new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching

Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines.

Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding

There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly.

GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning

Large language models (LLMs) have greatly impacted the natural language processing (NLP) field, particularly for the English language. These models have demonstrated capabilities in understanding and generating human-like text. The success of language models largely depends on the availability of high-quality instruction datasets, which consist of detailed task descriptions and corresponding responses that are essential for training the models to address a variety of prompts accurately. However, the availability and quality of these resources vary by language. While models perform well in English, they often need help with languages like Arabic, due to the lack of datasets for fine-tuning Arabic-specific tasks. To address this issue, we introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content that covers several domains and instruction types. We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality. Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks. These outcomes emphasize the effectiveness of our dataset in elevating the capabilities of language models for Arabic. Our instruction dataset bridges the performance gap between English and Arabic language models by providing resources that amplify Arabic NLP development. Building on this foundation, we developed a model, GemmAr-7B-V1, specifically tuned to excel at a wide range of Arabic NLP tasks.

ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs

Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of 56% in English translation over the state-of-the-art and 9.3% in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: http://github.com/ahmedheakl/arazn-llm}, Models: http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e.

BiMediX: Bilingual Medical Mixture of Experts LLM

In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set covering 1.3 Million diverse medical interactions, resulting in over 632 million healthcare specialized tokens for instruction tuning. Our BiMed1.3M dataset includes 250k synthesized multi-turn doctor-patient chats and maintains a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic medical benchmark and 15% on bilingual evaluations across multiple datasets. Our project page with source code and trained model is available at https://github.com/mbzuai-oryx/BiMediX .

ArabianGPT: Native Arabic GPT-based Large Language Model

The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.

Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer

Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.

Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic

In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages.

101 Billion Arabic Words Dataset

In recent years, Large Language Models have revolutionized the field of natural language processing, showcasing an impressive rise predominantly in English-centric domains. These advancements have set a global benchmark, inspiring significant efforts toward developing Arabic LLMs capable of understanding and generating the Arabic language with remarkable accuracy. Despite these advancements, a critical challenge persists: the potential bias in Arabic LLMs, primarily attributed to their reliance on datasets comprising English data that has been translated into Arabic. This reliance not only compromises the authenticity of the generated content but also reflects a broader issue -the scarcity of original quality Arabic linguistic data. This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models that are true to both the linguistic and nuances of the region. We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files, specifically targeting Arabic content. The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset. The result is the 101 Billion Arabic Words Dataset, the largest Arabic dataset available to date, which can significantly contribute to the development of authentic Arabic LLMs. This study not only highlights the potential for creating linguistically and culturally accurate Arabic LLMs but also sets a precedent for future research in enhancing the authenticity of Arabic language models.

TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models

The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available.

Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments

Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.

Improving Bilingual Capabilities of Language Models to Support Diverse Linguistic Practices in Education

Large language models (LLMs) offer promise in generating educational content, providing instructor feedback, and reducing teacher workload on assessments. While prior studies have focused on studying LLM-powered learning analytics, limited research has examined how effective LLMs are in a bilingual context. In this paper, we study the effectiveness of multilingual large language models (MLLMs) across monolingual (English-only, Spanish-only) and bilingual (Spanglish) student writing. We present a learning analytics use case that details LLM performance in assessing acceptable and unacceptable explanations of Science and Social Science concepts. Our findings reveal a significant bias in the grading performance of pre-trained models for bilingual writing compared to English-only and Spanish-only writing. Following this, we fine-tune open-source MLLMs including Llama 3.1 and Mistral NeMo using synthetic datasets generated in English, Spanish, and Spanglish. Our experiments indicate that the models perform significantly better for all three languages after fine-tuning with bilingual data. This study highlights the potential of enhancing MLLM effectiveness to support authentic language practices amongst bilingual learners. It also aims to illustrate the value of incorporating non-English languages into the design and implementation of language models in education.

LangSAMP: Language-Script Aware Multilingual Pretraining

Recent multilingual pretrained language models (mPLMs) often avoid using language embeddings -- learnable vectors assigned to different languages. These embeddings are discarded for two main reasons: (1) mPLMs are expected to have a single, unified parameter set across all languages, and (2) they need to function seamlessly as universal text encoders without requiring language IDs as input. However, this removal increases the burden on token embeddings to encode all language-specific information, which may hinder the model's ability to produce more language-neutral representations. To address this challenge, we propose Language-Script Aware Multilingual Pretraining (LangSAMP), a method that incorporates both language and script embeddings to enhance representation learning while maintaining a simple architecture. Specifically, we integrate these embeddings into the output of the transformer blocks before passing the final representations to the language modeling head for prediction. We apply LangSAMP to the continual pretraining of XLM-R on a highly multilingual corpus covering more than 500 languages. The resulting model consistently outperforms the baseline. Extensive analysis further shows that language/script embeddings encode language/script-specific information, which improves the selection of source languages for crosslingual transfer. We make our code and models publicly available at https://github.com/cisnlp/LangSAMP.

EgyBERT: A Large Language Model Pretrained on Egyptian Dialect Corpora

This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on https://huggingface.co/faisalq/EgyBERT.

Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese

Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.

TunBERT: Pretrained Contextualized Text Representation for Tunisian Dialect

Pretrained contextualized text representation models learn an effective representation of a natural language to make it machine understandable. After the breakthrough of the attention mechanism, a new generation of pretrained models have been proposed achieving good performances since the introduction of the Transformer. Bidirectional Encoder Representations from Transformers (BERT) has become the state-of-the-art model for language understanding. Despite their success, most of the available models have been trained on Indo-European languages however similar research for under-represented languages and dialects remains sparse. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for under represented languages, with a specific focus on the Tunisian dialect. We evaluate our language model on sentiment analysis task, dialect identification task and reading comprehension question-answering task. We show that the use of noisy web crawled data instead of structured data (Wikipedia, articles, etc.) is more convenient for such non-standardized language. Moreover, results indicate that a relatively small web crawled dataset leads to performances that are as good as those obtained using larger datasets. Finally, our best performing TunBERT model reaches or improves the state-of-the-art in all three downstream tasks. We release the TunBERT pretrained model and the datasets used for fine-tuning.

LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback

To democratize large language models (LLMs) to most natural languages, it is imperative to make these models capable of understanding and generating texts in many languages, in particular low-resource ones. While recent multilingual LLMs demonstrate remarkable performance in such capabilities, these LLMs still support a limited number of human languages due to the lack of training data for low-resource languages. Moreover, these LLMs are not yet aligned with human preference for downstream tasks, which is crucial for the success of LLMs in English. In this paper, we introduce xLLaMA-100 and xBLOOM-100 (collectively xLLMs-100), which scale the multilingual capabilities of LLaMA and BLOOM to 100 languages. To do so, we construct two datasets: a multilingual instruction dataset including 100 languages, which represents the largest language coverage to date, and a cross-lingual human feedback dataset encompassing 30 languages. We perform multilingual instruction tuning on the constructed instruction data and further align the LLMs with human feedback using the DPO algorithm on our cross-lingual human feedback dataset. We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks. Experimental results show that xLLMs-100 consistently outperforms its peers across the benchmarks by considerable margins, defining a new state-of-the-art multilingual LLM that supports 100 languages.

BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities

This paper introduces BiMediX2, a bilingual (Arabic-English) Bio-Medical EXpert Large Multimodal Model (LMM) with a unified architecture that integrates text and visual modalities, enabling advanced image understanding and medical applications. BiMediX2 leverages the Llama3.1 architecture and integrates text and visual capabilities to facilitate seamless interactions in both English and Arabic, supporting text-based inputs and multi-turn conversations involving medical images. The model is trained on an extensive bilingual healthcare dataset consisting of 1.6M samples of diverse medical interactions for both text and image modalities, mixed in Arabic and English. We also propose the first bilingual GPT-4o based medical LMM benchmark named BiMed-MBench. BiMediX2 is benchmarked on both text-based and image-based tasks, achieving state-of-the-art performance across several medical benchmarks. It outperforms recent state-of-the-art models in medical LLM evaluation benchmarks. Our model also sets a new benchmark in multimodal medical evaluations with over 9% improvement in English and over 20% in Arabic evaluations. Additionally, it surpasses GPT-4 by around 9% in UPHILL factual accuracy evaluations and excels in various medical Visual Question Answering, Report Generation, and Report Summarization tasks. The project page including source code and the trained model, is available at https://github.com/mbzuai-oryx/BiMediX2.

Cross-lingual transfer of multilingual models on low resource African Languages

Large multilingual models have significantly advanced natural language processing (NLP) research. However, their high resource demands and potential biases from diverse data sources have raised concerns about their effectiveness across low-resource languages. In contrast, monolingual models, trained on a single language, may better capture the nuances of the target language, potentially providing more accurate results. This study benchmarks the cross-lingual transfer capabilities from a high-resource language to a low-resource language for both, monolingual and multilingual models, focusing on Kinyarwanda and Kirundi, two Bantu languages. We evaluate the performance of transformer based architectures like Multilingual BERT (mBERT), AfriBERT, and BantuBERTa against neural-based architectures such as BiGRU, CNN, and char-CNN. The models were trained on Kinyarwanda and tested on Kirundi, with fine-tuning applied to assess the extent of performance improvement and catastrophic forgetting. AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning, while BiGRU emerged as the best-performing neural model with 83.3% accuracy. We also analyze the degree of forgetting in the original language post-fine-tuning. While monolingual models remain competitive, this study highlights that multilingual models offer strong cross-lingual transfer capabilities in resource limited settings.

Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following

Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.

Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.

Multilingual Large Language Models: A Systematic Survey

This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.

Romanization-based Large-scale Adaptation of Multilingual Language Models

Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.

Contextual Code Switching for Machine Translation using Language Models

Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years. Their demonstrated state-of-the-art performance is achieved through methodologies such as zero-shot or few-shot prompting. These models undergo training on extensive datasets that encompass segments of the Internet and subsequently undergo fine-tuning tailored to specific tasks. Notably, they exhibit proficiency in tasks such as translation, summarization, question answering, and creative writing, even in the absence of explicit training for those particular tasks. While they have shown substantial improvement in the multilingual tasks their performance in the code switching, especially for machine translation remains relatively uncharted. In this paper, we present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs. Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task. We posit that the efficacy of multilingual large language models in contextual code switching is constrained by their training methodologies. In contrast, relatively smaller models, when trained and fine-tuned on bespoke datasets, may yield superior results in comparison to the majority of multilingual models.

IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench -- a human-translated benchmark dataset for 16 typologically-diverse low-resource African languages covering three tasks: natural language inference~(AfriXNLI), mathematical reasoning~(AfriMGSM), and multi-choice knowledge-based QA~(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings~(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages~(such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58\% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

MuRIL: Multilingual Representations for Indian Languages

India is a multilingual society with 1369 rationalized languages and dialects being spoken across the country (INDIA, 2011). Of these, the 22 scheduled languages have a staggering total of 1.17 billion speakers and 121 languages have more than 10,000 speakers (INDIA, 2011). India also has the second largest (and an ever growing) digital footprint (Statista, 2020). Despite this, today's state-of-the-art multilingual systems perform suboptimally on Indian (IN) languages. This can be explained by the fact that multilingual language models (LMs) are often trained on 100+ languages together, leading to a small representation of IN languages in their vocabulary and training data. Multilingual LMs are substantially less effective in resource-lean scenarios (Wu and Dredze, 2020; Lauscher et al., 2020), as limited data doesn't help capture the various nuances of a language. One also commonly observes IN language text transliterated to Latin or code-mixed with English, especially in informal settings (for example, on social media platforms) (Rijhwani et al., 2017). This phenomenon is not adequately handled by current state-of-the-art multilingual LMs. To address the aforementioned gaps, we propose MuRIL, a multilingual LM specifically built for IN languages. MuRIL is trained on significantly large amounts of IN text corpora only. We explicitly augment monolingual text corpora with both translated and transliterated document pairs, that serve as supervised cross-lingual signals in training. MuRIL significantly outperforms multilingual BERT (mBERT) on all tasks in the challenging cross-lingual XTREME benchmark (Hu et al., 2020). We also present results on transliterated (native to Latin script) test sets of the chosen datasets and demonstrate the efficacy of MuRIL in handling transliterated data.

Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages

The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources.

The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments

Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.

Distilling Efficient Language-Specific Models for Cross-Lingual Transfer

Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil.

GLM-130B: An Open Bilingual Pre-trained Model

We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters. It is an attempt to open-source a 100B-scale model at least as good as GPT-3 and unveil how models of such a scale can be successfully pre-trained. Over the course of this effort, we face numerous unexpected technical and engineering challenges, particularly on loss spikes and disconvergence. In this paper, we introduce the training process of GLM-130B including its design choices, training strategies for both efficiency and stability, and engineering efforts. The resultant GLM-130B model offers significant outperformance over GPT-3 175B on a wide range of popular English benchmarks while the performance advantage is not observed in OPT-175B and BLOOM-176B. It also consistently and significantly outperforms ERNIE TITAN 3.0 260B -- the largest Chinese language model -- across related benchmarks. Finally, we leverage a unique scaling property of GLM-130B to reach INT4 quantization, without quantization aware training and with almost no performance loss, making it the first among 100B-scale models. More importantly, the property allows its effective inference on 4timesRTX 3090 (24G) or 8timesRTX 2080 Ti (11G) GPUs, the most ever affordable GPUs required for using 100B-scale models. The GLM-130B model weights are publicly accessible and its code, training logs, related toolkit, and lessons learned are open-sourced at https://github.com/THUDM/GLM-130B .

TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data

Transliterating related languages that use different scripts into a common script shows effectiveness in improving crosslingual transfer in downstream tasks. However, this methodology often makes pretraining a model from scratch unavoidable, as transliteration brings about new subwords not covered in existing multilingual pretrained language models (mPLMs). This is not desired because it takes a lot of computation budget for pretraining. A more promising way is to make full use of available mPLMs. To this end, this paper proposes a simple but effective framework: Transliterate-Merge-Initialize (TransMI), which can create a strong baseline well-suited for data that is transliterated into a common script by exploiting an mPLM and its accompanied tokenizer. TransMI has three stages: (a) transliterate the vocabulary of an mPLM into a common script; (b) merge the new vocabulary with the original vocabulary; and (c) initialize the embeddings of the new subwords. We applied TransMI to three recent strong mPLMs, and our experiments demonstrate that TransMI not only preserves their ability to handle non-transliterated data, but also enables the models to effectively process transliterated data: the results show a consistent improvement of 3% to 34%, varying across different models and tasks. We make our code and models publicly available at https://github.com/cisnlp/TransMI.