources scenario. Our code and data are released at https://github.com/BUAADreamer/SPN4CIR.
JEN-1 DreamStyler: Customized Musical Concept Learning via Pivotal Parameters Tuning
Large models for text-to-music generation have achieved significant progress, facilitating the creation of high-quality and varied musical compositions from provided text prompts. However, input text prompts may not precisely capture user requirements, particularly when the objective is to generate music that embodies a specific concept derived from a designated reference collection. In this paper, we propose a novel method for customized text-to-music generation, which can capture the concept from a two-minute reference music and generate a new piece of music conforming to the concept. We achieve this by fine-tuning a pretrained text-to-music model using the reference music. However, directly fine-tuning all parameters leads to overfitting issues. To address this problem, we propose a Pivotal Parameters Tuning method that enables the model to assimilate the new concept while preserving its original generative capabilities. Additionally, we identify a potential concept conflict when introducing multiple concepts into the pretrained model. We present a concept enhancement strategy to distinguish multiple concepts, enabling the fine-tuned model to generate music incorporating either individual or multiple concepts simultaneously. Since we are the first to work on the customized music generation task, we also introduce a new dataset and evaluation protocol for the new task. Our proposed Jen1-DreamStyler outperforms several baselines in both qualitative and quantitative evaluations. Demos will be available at https://www.jenmusic.ai/research#DreamStyler.
On the Relationship between Sentence Analogy Identification and Sentence Structure Encoding in Large Language Models
The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies.
Text2Mesh: Text-Driven Neural Stylization for Meshes
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term neural style field network. In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes.
TabSim: A Siamese Neural Network for Accurate Estimation of Table Similarity
Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables' semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.
MixGR: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity
Recent studies show the growing significance of document retrieval in the generation of LLMs, i.e., RAG, within the scientific domain by bridging their knowledge gap. However, dense retrievers often struggle with domain-specific retrieval and complex query-document relationships, particularly when query segments correspond to various parts of a document. To alleviate such prevalent challenges, this paper introduces MixGR, which improves dense retrievers' awareness of query-document matching across various levels of granularity in queries and documents using a zero-shot approach. MixGR fuses various metrics based on these granularities to a united score that reflects a comprehensive query-document similarity. Our experiments demonstrate that MixGR outperforms previous document retrieval by 24.7%, 9.8%, and 6.9% on nDCG@5 with unsupervised, supervised, and LLM-based retrievers, respectively, averaged on queries containing multiple subqueries from five scientific retrieval datasets. Moreover, the efficacy of two downstream scientific question-answering tasks highlights the advantage of MixGR to boost the application of LLMs in the scientific domain. The code and experimental datasets are available.
Divide and Conquer: Language Models can Plan and Self-Correct for Compositional Text-to-Image Generation
Despite significant advancements in text-to-image models for generating high-quality images, these methods still struggle to ensure the controllability of text prompts over images in the context of complex text prompts, especially when it comes to retaining object attributes and relationships. In this paper, we propose CompAgent, a training-free approach for compositional text-to-image generation, with a large language model (LLM) agent as its core. The fundamental idea underlying CompAgent is premised on a divide-and-conquer methodology. Given a complex text prompt containing multiple concepts including objects, attributes, and relationships, the LLM agent initially decomposes it, which entails the extraction of individual objects, their associated attributes, and the prediction of a coherent scene layout. These individual objects can then be independently conquered. Subsequently, the agent performs reasoning by analyzing the text, plans and employs the tools to compose these isolated objects. The verification and human feedback mechanism is finally incorporated into our agent to further correct the potential attribute errors and refine the generated images. Guided by the LLM agent, we propose a tuning-free multi-concept customization model and a layout-to-image generation model as the tools for concept composition, and a local image editing method as the tool to interact with the agent for verification. The scene layout controls the image generation process among these tools to prevent confusion among multiple objects. Extensive experiments demonstrate the superiority of our approach for compositional text-to-image generation: CompAgent achieves more than 10\% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation. The extension to various related tasks also illustrates the flexibility of our CompAgent for potential applications.
MuseChat: A Conversational Music Recommendation System for Videos
We introduce MuseChat, an innovative dialog-based music recommendation system. This unique platform not only offers interactive user engagement but also suggests music tailored for input videos, so that users can refine and personalize their music selections. In contrast, previous systems predominantly emphasized content compatibility, often overlooking the nuances of users' individual preferences. For example, all the datasets only provide basic music-video pairings or such pairings with textual music descriptions. To address this gap, our research offers three contributions. First, we devise a conversation-synthesis method that simulates a two-turn interaction between a user and a recommendation system, which leverages pre-trained music tags and artist information. In this interaction, users submit a video to the system, which then suggests a suitable music piece with a rationale. Afterwards, users communicate their musical preferences, and the system presents a refined music recommendation with reasoning. Second, we introduce a multi-modal recommendation engine that matches music either by aligning it with visual cues from the video or by harmonizing visual information, feedback from previously recommended music, and the user's textual input. Third, we bridge music representations and textual data with a Large Language Model(Vicuna-7B). This alignment equips MuseChat to deliver music recommendations and their underlying reasoning in a manner resembling human communication. Our evaluations show that MuseChat surpasses existing state-of-the-art models in music retrieval tasks and pioneers the integration of the recommendation process within a natural language framework.
Encoder-Decoder Framework for Interactive Free Verses with Generation with Controllable High-Quality Rhyming
Composing poetry or lyrics involves several creative factors, but a challenging aspect of generation is the adherence to a more or less strict metric and rhyming pattern. To address this challenge specifically, previous work on the task has mainly focused on reverse language modeling, which brings the critical selection of each rhyming word to the forefront of each verse. On the other hand, reversing the word order requires that models be trained from scratch with this task-specific goal and cannot take advantage of transfer learning from a Pretrained Language Model (PLM). We propose a novel fine-tuning approach that prepends the rhyming word at the start of each lyric, which allows the critical rhyming decision to be made before the model commits to the content of the lyric (as during reverse language modeling), but maintains compatibility with the word order of regular PLMs as the lyric itself is still generated in left-to-right order. We conducted extensive experiments to compare this fine-tuning against the current state-of-the-art strategies for rhyming, finding that our approach generates more readable text and better rhyming capabilities. Furthermore, we furnish a high-quality dataset in English and 12 other languages, analyse the approach's feasibility in a multilingual context, provide extensive experimental results shedding light on good and bad practices for lyrics generation, and propose metrics to compare methods in the future.
Creativity Has Left the Chat: The Price of Debiasing Language Models
Large Language Models (LLMs) have revolutionized natural language processing but can exhibit biases and may generate toxic content. While alignment techniques like Reinforcement Learning from Human Feedback (RLHF) reduce these issues, their impact on creativity, defined as syntactic and semantic diversity, remains unexplored. We investigate the unintended consequences of RLHF on the creativity of LLMs through three experiments focusing on the Llama-2 series. Our findings reveal that aligned models exhibit lower entropy in token predictions, form distinct clusters in the embedding space, and gravitate towards "attractor states", indicating limited output diversity. Our findings have significant implications for marketers who rely on LLMs for creative tasks such as copywriting, ad creation, and customer persona generation. The trade-off between consistency and creativity in aligned models should be carefully considered when selecting the appropriate model for a given application. We also discuss the importance of prompt engineering in harnessing the creative potential of base models.
Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity
Composed image retrieval (CIR), which formulates the query as a combination of a reference image and modified text, has emerged as a new form of image search due to its enhanced ability to capture user intent. However, training a CIR model in a supervised manner typically requires labor-intensive collection of (reference image, text modifier, target image) triplets. While existing zero-shot CIR (ZS-CIR) methods eliminate the need for training on specific downstream datasets, they still require additional pretraining on large-scale image datasets. In this paper, we introduce a training-free approach for ZS-CIR. Our approach, Weighted Modality fusion and similarity for CIR (WeiMoCIR), operates under the assumption that image and text modalities can be effectively combined using a simple weighted average. This allows the query representation to be constructed directly from the reference image and text modifier. To further enhance retrieval performance, we employ multimodal large language models (MLLMs) to generate image captions for the database images and incorporate these textual captions into the similarity computation by combining them with image information using a weighted average. Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets. Code is available at https://github.com/whats2000/WeiMoCIR.
Grounded Text-to-Image Synthesis with Attention Refocusing
Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
LeanVec: Search your vectors faster by making them fit
Modern deep learning models have the ability to generate high-dimensional vectors whose similarity reflects semantic resemblance. Thus, similarity search, i.e., the operation of retrieving those vectors in a large collection that are similar to a given query, has become a critical component of a wide range of applications that demand highly accurate and timely answers. In this setting, the high vector dimensionality puts similarity search systems under compute and memory pressure, leading to subpar performance. Additionally, cross-modal retrieval tasks have become increasingly common, e.g., where a user inputs a text query to find the most relevant images for that query. However, these queries often have different distributions than the database embeddings, making it challenging to achieve high accuracy. In this work, we present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors while maintaining accuracy. We present LeanVec variants for in-distribution (ID) and out-of-distribution (OOD) queries. LeanVec-ID yields accuracies on par with those from recently introduced deep learning alternatives whose computational overhead precludes their usage in practice. LeanVec-OOD uses a novel technique for dimensionality reduction that considers the query and database distributions to simultaneously boost the accuracy and the performance of the framework even further (even presenting competitive results when the query and database distributions match). All in all, our extensive and varied experimental results show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time over the state of the art.
Investigating Copyright Issues of Diffusion Models under Practical Scenarios
The issue of copyright in generative models, particularly diffusion models, has become a prominent concern in recent years. Previous studies have predominantly focused on copyright violation at the image level, where generative models replicate copyrighted images entirely. Furthermore, these earlier studies have examined copyright infringements mainly using prompts that are semantically similar to target topics. However, copyright infringement can be more nuanced than mere replication of whole images and can be triggered with prompts that are less directly related to copyright topics. In our work, we tackle the limitations of previous studies by delving into partial copyright infringement, which treats parts of images as copyrighted content, using prompts that are considerably different from copyrighted topics. We develop a data generation pipeline that facilitates the creation of datasets for copyright research in diffusion models. Using our pipeline, we create datasets containing copyright infringement samples for different diffusion models. We conduct evaluations on generated data under various criteria. Our results show the prevalence of generating copyright-infringing content across a range of diffusion models, including the latest Stable Diffusion XL.
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires that both sentences are fed into the network, which causes a massive computational overhead: Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations (~65 hours) with BERT. The construction of BERT makes it unsuitable for semantic similarity search as well as for unsupervised tasks like clustering. In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art sentence embeddings methods.
Unleashing the Potentials of Likelihood Composition for Multi-modal Language Models
Model fusing has always been an important topic, especially in an era where large language models (LLM) and multi-modal language models (MLM) with different architectures, parameter sizes and training pipelines, are being created all the time. In this work, we propose a post-hoc framework, aiming at fusing heterogeneous models off-the-shell, which we call likelihood composition, and the basic idea is to compose multiple models' likelihood distribution when doing a multi-choice visual-question-answering task. Here the core concept, likelihood, is actually the log-probability of the candidate answer. In likelihood composition, we introduce some basic operations: debias, highlight, majority-vote and ensemble. By combining (composing) these basic elements, we get the mixed composition methods: mix-composition. Through conducting comprehensive experiments on 9 VQA datasets and 10 MLMs, we prove the effectiveness of mix-composition compared with simple ensemble or majority-vote methods. In this framework, people can propose new basic composition methods and combine them to get the new mixed composition methods. We hope our proposed likelihood composition can provide a new perspective of fusing heterogeneous models and inspire the exploration under this framework.
SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
A Tale of Two Structures: Do LLMs Capture the Fractal Complexity of Language?
Language exhibits a fractal structure in its information-theoretic complexity (i.e. bits per token), with self-similarity across scales and long-range dependence (LRD). In this work, we investigate whether large language models (LLMs) can replicate such fractal characteristics and identify conditions-such as temperature setting and prompting method-under which they may fail. Moreover, we find that the fractal parameters observed in natural language are contained within a narrow range, whereas those of LLMs' output vary widely, suggesting that fractal parameters might prove helpful in detecting a non-trivial portion of LLM-generated texts. Notably, these findings, and many others reported in this work, are robust to the choice of the architecture; e.g. Gemini 1.0 Pro, Mistral-7B and Gemma-2B. We also release a dataset comprising of over 240,000 articles generated by various LLMs (both pretrained and instruction-tuned) with different decoding temperatures and prompting methods, along with their corresponding human-generated texts. We hope that this work highlights the complex interplay between fractal properties, prompting, and statistical mimicry in LLMs, offering insights for generating, evaluating and detecting synthetic texts.
Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings
Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter's intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities.
CompoDiff: Versatile Composed Image Retrieval With Latent Diffusion
This paper proposes a novel diffusion-based model, CompoDiff, for solving Composed Image Retrieval (CIR) with latent diffusion and presents a newly created dataset of 18 million reference images, conditions, and corresponding target image triplets to train the model. CompoDiff not only achieves a new zero-shot state-of-the-art on a CIR benchmark such as FashionIQ but also enables a more versatile CIR by accepting various conditions, such as negative text and image mask conditions, which are unavailable with existing CIR methods. In addition, the CompoDiff features are on the intact CLIP embedding space so that they can be directly used for all existing models exploiting the CLIP space. The code and dataset used for the training, and the pre-trained weights are available at https://github.com/navervision/CompoDiff
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Same Author or Just Same Topic? Towards Content-Independent Style Representations
Linguistic style is an integral component of language. Recent advances in the development of style representations have increasingly used training objectives from authorship verification (AV): Do two texts have the same author? The assumption underlying the AV training task (same author approximates same writing style) enables self-supervised and, thus, extensive training. However, a good performance on the AV task does not ensure good "general-purpose" style representations. For example, as the same author might typically write about certain topics, representations trained on AV might also encode content information instead of style alone. We introduce a variation of the AV training task that controls for content using conversation or domain labels. We evaluate whether known style dimensions are represented and preferred over content information through an original variation to the recently proposed STEL framework. We find that representations trained by controlling for conversation are better than representations trained with domain or no content control at representing style independent from content.
Measuring Compositional Consistency for Video Question Answering
Recent video question answering benchmarks indicate that state-of-the-art models struggle to answer compositional questions. However, it remains unclear which types of compositional reasoning cause models to mispredict. Furthermore, it is difficult to discern whether models arrive at answers using compositional reasoning or by leveraging data biases. In this paper, we develop a question decomposition engine that programmatically deconstructs a compositional question into a directed acyclic graph of sub-questions. The graph is designed such that each parent question is a composition of its children. We present AGQA-Decomp, a benchmark containing 2.3M question graphs, with an average of 11.49 sub-questions per graph, and 4.55M total new sub-questions. Using question graphs, we evaluate three state-of-the-art models with a suite of novel compositional consistency metrics. We find that models either cannot reason correctly through most compositions or are reliant on incorrect reasoning to reach answers, frequently contradicting themselves or achieving high accuracies when failing at intermediate reasoning steps.
Learning to Imagine: Visually-Augmented Natural Language Generation
People often imagine relevant scenes to aid in the writing process. In this work, we aim to utilize visual information for composition in the same manner as humans. We propose a method, LIVE, that makes pre-trained language models (PLMs) Learn to Imagine for Visuallyaugmented natural language gEneration. First, we imagine the scene based on the text: we use a diffusion model to synthesize high-quality images conditioned on the input texts. Second, we use CLIP to determine whether the text can evoke the imagination in a posterior way. Finally, our imagination is dynamic, and we conduct synthesis for each sentence rather than generate only one image for an entire paragraph. Technically, we propose a novel plug-and-play fusion layer to obtain visually-augmented representations for each text. Our vision-text fusion layer is compatible with Transformerbased architecture. We have conducted extensive experiments on four generation tasks using BART and T5, and the automatic results and human evaluation demonstrate the effectiveness of our proposed method. We will release the code, model, and data at the link: https://github.com/RUCAIBox/LIVE.
Semantic Representation and Inference for NLP
Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).
Structural Similarities Between Language Models and Neural Response Measurements
Large language models (LLMs) have complicated internal dynamics, but induce representations of words and phrases whose geometry we can study. Human language processing is also opaque, but neural response measurements can provide (noisy) recordings of activation during listening or reading, from which we can extract similar representations of words and phrases. Here we study the extent to which the geometries induced by these representations, share similarities in the context of brain decoding. We find that the larger neural language models get, the more their representations are structurally similar to neural response measurements from brain imaging. Code is available at https://github.com/coastalcph/brainlm.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
BACON: Deep-Learning Powered AI for Poetry Generation with Author Linguistic Style Transfer
This paper describes BACON, a basic prototype of an automatic poetry generator with author linguistic style transfer. It combines concepts and techniques from finite state machinery, probabilistic models, artificial neural networks and deep learning, to write original poetry with rich aesthetic-qualities in the style of any given author. Extrinsic evaluation of the output generated by BACON shows that participants were unable to tell the difference between human and AI-generated poems in any statistically significant way.
MagicMix: Semantic Mixing with Diffusion Models
Have you ever imagined what a corgi-alike coffee machine or a tiger-alike rabbit would look like? In this work, we attempt to answer these questions by exploring a new task called semantic mixing, aiming at blending two different semantics to create a new concept (e.g., corgi + coffee machine -- > corgi-alike coffee machine). Unlike style transfer, where an image is stylized according to the reference style without changing the image content, semantic blending mixes two different concepts in a semantic manner to synthesize a novel concept while preserving the spatial layout and geometry. To this end, we present MagicMix, a simple yet effective solution based on pre-trained text-conditioned diffusion models. Motivated by the progressive generation property of diffusion models where layout/shape emerges at early denoising steps while semantically meaningful details appear at later steps during the denoising process, our method first obtains a coarse layout (either by corrupting an image or denoising from a pure Gaussian noise given a text prompt), followed by injection of conditional prompt for semantic mixing. Our method does not require any spatial mask or re-training, yet is able to synthesize novel objects with high fidelity. To improve the mixing quality, we further devise two simple strategies to provide better control and flexibility over the synthesized content. With our method, we present our results over diverse downstream applications, including semantic style transfer, novel object synthesis, breed mixing, and concept removal, demonstrating the flexibility of our method. More results can be found on the project page https://magicmix.github.io
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
Writing Polishment with Simile: Task, Dataset and A Neural Approach
A simile is a figure of speech that directly makes a comparison, showing similarities between two different things, e.g. "Reading papers can be dull sometimes,like watching grass grow". Human writers often interpolate appropriate similes into proper locations of the plain text to vivify their writings. However, none of existing work has explored neural simile interpolation, including both locating and generation. In this paper, we propose a new task of Writing Polishment with Simile (WPS) to investigate whether machines are able to polish texts with similes as we human do. Accordingly, we design a two-staged Locate&Gen model based on transformer architecture. Our model firstly locates where the simile interpolation should happen, and then generates a location-specific simile. We also release a large-scale Chinese Simile (CS) dataset containing 5 million similes with context. The experimental results demonstrate the feasibility of WPS task and shed light on the future research directions towards better automatic text polishment.
BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration
Program synthesis is challenging largely because of the difficulty of search in a large space of programs. Human programmers routinely tackle the task of writing complex programs by writing sub-programs and then analyzing their intermediate results to compose them in appropriate ways. Motivated by this intuition, we present a new synthesis approach that leverages learning to guide a bottom-up search over programs. In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a given set of input-output examples. This is a powerful combination because of several emergent properties. First, in bottom-up search, intermediate programs can be executed, providing semantic information to the neural network. Second, given the concrete values from those executions, we can exploit rich features based on recent work on property signatures. Finally, bottom-up search allows the system substantial flexibility in what order to generate the solution, allowing the synthesizer to build up a program from multiple smaller sub-programs. Overall, our empirical evaluation finds that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches. We demonstrate the effectiveness of our technique on two datasets, one from the SyGuS competition and one of our own creation.
Task Vectors are Cross-Modal
We investigate the internal representations of vision-and-language models (VLMs) and how they encode task representations. We consider tasks specified through examples or instructions, using either text or image inputs. Surprisingly, we find that conceptually similar tasks are mapped to similar task vector representations, regardless of how they are specified. Our findings suggest that to output answers, tokens in VLMs undergo three distinct phases: input, task, and answer, a process which is consistent across different modalities and specifications. The task vectors we identify in VLMs are general enough to be derived in one modality (e.g., text) and transferred to another (e.g., image). Additionally, we find that ensembling exemplar and instruction based task vectors produce better task representations. Taken together, these insights shed light on the underlying mechanisms of VLMs, particularly their ability to represent tasks in a shared manner across different modalities and task specifications. Project page: https://task-vectors-are-cross-modal.github.io.
Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations
We introduce sub-sentence encoder, a contrastively-learned contextual embedding model for fine-grained semantic representation of text. In contrast to the standard practice with sentence embeddings, where the meaning of an entire sequence of text is encoded into a fixed-length vector, the sub-sentence encoder learns to produce distinct contextual embeddings corresponding to different atomic propositions, i.e. atomic units of meaning expressed within a text sequence. The sub-sentence embeddings are contrastively learned to recognize (inferred) semantic equivalence between propositions across different text sequences. Our experiments show the effectiveness of sub-sentence encoders in applications, such as retrieving supporting facts for fine-grained text attribution or recognizing the conditional semantic similarity between texts. In practice, we demonstrate that sub-sentence encoders keep the same level of inference cost and space complexity compared to sentence encoders.
Evaluating Large Language Model Creativity from a Literary Perspective
This paper assesses the potential for large language models (LLMs) to serve as assistive tools in the creative writing process, by means of a single, in-depth case study. In the course of the study, we develop interactive and multi-voice prompting strategies that interleave background descriptions (scene setting, plot elements), instructions that guide composition, samples of text in the target style, and critical discussion of the given samples. We qualitatively evaluate the results from a literary critical perspective, as well as from the standpoint of computational creativity (a sub-field of artificial intelligence). Our findings lend support to the view that the sophistication of the results that can be achieved with an LLM mirrors the sophistication of the prompting.
Composable Text Controls in Latent Space with ODEs
Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.
Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs
Diffusion models have exhibit exceptional performance in text-to-image generation and editing. However, existing methods often face challenges when handling complex text prompts that involve multiple objects with multiple attributes and relationships. In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models. Our approach employs the MLLM as a global planner to decompose the process of generating complex images into multiple simpler generation tasks within subregions. We propose complementary regional diffusion to enable region-wise compositional generation. Furthermore, we integrate text-guided image generation and editing within the proposed RPG in a closed-loop fashion, thereby enhancing generalization ability. Extensive experiments demonstrate our RPG outperforms state-of-the-art text-to-image diffusion models, including DALL-E 3 and SDXL, particularly in multi-category object composition and text-image semantic alignment. Notably, our RPG framework exhibits wide compatibility with various MLLM architectures (e.g., MiniGPT-4) and diffusion backbones (e.g., ControlNet). Our code is available at: https://github.com/YangLing0818/RPG-DiffusionMaster
Generating Sample-Based Musical Instruments Using Neural Audio Codec Language Models
In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.
FashionComposer: Compositional Fashion Image Generation
We present FashionComposer for compositional fashion image generation. Unlike previous methods, FashionComposer is highly flexible. It takes multi-modal input (i.e., text prompt, parametric human model, garment image, and face image) and supports personalizing the appearance, pose, and figure of the human and assigning multiple garments in one pass. To achieve this, we first develop a universal framework capable of handling diverse input modalities. We construct scaled training data to enhance the model's robust compositional capabilities. To accommodate multiple reference images (garments and faces) seamlessly, we organize these references in a single image as an "asset library" and employ a reference UNet to extract appearance features. To inject the appearance features into the correct pixels in the generated result, we propose subject-binding attention. It binds the appearance features from different "assets" with the corresponding text features. In this way, the model could understand each asset according to their semantics, supporting arbitrary numbers and types of reference images. As a comprehensive solution, FashionComposer also supports many other applications like human album generation, diverse virtual try-on tasks, etc.