Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAES Systems Are Both Overstable And Oversensitive: Explaining Why And Proposing Defenses
Deep-learning based Automatic Essay Scoring (AES) systems are being actively used by states and language testing agencies alike to evaluate millions of candidates for life-changing decisions ranging from college applications to visa approvals. However, little research has been put to understand and interpret the black-box nature of deep-learning based scoring algorithms. Previous studies indicate that scoring models can be easily fooled. In this paper, we explore the reason behind their surprising adversarial brittleness. We utilize recent advances in interpretability to find the extent to which features such as coherence, content, vocabulary, and relevance are important for automated scoring mechanisms. We use this to investigate the oversensitivity i.e., large change in output score with a little change in input essay content) and overstability i.e., little change in output scores with large changes in input essay content) of AES. Our results indicate that autoscoring models, despite getting trained as "end-to-end" models with rich contextual embeddings such as BERT, behave like bag-of-words models. A few words determine the essay score without the requirement of any context making the model largely overstable. This is in stark contrast to recent probing studies on pre-trained representation learning models, which show that rich linguistic features such as parts-of-speech and morphology are encoded by them. Further, we also find that the models have learnt dataset biases, making them oversensitive. To deal with these issues, we propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies. We find that our proposed models are able to detect unusual attribution patterns and flag adversarial samples successfully.
Automatic Assessment of Divergent Thinking in Chinese Language with TransDis: A Transformer-Based Language Model Approach
Language models have been increasingly popular for automatic creativity assessment, generating semantic distances to objectively measure the quality of creative ideas. However, there is currently a lack of an automatic assessment system for evaluating creative ideas in the Chinese language. To address this gap, we developed TransDis, a scoring system using transformer-based language models, capable of providing valid originality (quality) and flexibility (variety) scores for Alternative Uses Task (AUT) responses in Chinese. Study 1 demonstrated that the latent model-rated originality factor, comprised of three transformer-based models, strongly predicted human originality ratings, and the model-rated flexibility strongly correlated with human flexibility ratings as well. Criterion validity analyses indicated that model-rated originality and flexibility positively correlated to other creativity measures, demonstrating similar validity to human ratings. Study 2 & 3 showed that TransDis effectively distinguished participants instructed to provide creative vs. common uses (Study 2) and participants instructed to generate ideas in a flexible vs. persistent way (Study 3). Our findings suggest that TransDis can be a reliable and low-cost tool for measuring idea originality and flexibility in Chinese language, potentially paving the way for automatic creativity assessment in other languages. We offer an open platform to compute originality and flexibility for AUT responses in Chinese and over 50 other languages (https://osf.io/59jv2/).
An Open Multilingual System for Scoring Readability of Wikipedia
With over 60M articles, Wikipedia has become the largest platform for open and freely accessible knowledge. While it has more than 15B monthly visits, its content is believed to be inaccessible to many readers due to the lack of readability of its text. However, previous investigations of the readability of Wikipedia have been restricted to English only, and there are currently no systems supporting the automatic readability assessment of the 300+ languages in Wikipedia. To bridge this gap, we develop a multilingual model to score the readability of Wikipedia articles. To train and evaluate this model, we create a novel multilingual dataset spanning 14 languages, by matching articles from Wikipedia to simplified Wikipedia and online children encyclopedias. We show that our model performs well in a zero-shot scenario, yielding a ranking accuracy of more than 80% across 14 languages and improving upon previous benchmarks. These results demonstrate the applicability of the model at scale for languages in which there is no ground-truth data available for model fine-tuning. Furthermore, we provide the first overview on the state of readability in Wikipedia beyond English.
Automatic Essay Multi-dimensional Scoring with Fine-tuning and Multiple Regression
Automated essay scoring (AES) involves predicting a score that reflects the writing quality of an essay. Most existing AES systems produce only a single overall score. However, users and L2 learners expect scores across different dimensions (e.g., vocabulary, grammar, coherence) for English essays in real-world applications. To address this need, we have developed two models that automatically score English essays across multiple dimensions by employing fine-tuning and other strategies on two large datasets. The results demonstrate that our systems achieve impressive performance in evaluation using three criteria: precision, F1 score, and Quadratic Weighted Kappa. Furthermore, our system outperforms existing methods in overall scoring.
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.
ACCENT: An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems
Commonsense reasoning is omnipresent in human communications and thus is an important feature for open-domain dialogue systems. However, evaluating commonsense in dialogue systems is still an open challenge. We take the first step by focusing on event commonsense that considers events and their relations, and is crucial in both dialogues and general commonsense reasoning. We propose ACCENT, an event commonsense evaluation metric empowered by commonsense knowledge bases (CSKBs). ACCENT first extracts event-relation tuples from a dialogue, and then evaluates the response by scoring the tuples in terms of their compatibility with the CSKB. To evaluate ACCENT, we construct the first public event commonsense evaluation dataset for open-domain dialogues. Our experiments show that ACCENT is an efficient metric for event commonsense evaluation, which achieves higher correlations with human judgments than existing baselines.
Mixtures of Deep Neural Experts for Automated Speech Scoring
The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts. The task has significant relevance to the field of computer assisted language learning. The approach presented in the paper relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes. Different deep neural network architectures (both feed-forward and recurrent) are specialized over diverse representations of the texts in terms of: a reference grammar, the outcome of probabilistic language models, several word embeddings, and two bag-of-word models. Combination of the individual classifiers is realized either via a probabilistic pseudo-joint model, or via a neural mixture of experts. Using the data of the third Spoken CALL Shared Task challenge, the highest values to date were obtained in terms of three popular evaluation metrics.
T2Ranking: A large-scale Chinese Benchmark for Passage Ranking
Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/
InstUPR : Instruction-based Unsupervised Passage Reranking with Large Language Models
This paper introduces InstUPR, an unsupervised passage reranking method based on large language models (LLMs). Different from existing approaches that rely on extensive training with query-document pairs or retrieval-specific instructions, our method leverages the instruction-following capabilities of instruction-tuned LLMs for passage reranking without any additional fine-tuning. To achieve this, we introduce a soft score aggregation technique and employ pairwise reranking for unsupervised passage reranking. Experiments on the BEIR benchmark demonstrate that InstUPR outperforms unsupervised baselines as well as an instruction-tuned reranker, highlighting its effectiveness and superiority. Source code to reproduce all experiments is open-sourced at https://github.com/MiuLab/InstUPR
Data Augmentation for Automated Essay Scoring using Transformer Models
Automated essay scoring is one of the most important problem in Natural Language Processing. It has been explored for a number of years, and it remains partially solved. In addition to its economic and educational usefulness, it presents research problems. Transfer learning has proved to be beneficial in NLP. Data augmentation techniques have also helped build state-of-the-art models for automated essay scoring. Many works in the past have attempted to solve this problem by using RNNs, LSTMs, etc. This work examines the transformer models like BERT, RoBERTa, etc. We empirically demonstrate the effectiveness of transformer models and data augmentation for automated essay grading across many topics using a single model.
Document Ranking with a Pretrained Sequence-to-Sequence Model
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words", and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the model's use of latent knowledge.
Hybrid and Collaborative Passage Reranking
In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Learning to Ask: Neural Question Generation for Reading Comprehension
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
Pre-training Tasks for Embedding-based Large-scale Retrieval
We consider the large-scale query-document retrieval problem: given a query (e.g., a question), return the set of relevant documents (e.g., paragraphs containing the answer) from a large document corpus. This problem is often solved in two steps. The retrieval phase first reduces the solution space, returning a subset of candidate documents. The scoring phase then re-ranks the documents. Critically, the retrieval algorithm not only desires high recall but also requires to be highly efficient, returning candidates in time sublinear to the number of documents. Unlike the scoring phase witnessing significant advances recently due to the BERT-style pre-training tasks on cross-attention models, the retrieval phase remains less well studied. Most previous works rely on classic Information Retrieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These models only accept sparse handcrafted features and can not be optimized for different downstream tasks of interest. In this paper, we conduct a comprehensive study on the embedding-based retrieval models. We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks. With adequately designed paragraph-level pre-training tasks, the Transformer models can remarkably improve over the widely-used BM-25 as well as embedding models without Transformers. The paragraph-level pre-training tasks we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link Prediction (WLP), and the combination of all three.
Autoregressive Search Engines: Generating Substrings as Document Identifiers
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.
A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding
We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods.
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
CoRT: Complementary Rankings from Transformers
Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies.
Unbabel's Participation in the WMT20 Metrics Shared Task
We present the contribution of the Unbabel team to the WMT 2020 Shared Task on Metrics. We intend to participate on the segment-level, document-level and system-level tracks on all language pairs, as well as the 'QE as a Metric' track. Accordingly, we illustrate results of our models in these tracks with reference to test sets from the previous year. Our submissions build upon the recently proposed COMET framework: We train several estimator models to regress on different human-generated quality scores and a novel ranking model trained on relative ranks obtained from Direct Assessments. We also propose a simple technique for converting segment-level predictions into a document-level score. Overall, our systems achieve strong results for all language pairs on previous test sets and in many cases set a new state-of-the-art.
Dealing with Typos for BERT-based Passage Retrieval and Ranking
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos.
A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context
In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Generative Language Models with Retrieval Augmented Generation for Automated Short Answer Scoring
Automated Short Answer Scoring (ASAS) is a critical component in educational assessment. While traditional ASAS systems relied on rule-based algorithms or complex deep learning methods, recent advancements in Generative Language Models (GLMs) offer new opportunities for improvement. This study explores the application of GLMs to ASAS, leveraging their off-the-shelf capabilities and performance in various domains. We propose a novel pipeline that combines vector databases, transformer-based encoders, and GLMs to enhance short answer scoring accuracy. Our approach stores training responses in a vector database, retrieves semantically similar responses during inference, and employs a GLM to analyze these responses and determine appropriate scores. We further optimize the system through fine-tuned retrieval processes and prompt engineering. Evaluation on the SemEval 2013 dataset demonstrates a significant improvement on the SCIENTSBANK 3-way and 2-way tasks compared to existing methods, highlighting the potential of GLMs in advancing ASAS technology.
PARADE: Passage Representation Aggregation for Document Reranking
Pretrained transformer models, such as BERT and T5, have shown to be highly effective at ad-hoc passage and document ranking. Due to inherent sequence length limits of these models, they need to be run over a document's passages, rather than processing the entire document sequence at once. Although several approaches for aggregating passage-level signals have been proposed, there has yet to be an extensive comparison of these techniques. In this work, we explore strategies for aggregating relevance signals from a document's passages into a final ranking score. We find that passage representation aggregation techniques can significantly improve over techniques proposed in prior work, such as taking the maximum passage score. We call this new approach PARADE. In particular, PARADE can significantly improve results on collections with broad information needs where relevance signals can be spread throughout the document (such as TREC Robust04 and GOV2). Meanwhile, less complex aggregation techniques may work better on collections with an information need that can often be pinpointed to a single passage (such as TREC DL and TREC Genomics). We also conduct efficiency analyses, and highlight several strategies for improving transformer-based aggregation.
Simple Applications of BERT for Ad Hoc Document Retrieval
Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of.
Automatic Ranking of MT Outputs using Approximations
Since long, research on machine translation has been ongoing. Still, we do not get good translations from MT engines so developed. Manual ranking of these outputs tends to be very time consuming and expensive. Identifying which one is better or worse than the others is a very taxing task. In this paper, we show an approach which can provide automatic ranks to MT outputs (translations) taken from different MT Engines and which is based on N-gram approximations. We provide a solution where no human intervention is required for ranking systems. Further we also show the evaluations of our results which show equivalent results as that of human ranking.
SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank
Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.
Fill in the BLANC: Human-free quality estimation of document summaries
We present BLANC, a new approach to the automatic estimation of document summary quality. Our goal is to measure the functional performance of a summary with an objective, reproducible, and fully automated method. Our approach achieves this by measuring the performance boost gained by a pre-trained language model with access to a document summary while carrying out its language understanding task on the document's text. We present evidence that BLANC scores have as good correlation with human evaluations as do the ROUGE family of summary quality measurements. And unlike ROUGE, the BLANC method does not require human-written reference summaries, allowing for fully human-free summary quality estimation.
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms
Automated Essay Score (AES) is proven to be one of the cutting-edge technologies. Scoring techniques are used for various purposes. Reliable scores are calculated based on influential variables. Such variables can be computed by different methods based on the domain. The research is concentrated on the user's understanding of a given topic. The analysis is based on a scoring index by using Large Language Models. The user can then compare and contrast the understanding of a topic that they recently learned. The results are then contributed towards learning analytics and progression is made for enhancing the learning ability. In this research, the focus is on summarizing a PDF document and gauging a user's understanding of its content. The process involves utilizing a Langchain tool to summarize the PDF and extract the essential information. By employing this technique, the research aims to determine how well the user comprehends the summarized content.
Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at https://github.com/liuqi6777/pe_rank.}
Passage Re-ranking with BERT
Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert
Enabling Large Language Models to Generate Text with Citations
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.
Wacky Weights in Learned Sparse Representations and the Revenge of Score-at-a-Time Query Evaluation
Recent advances in retrieval models based on learned sparse representations generated by transformers have led us to, once again, consider score-at-a-time query evaluation techniques for the top-k retrieval problem. Previous studies comparing document-at-a-time and score-at-a-time approaches have consistently found that the former approach yields lower mean query latency, although the latter approach has more predictable query latency. In our experiments with four different retrieval models that exploit representational learning with bags of words, we find that transformers generate "wacky weights" that appear to greatly reduce the opportunities for skipping and early exiting optimizations that lie at the core of standard document-at-a-time techniques. As a result, score-at-a-time approaches appear to be more competitive in terms of query evaluation latency than in previous studies. We find that, if an effectiveness loss of up to three percent can be tolerated, a score-at-a-time approach can yield substantial gains in mean query latency while at the same time dramatically reducing tail latency.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
Rethinking the Role of Token Retrieval in Multi-Vector Retrieval
Multi-vector retrieval models such as ColBERT [Khattab and Zaharia, 2020] allow token-level interactions between queries and documents, and hence achieve state of the art on many information retrieval benchmarks. However, their non-linear scoring function cannot be scaled to millions of documents, necessitating a three-stage process for inference: retrieving initial candidates via token retrieval, accessing all token vectors, and scoring the initial candidate documents. The non-linear scoring function is applied over all token vectors of each candidate document, making the inference process complicated and slow. In this paper, we aim to simplify the multi-vector retrieval by rethinking the role of token retrieval. We present XTR, ConteXtualized Token Retriever, which introduces a simple, yet novel, objective function that encourages the model to retrieve the most important document tokens first. The improvement to token retrieval allows XTR to rank candidates only using the retrieved tokens rather than all tokens in the document, and enables a newly designed scoring stage that is two-to-three orders of magnitude cheaper than that of ColBERT. On the popular BEIR benchmark, XTR advances the state-of-the-art by 2.8 nDCG@10 without any distillation. Detailed analysis confirms our decision to revisit the token retrieval stage, as XTR demonstrates much better recall of the token retrieval stage compared to ColBERT.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
ReviewRobot: Explainable Paper Review Generation based on Knowledge Synthesis
To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison. A good review needs to be knowledgeable, namely that the comments should be constructive and informative to help improve the paper; and explainable by providing detailed evidence. ReviewRobot achieves these goals via three steps: (1) We perform domain-specific Information Extraction to construct a knowledge graph (KG) from the target paper under review, a related work KG from the papers cited by the target paper, and a background KG from a large collection of previous papers in the domain. (2) By comparing these three KGs, we predict a review score and detailed structured knowledge as evidence for each review category. (3) We carefully select and generalize human review sentences into templates, and apply these templates to transform the review scores and evidence into natural language comments. Experimental results show that our review score predictor reaches 71.4%-100% accuracy. Human assessment by domain experts shows that 41.7%-70.5% of the comments generated by ReviewRobot are valid and constructive, and better than human-written ones for 20% of the time. Thus, ReviewRobot can serve as an assistant for paper reviewers, program chairs and authors.
Pre-trained Language Model based Ranking in Baidu Search
As the heart of a search engine, the ranking system plays a crucial role in satisfying users' information demands. More recently, neural rankers fine-tuned from pre-trained language models (PLMs) establish state-of-the-art ranking effectiveness. However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system. In this work, we contribute a series of successfully applied techniques in tackling these exposed issues when deploying the state-of-the-art Chinese pre-trained language model, i.e., ERNIE, in the online search engine system. We first articulate a novel practice to cost-efficiently summarize the web document and contextualize the resultant summary content with the query using a cheap yet powerful Pyramid-ERNIE architecture. Then we endow an innovative paradigm to finely exploit the large-scale noisy and biased post-click behavioral data for relevance-oriented pre-training. We also propose a human-anchored fine-tuning strategy tailored for the online ranking system, aiming to stabilize the ranking signals across various online components. Extensive offline and online experimental results show that the proposed techniques significantly boost the search engine's performance.
ConTextual Masked Auto-Encoder for Dense Passage Retrieval
Dense passage retrieval aims to retrieve the relevant passages of a query from a large corpus based on dense representations (i.e., vectors) of the query and the passages. Recent studies have explored improving pre-trained language models to boost dense retrieval performance. This paper proposes CoT-MAE (ConTextual Masked Auto-Encoder), a simple yet effective generative pre-training method for dense passage retrieval. CoT-MAE employs an asymmetric encoder-decoder architecture that learns to compress the sentence semantics into a dense vector through self-supervised and context-supervised masked auto-encoding. Precisely, self-supervised masked auto-encoding learns to model the semantics of the tokens inside a text span, and context-supervised masked auto-encoding learns to model the semantical correlation between the text spans. We conduct experiments on large-scale passage retrieval benchmarks and show considerable improvements over strong baselines, demonstrating the high efficiency of CoT-MAE. Our code is available at https://github.com/caskcsg/ir/tree/main/cotmae.
Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.
RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
Perspectives on Large Language Models for Relevance Judgment
When asked, current large language models (LLMs) like ChatGPT claim that they can assist us with relevance judgments. Many researchers think this would not lead to credible IR research. In this perspective paper, we discuss possible ways for LLMs to assist human experts along with concerns and issues that arise. We devise a human-machine collaboration spectrum that allows categorizing different relevance judgment strategies, based on how much the human relies on the machine. For the extreme point of "fully automated assessment", we further include a pilot experiment on whether LLM-based relevance judgments correlate with judgments from trained human assessors. We conclude the paper by providing two opposing perspectives - for and against the use of LLMs for automatic relevance judgments - and a compromise perspective, informed by our analyses of the literature, our preliminary experimental evidence, and our experience as IR researchers. We hope to start a constructive discussion within the community to avoid a stale-mate during review, where work is dammed if is uses LLMs for evaluation and dammed if it doesn't.
Automated Literature Review Using NLP Techniques and LLM-Based Retrieval-Augmented Generation
This research presents and compares multiple approaches to automate the generation of literature reviews using several Natural Language Processing (NLP) techniques and retrieval-augmented generation (RAG) with a Large Language Model (LLM). The ever-increasing number of research articles provides a huge challenge for manual literature review. It has resulted in an increased demand for automation. Developing a system capable of automatically generating the literature reviews from only the PDF files as input is the primary objective of this research work. The effectiveness of several Natural Language Processing (NLP) strategies, such as the frequency-based method (spaCy), the transformer model (Simple T5), and retrieval-augmented generation (RAG) with Large Language Model (GPT-3.5-turbo), is evaluated to meet the primary objective. The SciTLDR dataset is chosen for this research experiment and three distinct techniques are utilized to implement three different systems for auto-generating the literature reviews. The ROUGE scores are used for the evaluation of all three systems. Based on the evaluation, the Large Language Model GPT-3.5-turbo achieved the highest ROUGE-1 score, 0.364. The transformer model comes in second place and spaCy is at the last position. Finally, a graphical user interface is created for the best system based on the large language model.
RQUGE: Reference-Free Metric for Evaluating Question Generation by Answering the Question
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and re-ranked by RQUGE.
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems
LLMs and RAG systems are now capable of handling millions of input tokens or more. However, evaluating the output quality of such systems on long-context tasks remains challenging, as tasks like Needle-in-a-Haystack lack complexity. In this work, we argue that summarization can play a central role in such evaluation. We design a procedure to synthesize Haystacks of documents, ensuring that specific insights repeat across documents. The "Summary of a Haystack" (SummHay) task then requires a system to process the Haystack and generate, given a query, a summary that identifies the relevant insights and precisely cites the source documents. Since we have precise knowledge of what insights should appear in a haystack summary and what documents should be cited, we implement a highly reproducible automatic evaluation that can score summaries on two aspects - Coverage and Citation. We generate Haystacks in two domains (conversation, news), and perform a large-scale evaluation of 10 LLMs and corresponding 50 RAG systems. Our findings indicate that SummHay is an open challenge for current systems, as even systems provided with an Oracle signal of document relevance lag our estimate of human performance (56\%) by 10+ points on a Joint Score. Without a retriever, long-context LLMs like GPT-4o and Claude 3 Opus score below 20% on SummHay. We show SummHay can also be used to study enterprise RAG systems and position bias in long-context models. We hope future systems can equal and surpass human performance on SummHay.
RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage re-ranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other's relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.
SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.
Is my automatic audio captioning system so bad? spider-max: a metric to consider several caption candidates
Automatic Audio Captioning (AAC) is the task that aims to describe an audio signal using natural language. AAC systems take as input an audio signal and output a free-form text sentence, called a caption. Evaluating such systems is not trivial, since there are many ways to express the same idea. For this reason, several complementary metrics, such as BLEU, CIDEr, SPICE and SPIDEr, are used to compare a single automatic caption to one or several captions of reference, produced by a human annotator. Nevertheless, an automatic system can produce several caption candidates, either using some randomness in the sentence generation process, or by considering the various competing hypothesized captions during decoding with beam-search, for instance. If we consider an end-user of an AAC system, presenting several captions instead of a single one seems relevant to provide some diversity, similarly to information retrieval systems. In this work, we explore the possibility to consider several predicted captions in the evaluation process instead of one. For this purpose, we propose SPIDEr-max, a metric that takes the maximum SPIDEr value among the scores of several caption candidates. To advocate for our metric, we report experiments on Clotho v2.1 and AudioCaps, with a transformed-based system. On AudioCaps for example, this system reached a SPIDEr-max value (with 5 candidates) close to the SPIDEr human score of reference.
Language models and Automated Essay Scoring
In this paper, we present a new comparative study on automatic essay scoring (AES). The current state-of-the-art natural language processing (NLP) neural network architectures are used in this work to achieve above human-level accuracy on the publicly available Kaggle AES dataset. We compare two powerful language models, BERT and XLNet, and describe all the layers and network architectures in these models. We elucidate the network architectures of BERT and XLNet using clear notation and diagrams and explain the advantages of transformer architectures over traditional recurrent neural network architectures. Linear algebra notation is used to clarify the functions of transformers and attention mechanisms. We compare the results with more traditional methods, such as bag of words (BOW) and long short term memory (LSTM) networks.
CitePrompt: Using Prompts to Identify Citation Intent in Scientific Papers
Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
TREC CAsT 2019: The Conversational Assistance Track Overview
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems. The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine Reading COmprehension (MARCO) datasets. Eighty information seeking dialogues (30 train, 50 test) are an average of 9 to 10 questions long. Relevance assessments are provided for 30 training topics and 20 test topics. This year 21 groups submitted a total of 65 runs using varying methods for conversational query understanding and ranking. Methods include traditional retrieval based methods, feature based learning-to-rank, neural models, and knowledge enhanced methods. A common theme through the runs is the use of BERT-based neural reranking methods. Leading methods also employed document expansion, conversational query expansion, and generative language models for conversational query rewriting (GPT-2). The results show a gap between automatic systems and those using the manually resolved utterances, with a 35% relative improvement of manual rewrites over the best automatic system.
Training Curricula for Open Domain Answer Re-Ranking
In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.
ARAGOG: Advanced RAG Output Grading
Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (https://github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems.
Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models
Iterative retrieval refers to the process in which the model continuously queries the retriever during generation to enhance the relevance of the retrieved knowledge, thereby improving the performance of Retrieval-Augmented Generation (RAG). Existing work typically employs few-shot prompting or manually constructed rules to implement iterative retrieval. This introduces additional inference overhead and overlooks the remarkable reasoning capabilities of Large Language Models (LLMs). In this paper, we introduce Auto-RAG, an autonomous iterative retrieval model centered on the LLM's powerful decision-making capabilities. Auto-RAG engages in multi-turn dialogues with the retriever, systematically planning retrievals and refining queries to acquire valuable knowledge. This process continues until sufficient external information is gathered, at which point the results are presented to the user. To this end, we develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval and fine-tuned the latest open-source LLMs. The experimental results indicate that Auto-RAG is capable of autonomous iterative interaction with the retriever, effectively leveraging the remarkable reasoning and decision-making abilities of LLMs, which lead to outstanding performance across six benchmarks. Further analysis reveals that Auto-RAG can autonomously adjust the number of iterations based on the difficulty of the questions and the utility of the retrieved knowledge, without requiring any human intervention. Moreover, Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability while providing users with a more intuitive experienceCode is available at \url{https://github.com/ictnlp/Auto-RAG.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models
Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines. Our codes are available at https://github.com/8421BCD/fullrank.
A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models
Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.
Judging the Judges: A Collection of LLM-Generated Relevance Judgements
Using Large Language Models (LLMs) for relevance assessments offers promising opportunities to improve Information Retrieval (IR), Natural Language Processing (NLP), and related fields. Indeed, LLMs hold the promise of allowing IR experimenters to build evaluation collections with a fraction of the manual human labor currently required. This could help with fresh topics on which there is still limited knowledge and could mitigate the challenges of evaluating ranking systems in low-resource scenarios, where it is challenging to find human annotators. Given the fast-paced recent developments in the domain, many questions concerning LLMs as assessors are yet to be answered. Among the aspects that require further investigation, we can list the impact of various components in a relevance judgment generation pipeline, such as the prompt used or the LLM chosen. This paper benchmarks and reports on the results of a large-scale automatic relevance judgment evaluation, the LLMJudge challenge at SIGIR 2024, where different relevance assessment approaches were proposed. In detail, we release and benchmark 42 LLM-generated labels of the TREC 2023 Deep Learning track relevance judgments produced by eight international teams who participated in the challenge. Given their diverse nature, these automatically generated relevance judgments can help the community not only investigate systematic biases caused by LLMs but also explore the effectiveness of ensemble models, analyze the trade-offs between different models and human assessors, and advance methodologies for improving automated evaluation techniques. The released resource is available at the following link: https://llm4eval.github.io/LLMJudge-benchmark/
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
Efficient Neural Ranking using Forward Indexes
Neural document ranking approaches, specifically transformer models, have achieved impressive gains in ranking performance. However, query processing using such over-parameterized models is both resource and time intensive. In this paper, we propose the Fast-Forward index -- a simple vector forward index that facilitates ranking documents using interpolation of lexical and semantic scores -- as a replacement for contextual re-rankers and dense indexes based on nearest neighbor search. Fast-Forward indexes rely on efficient sparse models for retrieval and merely look up pre-computed dense transformer-based vector representations of documents and passages in constant time for fast CPU-based semantic similarity computation during query processing. We propose index pruning and theoretically grounded early stopping techniques to improve the query processing throughput. We conduct extensive large-scale experiments on TREC-DL datasets and show improvements over hybrid indexes in performance and query processing efficiency using only CPUs. Fast-Forward indexes can provide superior ranking performance using interpolation due to the complementary benefits of lexical and semantic similarities.
Hypencoder: Hypernetworks for Information Retrieval
The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments
This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.
LLM-RankFusion: Mitigating Intrinsic Inconsistency in LLM-based Ranking
Ranking passages by prompting a large language model (LLM) can achieve promising performance in modern information retrieval (IR) systems. A common approach is to sort the ranking list by prompting LLMs for pairwise comparison. However, sorting-based methods require consistent comparisons to correctly sort the passages, which we show that LLMs often violate. We identify two kinds of intrinsic inconsistency in LLM-based pairwise comparisons: order inconsistency which leads to conflicting results when switching the passage order, and transitive inconsistency which leads to non-transitive triads among all preference pairs. In this paper, we propose LLM-RankFusion, an LLM-based ranking framework that mitigates these inconsistencies and produces a robust ranking list. LLM-RankFusion mitigates order inconsistency using in-context learning (ICL) to demonstrate order-agnostic comparisons and calibration to estimate the underlying preference probability between two passages. We then address transitive inconsistency by aggregating the ranking results from multiple rankers. In our experiments, we empirically show that LLM-RankFusion can significantly reduce inconsistent pairwise comparison results, and improve the ranking quality by making the final ranking list more robust.
The Chronicles of RAG: The Retriever, the Chunk and the Generator
Retrieval Augmented Generation (RAG) has become one of the most popular paradigms for enabling LLMs to access external data, and also as a mechanism for grounding to mitigate against hallucinations. When implementing RAG you can face several challenges like effective integration of retrieval models, efficient representation learning, data diversity, computational efficiency optimization, evaluation, and quality of text generation. Given all these challenges, every day a new technique to improve RAG appears, making it unfeasible to experiment with all combinations for your problem. In this context, this paper presents good practices to implement, optimize, and evaluate RAG for the Brazilian Portuguese language, focusing on the establishment of a simple pipeline for inference and experiments. We explored a diverse set of methods to answer questions about the first Harry Potter book. To generate the answers we used the OpenAI's gpt-4, gpt-4-1106-preview, gpt-3.5-turbo-1106, and Google's Gemini Pro. Focusing on the quality of the retriever, our approach achieved an improvement of MRR@10 by 35.4% compared to the baseline. When optimizing the input size in the application, we observed that it is possible to further enhance it by 2.4%. Finally, we present the complete architecture of the RAG with our recommendations. As result, we moved from a baseline of 57.88% to a maximum relative score of 98.61%.
Understanding the Behaviors of BERT in Ranking
This paper studies the performances and behaviors of BERT in ranking tasks. We explore several different ways to leverage the pre-trained BERT and fine-tune it on two ranking tasks: MS MARCO passage reranking and TREC Web Track ad hoc document ranking. Experimental results on MS MARCO demonstrate the strong effectiveness of BERT in question-answering focused passage ranking tasks, as well as the fact that BERT is a strong interaction-based seq2seq matching model. Experimental results on TREC show the gaps between the BERT pre-trained on surrounding contexts and the needs of ad hoc document ranking. Analyses illustrate how BERT allocates its attentions between query-document tokens in its Transformer layers, how it prefers semantic matches between paraphrase tokens, and how that differs with the soft match patterns learned by a click-trained neural ranker.
Medical Question Understanding and Answering with Knowledge Grounding and Semantic Self-Supervision
Current medical question answering systems have difficulty processing long, detailed and informally worded questions submitted by patients, called Consumer Health Questions (CHQs). To address this issue, we introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision. Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss. Then, our system performs a two-step retrieval to return answers. The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document. In the absence of labels for question matching or answer relevance, we design 3 novel, self-supervised and semantically-guided losses. We evaluate our model against two strong retrieval-based question answering baselines. Evaluators ask their own questions and rate the answers retrieved by our baselines and own system according to their relevance. They find that our system retrieves more relevant answers, while achieving speeds 20 times faster. Our self-supervised losses also help the summarizer achieve higher scores in ROUGE, as well as in human evaluation metrics. We release our code to encourage further research.
Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
In Greek mythology, Pistis symbolized good faith, trust, and reliability, echoing the core principles of RAG in LLM systems. Pistis-RAG, a scalable multi-stage framework, effectively addresses the challenges of large-scale retrieval-augmented generation (RAG). Each stage plays a distinct role: matching refines the search space, pre-ranking prioritizes semantically relevant documents, and ranking aligns with the large language model's (LLM) preferences. The reasoning and aggregating stage supports the implementation of complex chain-of-thought (CoT) methods within this cascading structure. We argue that the lack of strong alignment between LLMs and the external knowledge ranking methods used in RAG tasks is relevant to the reliance on the model-centric paradigm in RAG frameworks. A content-centric approach would prioritize seamless integration between the LLMs and external information sources, optimizing the content transformation process for each specific task. Critically, our ranking stage deviates from traditional RAG approaches by recognizing that semantic relevance alone may not directly translate to improved generation. This is due to the sensitivity of the few-shot prompt order, as highlighted in prior work lu2021fantastically. Current RAG frameworks fail to account for this crucial factor. We introduce a novel ranking stage specifically designed for RAG systems. It adheres to information retrieval principles while considering the unique business scenario captured by LLM preferences and user feedback. Our approach integrates in-context learning (ICL) methods and reasoning steps to incorporate user feedback, ensuring efficient alignment. Experiments on the MMLU benchmark demonstrate a 9.3\% performance improvement. The model and code will be open-sourced on GitHub. Experiments on real-world, large-scale data validate our framework's scalability.
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Automatic assessment of text-based responses in post-secondary education: A systematic review
Text-based open-ended questions in academic formative and summative assessments help students become deep learners and prepare them to understand concepts for a subsequent conceptual assessment. However, grading text-based questions, especially in large courses, is tedious and time-consuming for instructors. Text processing models continue progressing with the rapid development of Artificial Intelligence (AI) tools and Natural Language Processing (NLP) algorithms. Especially after breakthroughs in Large Language Models (LLM), there is immense potential to automate rapid assessment and feedback of text-based responses in education. This systematic review adopts a scientific and reproducible literature search strategy based on the PRISMA process using explicit inclusion and exclusion criteria to study text-based automatic assessment systems in post-secondary education, screening 838 papers and synthesizing 93 studies. To understand how text-based automatic assessment systems have been developed and applied in education in recent years, three research questions are considered. All included studies are summarized and categorized according to a proposed comprehensive framework, including the input and output of the system, research motivation, and research outcomes, aiming to answer the research questions accordingly. Additionally, the typical studies of automated assessment systems, research methods, and application domains in these studies are investigated and summarized. This systematic review provides an overview of recent educational applications of text-based assessment systems for understanding the latest AI/NLP developments assisting in text-based assessments in higher education. Findings will particularly benefit researchers and educators incorporating LLMs such as ChatGPT into their educational activities.
Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels
We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation.
RISE: Leveraging Retrieval Techniques for Summarization Evaluation
Evaluating automatically-generated text summaries is a challenging task. While there have been many interesting approaches, they still fall short of human evaluations. We present RISE, a new approach for evaluating summaries by leveraging techniques from information retrieval. RISE is first trained as a retrieval task using a dual-encoder retrieval setup, and can then be subsequently utilized for evaluating a generated summary given an input document, without gold reference summaries. RISE is especially well suited when working on new datasets where one may not have reference summaries available for evaluation. We conduct comprehensive experiments on the SummEval benchmark (Fabbri et al., 2021) and the results show that RISE has higher correlation with human evaluations compared to many past approaches to summarization evaluation. Furthermore, RISE also demonstrates data-efficiency and generalizability across languages.
Document Expansion by Query Prediction
One technique to improve the retrieval effectiveness of a search engine is to expand documents with terms that are related or representative of the documents' content.From the perspective of a question answering system, this might comprise questions the document can potentially answer. Following this observation, we propose a simple method that predicts which queries will be issued for a given document and then expands it with those predictions with a vanilla sequence-to-sequence model, trained using datasets consisting of pairs of query and relevant documents. By combining our method with a highly-effective re-ranking component, we achieve the state of the art in two retrieval tasks. In a latency-critical regime, retrieval results alone (without re-ranking) approach the effectiveness of more computationally expensive neural re-rankers but are much faster.
Automated essay scoring using efficient transformer-based language models
Automated Essay Scoring (AES) is a cross-disciplinary effort involving Education, Linguistics, and Natural Language Processing (NLP). The efficacy of an NLP model in AES tests it ability to evaluate long-term dependencies and extrapolate meaning even when text is poorly written. Large pretrained transformer-based language models have dominated the current state-of-the-art in many NLP tasks, however, the computational requirements of these models make them expensive to deploy in practice. The goal of this paper is to challenge the paradigm in NLP that bigger is better when it comes to AES. To do this, we evaluate the performance of several fine-tuned pretrained NLP models with a modest number of parameters on an AES dataset. By ensembling our models, we achieve excellent results with fewer parameters than most pretrained transformer-based models.
Pretrained Transformers for Text Ranking: BERT and Beyond
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Assessing Word Importance Using Models Trained for Semantic Tasks
Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting
Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering.
Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration Modeling for Deep Retrieval Models
In any ranking system, the retrieval model outputs a single score for a document based on its belief on how relevant it is to a given search query. While retrieval models have continued to improve with the introduction of increasingly complex architectures, few works have investigated a retrieval model's belief in the score beyond the scope of a single value. We argue that capturing the model's uncertainty with respect to its own scoring of a document is a critical aspect of retrieval that allows for greater use of current models across new document distributions, collections, or even improving effectiveness for down-stream tasks. In this paper, we address this problem via an efficient Bayesian framework for retrieval models which captures the model's belief in the relevance score through a stochastic process while adding only negligible computational overhead. We evaluate this belief via a ranking based calibration metric showing that our approximate Bayesian framework significantly improves a retrieval model's ranking effectiveness through a risk aware reranking as well as its confidence calibration. Lastly, we demonstrate that this additional uncertainty information is actionable and reliable on down-stream tasks represented via cutoff prediction.
Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications
This paper proposes a Question-Answering (QA) system for the telecom domain using 3rd Generation Partnership Project (3GPP) technical documents. Alongside, a hybrid dataset, Telco-DPR, which consists of a curated 3GPP corpus in a hybrid format, combining text and tables, is presented. Additionally, the dataset includes a set of synthetic question/answer pairs designed to evaluate the retrieval performance of QA systems on this type of data. The retrieval models, including the sparse model, Best Matching 25 (BM25), as well as dense models, such as Dense Passage Retriever (DPR) and Dense Hierarchical Retrieval (DHR), are evaluated and compared using top-K accuracy and Mean Reciprocal Rank (MRR). The results show that DHR, a retriever model utilising hierarchical passage selection through fine-tuning at both the document and passage levels, outperforms traditional methods in retrieving relevant technical information, achieving a Top-10 accuracy of 86.2%. Additionally, the Retriever-Augmented Generation (RAG) technique, used in the proposed QA system, is evaluated to demonstrate the benefits of using the hybrid dataset and the DHR. The proposed QA system, using the developed RAG model and the Generative Pretrained Transformer (GPT)-4, achieves a 14% improvement in answer accuracy, when compared to a previous benchmark on the same dataset.
SmurfCat at PAN 2024 TextDetox: Alignment of Multilingual Transformers for Text Detoxification
This paper presents a solution for the Multilingual Text Detoxification task in the PAN-2024 competition of the SmurfCat team. Using data augmentation through machine translation and a special filtering procedure, we collected an additional multilingual parallel dataset for text detoxification. Using the obtained data, we fine-tuned several multilingual sequence-to-sequence models, such as mT0 and Aya, on a text detoxification task. We applied the ORPO alignment technique to the final model. Our final model has only 3.7 billion parameters and achieves state-of-the-art results for the Ukrainian language and near state-of-the-art results for other languages. In the competition, our team achieved first place in the automated evaluation with a score of 0.52 and second place in the final human evaluation with a score of 0.74.
Improving Passage Retrieval with Zero-Shot Question Generation
We propose a simple and effective re-ranking method for improving passage retrieval in open question answering. The re-ranker re-scores retrieved passages with a zero-shot question generation model, which uses a pre-trained language model to compute the probability of the input question conditioned on a retrieved passage. This approach can be applied on top of any retrieval method (e.g. neural or keyword-based), does not require any domain- or task-specific training (and therefore is expected to generalize better to data distribution shifts), and provides rich cross-attention between query and passage (i.e. it must explain every token in the question). When evaluated on a number of open-domain retrieval datasets, our re-ranker improves strong unsupervised retrieval models by 6%-18% absolute and strong supervised models by up to 12% in terms of top-20 passage retrieval accuracy. We also obtain new state-of-the-art results on full open-domain question answering by simply adding the new re-ranker to existing models with no further changes.
SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website.
Are Large Language Models Good at Utility Judgments?
Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.
LePaRD: A Large-Scale Dataset of Judges Citing Precedents
We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication.
Dense Text Retrieval based on Pretrained Language Models: A Survey
Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models
Large Language Models (LLMs) excel in data synthesis but can be inaccurate in domain-specific tasks, which retrieval-augmented generation (RAG) systems address by leveraging user-provided data. However, RAGs require optimization in both retrieval and generation stages, which can affect output quality. In this paper, we present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents with enhanced reference synthesis and handling capabilities. Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs. This method facilitates direct reference extraction from the generated outputs, a feature unique to our tool. Additionally, our tool employs iterative response generation, effectively managing lengthy contexts within the language model's constraints. Compared to baseline RAG-based systems, our approach achieves a 3.25times to 6.26times increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses. This improvement shows our method enhances the accuracy and contextual relevance of writing assistance tools.
Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization
Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores.
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.
Query-as-context Pre-training for Dense Passage Retrieval
Recently, methods have been developed to improve the performance of dense passage retrieval by using context-supervised pre-training. These methods simply consider two passages from the same document to be relevant, without taking into account the possibility of weakly correlated pairs. Thus, this paper proposes query-as-context pre-training, a simple yet effective pre-training technique to alleviate the issue. Query-as-context pre-training assumes that the query derived from a passage is more likely to be relevant to that passage and forms a passage-query pair. These passage-query pairs are then used in contrastive or generative context-supervised pre-training. The pre-trained models are evaluated on large-scale passage retrieval benchmarks and out-of-domain zero-shot benchmarks. Experimental results show that query-as-context pre-training brings considerable gains and meanwhile speeds up training, demonstrating its effectiveness and efficiency. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc .
Automatic Summarization of Long Documents
A vast amount of textual data is added to the internet daily, making utilization and interpretation of such data difficult and cumbersome. As a result, automatic text summarization is crucial for extracting relevant information, saving precious reading time. Although many transformer-based models excel in summarization, they are constrained by their input size, preventing them from processing texts longer than their context size. This study introduces three novel algorithms that allow any LLM to efficiently overcome its input size limitation, effectively utilizing its full potential without any architectural modifications. We test our algorithms on texts with more than 70,000 words, and our experiments show a significant increase in BERTScore with competitive ROUGE scores.
Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models
Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.
MIReAD: Simple Method for Learning High-quality Representations from Scientific Documents
Learning semantically meaningful representations from scientific documents can facilitate academic literature search and improve performance of recommendation systems. Pre-trained language models have been shown to learn rich textual representations, yet they cannot provide powerful document-level representations for scientific articles. We propose MIReAD, a simple method that learns high-quality representations of scientific papers by fine-tuning transformer model to predict the target journal class based on the abstract. We train MIReAD on more than 500,000 PubMed and arXiv abstracts across over 2,000 journal classes. We show that MIReAD produces representations that can be used for similar papers retrieval, topic categorization and literature search. Our proposed approach outperforms six existing models for representation learning on scientific documents across four evaluation standards.
Distilling Knowledge from Reader to Retriever for Question Answering
The task of information retrieval is an important component of many natural language processing systems, such as open domain question answering. While traditional methods were based on hand-crafted features, continuous representations based on neural networks recently obtained competitive results. A challenge of using such methods is to obtain supervised data to train the retriever model, corresponding to pairs of query and support documents. In this paper, we propose a technique to learn retriever models for downstream tasks, inspired by knowledge distillation, and which does not require annotated pairs of query and documents. Our approach leverages attention scores of a reader model, used to solve the task based on retrieved documents, to obtain synthetic labels for the retriever. We evaluate our method on question answering, obtaining state-of-the-art results.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain Learning with Phrase Representations
In this paper, we present our approaches for the FinSim-3 Shared Task 2021: Learning Semantic Similarities for the Financial Domain. The aim of this shared task is to correctly classify a list of given terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. For our system submission, we evaluate two methods: a Sentence-RoBERTa (SRoBERTa) embeddings model pre-trained on a custom corpus, and a dual word-sentence embeddings model that builds on the first method by improving the proposed baseline word embeddings construction using the FastText model to boost the classification performance. Our system ranks 2nd overall on both metrics, scoring 0.917 on Average Accuracy and 1.141 on Mean Rank.
AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings
Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring
Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.
Generating EDU Extracts for Plan-Guided Summary Re-Ranking
Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents
This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines.
Measuring Retrieval Complexity in Question Answering Systems
In this paper, we investigate which questions are challenging for retrieval-based Question Answering (QA). We (i) propose retrieval complexity (RC), a novel metric conditioned on the completeness of retrieved documents, which measures the difficulty of answering questions, and (ii) propose an unsupervised pipeline to measure RC given an arbitrary retrieval system. Our proposed pipeline measures RC more accurately than alternative estimators, including LLMs, on six challenging QA benchmarks. Further investigation reveals that RC scores strongly correlate with both QA performance and expert judgment across five of the six studied benchmarks, indicating that RC is an effective measure of question difficulty. Subsequent categorization of high-RC questions shows that they span a broad set of question shapes, including multi-hop, compositional, and temporal QA, indicating that RC scores can categorize a new subset of complex questions. Our system can also have a major impact on retrieval-based systems by helping to identify more challenging questions on existing datasets.
Summarizing Patients Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models
Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.
Expand, Rerank, and Retrieve: Query Reranking for Open-Domain Question Answering
We propose EAR, a query Expansion And Reranking approach for improving passage retrieval, with the application to open-domain question answering. EAR first applies a query expansion model to generate a diverse set of queries, and then uses a query reranker to select the ones that could lead to better retrieval results. Motivated by the observation that the best query expansion often is not picked by greedy decoding, EAR trains its reranker to predict the rank orders of the gold passages when issuing the expanded queries to a given retriever. By connecting better the query expansion model and retriever, EAR significantly enhances a traditional sparse retrieval method, BM25. Empirically, EAR improves top-5/20 accuracy by 3-8 and 5-10 points in in-domain and out-of-domain settings, respectively, when compared to a vanilla query expansion model, GAR, and a dense retrieval model, DPR.
Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation
A major obstacle to the wide-spread adoption of neural retrieval models is that they require large supervised training sets to surpass traditional term-based techniques, which are constructed from raw corpora. In this paper, we propose an approach to zero-shot learning for passage retrieval that uses synthetic question generation to close this gap. The question generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, question-passage relevance pairs that are domain specific. Furthermore, when this is coupled with a simple hybrid term-neural model, first-stage retrieval performance can be improved further. Empirically, we show that this is an effective strategy for building neural passage retrieval models in the absence of large training corpora. Depending on the domain, this technique can even approach the accuracy of supervised models.
MAUPQA: Massive Automatically-created Polish Question Answering Dataset
Recently, open-domain question answering systems have begun to rely heavily on annotated datasets to train neural passage retrievers. However, manually annotating such datasets is both difficult and time-consuming, which limits their availability for less popular languages. In this work, we experiment with several methods for automatically collecting weakly labeled datasets and show how they affect the performance of the neural passage retrieval models. As a result of our work, we publish the MAUPQA dataset, consisting of nearly 400,000 question-passage pairs for Polish, as well as the HerBERT-QA neural retriever.
Making Retrieval-Augmented Language Models Robust to Irrelevant Context
Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones.
Team Enigma at ArgMining-EMNLP 2021: Leveraging Pre-trained Language Models for Key Point Matching
We present the system description for our submission towards the Key Point Analysis Shared Task at ArgMining 2021. Track 1 of the shared task requires participants to develop methods to predict the match score between each pair of arguments and keypoints, provided they belong to the same topic under the same stance. We leveraged existing state of the art pre-trained language models along with incorporating additional data and features extracted from the inputs (topics, key points, and arguments) to improve performance. We were able to achieve mAP strict and mAP relaxed score of 0.872 and 0.966 respectively in the evaluation phase, securing 5th place on the leaderboard. In the post evaluation phase, we achieved a mAP strict and mAP relaxed score of 0.921 and 0.982 respectively. All the codes to generate reproducible results on our models are available on Github.
Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering
Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems.
Let your LLM generate a few tokens and you will reduce the need for retrieval
In this paper, we investigate how efficiently large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory. We distill an LLM-as-a-judge to compute the IK (I Know) score. We found that this method is particularly beneficial in the context of retrieval-assisted augmented generation (RAG), with a respectable accuracy of 80%. It enables a significant reduction (more than 50%) in the number of search and reranking steps required for certain data sets. We have also introduced the IK score, which serves as a useful tool for characterising datasets by facilitating the classification task. Interestingly, through the inclusion of response tokens as input, our results suggest that only about 20,000 training samples are required to achieve good performance. The central element of this work is the use of a teacher model - the LLM as a judge - to generate training data. We also assess the robustness of the IK classifier by evaluating it with various types of teachers, including both string-based methods and LLMs, with the latter providing better results.
Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI
Retrieving and extracting knowledge from extensive research documents and large databases presents significant challenges for researchers, students, and professionals in today's information-rich era. Existing retrieval systems, which rely on general-purpose Large Language Models (LLMs), often fail to provide accurate responses to domain-specific inquiries. Additionally, the high cost of pretraining or fine-tuning LLMs for specific domains limits their widespread adoption. To address these limitations, we propose a novel methodology that combines the generative capabilities of LLMs with the fast and accurate retrieval capabilities of vector databases. This advanced retrieval system can efficiently handle both tabular and non-tabular data, understand natural language user queries, and retrieve relevant information without fine-tuning. The developed model, Generative Text Retrieval (GTR), is adaptable to both unstructured and structured data with minor refinement. GTR was evaluated on both manually annotated and public datasets, achieving over 90% accuracy and delivering truthful outputs in 87% of cases. Our model achieved state-of-the-art performance with a Rouge-L F1 score of 0.98 on the MSMARCO dataset. The refined model, Generative Tabular Text Retrieval (GTR-T), demonstrated its efficiency in large database querying, achieving an Execution Accuracy (EX) of 0.82 and an Exact-Set-Match (EM) accuracy of 0.60 on the Spider dataset, using an open-source LLM. These efforts leverage Generative AI and In-Context Learning to enhance human-text interaction and make advanced AI capabilities more accessible. By integrating robust retrieval systems with powerful LLMs, our approach aims to democratize access to sophisticated AI tools, improving the efficiency, accuracy, and scalability of AI-driven information retrieval and database querying.
How do you know that? Teaching Generative Language Models to Reference Answers to Biomedical Questions
Large language models (LLMs) have recently become the leading source of answers for users' questions online. Despite their ability to offer eloquent answers, their accuracy and reliability can pose a significant challenge. This is especially true for sensitive domains such as biomedicine, where there is a higher need for factually correct answers. This paper introduces a biomedical retrieval-augmented generation (RAG) system designed to enhance the reliability of generated responses. The system is based on a fine-tuned LLM for the referenced question-answering, where retrieved relevant abstracts from PubMed are passed to LLM's context as input through a prompt. Its output is an answer based on PubMed abstracts, where each statement is referenced accordingly, allowing the users to verify the answer. Our retrieval system achieves an absolute improvement of 23% compared to the PubMed search engine. Based on the manual evaluation on a small sample, our fine-tuned LLM component achieves comparable results to GPT-4 Turbo in referencing relevant abstracts. We make the dataset used to fine-tune the models and the fine-tuned models based on Mistral-7B-instruct-v0.1 and v0.2 publicly available.
AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval
Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%.
HC4: A New Suite of Test Collections for Ad Hoc CLIR
HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems.
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 approx 0.8 for scenarios with prominent gradients in search space, using only sim20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
Generate rather than Retrieve: Large Language Models are Strong Context Generators
Knowledge-intensive tasks, such as open-domain question answering (QA), require access to a large amount of world or domain knowledge. A common approach for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first retrieves a handful of relevant contextual documents from an external corpus such as Wikipedia and then predicts an answer conditioned on the retrieved documents. In this paper, we present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators. We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer. Furthermore, we propose a novel clustering-based prompting method that selects distinct prompts, resulting in the generated documents that cover different perspectives, leading to better recall over acceptable answers. We conduct extensive experiments on three different knowledge-intensive tasks, including open-domain QA, fact checking, and dialogue system. Notably, GenRead achieves 71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from any external knowledge source. Lastly, we demonstrate the model performance can be further improved by combining retrieval and generation. Our code and generated documents can be found at https://github.com/wyu97/GenRead.
Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model
This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified.
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However, most of the previous studies only consider query-centric similarity relation when learning the dual-encoder retriever. In order to capture more comprehensive similarity relations, we propose a novel approach that leverages both query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval. To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations, generating high-quality pseudo labeled data via knowledge distillation, and designing an effective two-stage training procedure that incorporates passage-centric similarity relation constraint. Extensive experiments show that our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
Fusion-in-T5: Unifying Document Ranking Signals for Improved Information Retrieval
Common document ranking pipelines in search systems are cascade systems that involve multiple ranking layers to integrate different information step-by-step. In this paper, we propose a novel re-ranker Fusion-in-T5 (FiT5), which integrates text matching information, ranking features, and global document information into one single unified model via templated-based input and global attention. Experiments on passage ranking benchmarks MS MARCO and TREC DL show that FiT5, as one single model, significantly improves ranking performance over complex cascade pipelines. Analysis finds that through attention fusion, FiT5 jointly utilizes various forms of ranking information via gradually attending to related documents and ranking features, and improves the detection of subtle nuances. Our code is open-sourced at https://github.com/OpenMatch/FiT5.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
The Short Text Matching Model Enhanced with Knowledge via Contrastive Learning
In recent years, short Text Matching tasks have been widely applied in the fields ofadvertising search and recommendation. The difficulty lies in the lack of semantic information and word ambiguity caused by the short length of the text. Previous works have introduced complement sentences or knowledge bases to provide additional feature information. However, these methods have not fully interacted between the original sentence and the complement sentence, and have not considered the noise issue that may arise from the introduction of external knowledge bases. Therefore, this paper proposes a short Text Matching model that combines contrastive learning and external knowledge. The model uses a generative model to generate corresponding complement sentences and uses the contrastive learning method to guide the model to obtain more semantically meaningful encoding of the original sentence. In addition, to avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base, and construct a knowledge graph. The graph encoding model is used to integrate the knowledge base information into the model. Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets, demonstrating the effectiveness of our model.
Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval
Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks.
Extracting Definienda in Mathematical Scholarly Articles with Transformers
We consider automatically identifying the defined term within a mathematical definition from the text of an academic article. Inspired by the development of transformer-based natural language processing applications, we pose the problem as (a) a token-level classification task using fine-tuned pre-trained transformers; and (b) a question-answering task using a generalist large language model (GPT). We also propose a rule-based approach to build a labeled dataset from the LATEX source of papers. Experimental results show that it is possible to reach high levels of precision and recall using either recent (and expensive) GPT 4 or simpler pre-trained models fine-tuned on our task.
Leveraging Retrieval-Augmented Generation for University Knowledge Retrieval
This paper introduces an innovative approach using Retrieval-Augmented Generation (RAG) pipelines with Large Language Models (LLMs) to enhance information retrieval and query response systems for university-related question answering. By systematically extracting data from the university official webpage and employing advanced prompt engineering techniques, we generate accurate, contextually relevant responses to user queries. We developed a comprehensive university benchmark, UniversityQuestionBench (UQB), to rigorously evaluate our system performance, based on common key metrics in the filed of RAG pipelines, assessing accuracy and reliability through various metrics and real-world scenarios. Our experimental results demonstrate significant improvements in the precision and relevance of generated responses, enhancing user experience and reducing the time required to obtain relevant answers. In summary, this paper presents a novel application of RAG pipelines and LLMs, supported by a meticulously prepared university benchmark, offering valuable insights into advanced AI techniques for academic data retrieval and setting the stage for future research in this domain.
Identification of Rhetorical Roles of Sentences in Indian Legal Judgments
Automatically understanding the rhetorical roles of sentences in a legal case judgement is an important problem to solve, since it can help in several downstream tasks like summarization of legal judgments, legal search, and so on. The task is challenging since legal case documents are usually not well-structured, and these rhetorical roles may be subjective (as evident from variation of opinions between legal experts). In this paper, we address this task for judgments from the Supreme Court of India. We label sentences in 50 documents using multiple human annotators, and perform an extensive analysis of the human-assigned labels. We also attempt automatic identification of the rhetorical roles of sentences. While prior approaches towards this task used Conditional Random Fields over manually handcrafted features, we explore the use of deep neural models which do not require hand-crafting of features. Experiments show that neural models perform much better in this task than baseline methods which use handcrafted features.
ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems
Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning.
Toward Universal Text-to-Music Retrieval
This paper introduces effective design choices for text-to-music retrieval systems. An ideal text-based retrieval system would support various input queries such as pre-defined tags, unseen tags, and sentence-level descriptions. In reality, most previous works mainly focused on a single query type (tag or sentence) which may not generalize to another input type. Hence, we review recent text-based music retrieval systems using our proposed benchmark in two main aspects: input text representation and training objectives. Our findings enable a universal text-to-music retrieval system that achieves comparable retrieval performances in both tag- and sentence-level inputs. Furthermore, the proposed multimodal representation generalizes to 9 different downstream music classification tasks. We present the code and demo online.
Thesis: Document Summarization with applications to Keyword extraction and Image Retrieval
Automatic summarization is the process of reducing a text document in order to generate a summary that retains the most important points of the original document. In this work, we study two problems - i) summarizing a text document as set of keywords/caption, for image recommedation, ii) generating opinion summary which good mix of relevancy and sentiment with the text document. Intially, we present our work on an recommending images for enhancing a substantial amount of existing plain text news articles. We use probabilistic models and word similarity heuristics to generate captions and extract Key-phrases which are re-ranked using a rank aggregation framework with relevance feedback mechanism. We show that such rank aggregation and relevant feedback which are typically used in Tagging Documents, Text Information Retrieval also helps in improving image retrieval. These queries are fed to the Yahoo Search Engine to obtain relevant images 1. Our proposed method is observed to perform better than all existing baselines. Additonally, We propose a set of submodular functions for opinion summarization. Opinion summarization has built in it the tasks of summarization and sentiment detection. However, it is not easy to detect sentiment and simultaneously extract summary. The two tasks conflict in the sense that the demand of compression may drop sentiment bearing sentences, and the demand of sentiment detection may bring in redundant sentences. However, using submodularity we show how to strike a balance between the two requirements. Our functions generate summaries such that there is good correlation between document sentiment and summary sentiment along with good ROUGE score. We also compare the performances of the proposed submodular functions.
The Power of Noise: Redefining Retrieval for RAG Systems
Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.
LitSearch: A Retrieval Benchmark for Scientific Literature Search
Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu
News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
Multi-Document Financial Question Answering using LLMs
We propose two new methods for multi-document financial question answering. First, a method that uses semantic tagging, and then, queries the index to get the context (RAG_SEM). And second, a Knowledge Graph (KG_RAG) based method that uses semantic tagging, and, retrieves knowledge graph triples from a graph database, as context. KG_RAG uses knowledge graphs constructed using a small model that is fine-tuned using knowledge distillation using a large teacher model. The data consists of 18 10K reports of Apple, Microsoft, Alphabet, NVIDIA, Amazon and Tesla for the years 2021, 2022 and 2023. The list of questions in the data consists of 111 complex questions including many esoteric questions that are difficult to answer and the answers are not completely obvious. As evaluation metrics, we use overall scores as well as segmented scores for measurement including the faithfulness, relevance, correctness, similarity, an LLM based overall score and the rouge scores as well as a similarity of embeddings. We find that both methods outperform plain RAG significantly. KG_RAG outperforms RAG_SEM in four out of nine metrics.
AutoSurvey: Large Language Models Can Automatically Write Surveys
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.We open our resources at https://github.com/AutoSurveys/AutoSurvey.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Smart Word Suggestions for Writing Assistance
Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces "Smart Word Suggestions" (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes is available at https://github.com/microsoft/SmartWordSuggestions.
ASRank: Zero-Shot Re-Ranking with Answer Scent for Document Retrieval
Retrieval-Augmented Generation (RAG) models have drawn considerable attention in modern open-domain question answering. The effectiveness of RAG depends on the quality of the top retrieved documents. However, conventional retrieval methods sometimes fail to rank the most relevant documents at the top. In this paper, we introduce ASRank, a new re-ranking method based on scoring retrieved documents using zero-shot answer scent which relies on a pre-trained large language model to compute the likelihood of the document-derived answers aligning with the answer scent. Our approach demonstrates marked improvements across several datasets, including NQ, TriviaQA, WebQA, ArchivalQA, HotpotQA, and Entity Questions. Notably, ASRank increases Top-1 retrieval accuracy on NQ from 19.2% to 46.5% for MSS and 22.1% to 47.3% for BM25. It also shows strong retrieval performance on several datasets compared to state-of-the-art methods (47.3 Top-1 by ASRank vs 35.4 by UPR by BM25).
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval
The current use of large language models (LLMs) for zero-shot document ranking follows one of two ways: 1) prompt-based re-ranking methods, which require no further training but are feasible for only re-ranking a handful of candidate documents due to the associated computational costs; and 2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated to the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.
G-SciEdBERT: A Contextualized LLM for Science Assessment Tasks in German
The advancement of natural language processing has paved the way for automated scoring systems in various languages, such as German (e.g., German BERT [G-BERT]). Automatically scoring written responses to science questions in German is a complex task and challenging for standard G-BERT as they lack contextual knowledge in the science domain and may be unaligned with student writing styles. This paper presents a contextualized German Science Education BERT (G-SciEdBERT), an innovative large language model tailored for scoring German-written responses to science tasks and beyond. Using G-BERT, we pre-trained G-SciEdBERT on a corpus of 30K German written science responses with 3M tokens on the Programme for International Student Assessment (PISA) 2018. We fine-tuned G-SciEdBERT on an additional 20K student-written responses with 2M tokens and examined the scoring accuracy. We then compared its scoring performance with G-BERT. Our findings revealed a substantial improvement in scoring accuracy with G-SciEdBERT, demonstrating a 10.2% increase of quadratic weighted Kappa compared to G-BERT (mean difference = 0.1026, SD = 0.069). These insights underline the significance of specialized language models like G-SciEdBERT, which is trained to enhance the accuracy of contextualized automated scoring, offering a substantial contribution to the field of AI in education.
Preserving Multilingual Quality While Tuning Query Encoder on English Only
A dense passage retrieval system can serve as the initial stages of information retrieval, selecting the most relevant text passages for downstream tasks. In this work we conducted experiments with the goal of finding how much the quality of a multilingual retrieval could be degraded if the query part of a dual encoder is tuned on an English-only dataset (assuming scarcity of cross-lingual samples for the targeted domain or task). Specifically, starting with a high quality multilingual embedding model, we observe that an English-only tuning may not only preserve the original quality of the multilingual retrieval, but even improve it.
On the Evaluation Metrics for Paraphrase Generation
In this paper we revisit automatic metrics for paraphrase evaluation and obtain two findings that disobey conventional wisdom: (1) Reference-free metrics achieve better performance than their reference-based counterparts. (2) Most commonly used metrics do not align well with human annotation. Underlying reasons behind the above findings are explored through additional experiments and in-depth analyses. Based on the experiments and analyses, we propose ParaScore, a new evaluation metric for paraphrase generation. It possesses the merits of reference-based and reference-free metrics and explicitly models lexical divergence. Experimental results demonstrate that ParaScore significantly outperforms existing metrics.
Semantic Models for the First-stage Retrieval: A Comprehensive Review
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.
SemEval 2023 Task 6: LegalEval - Understanding Legal Texts
In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams.
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
Recently, substantial progress has been made in text ranking based on pretrained language models such as BERT. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as classification and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performances. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, when fine-tuned with listwise ranking losses, the ranking model appears to have better zero-shot ranking performance on out-of-domain data sets compared to the model fine-tuned with classification losses.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
EasyRAG: Efficient Retrieval-Augmented Generation Framework for Automated Network Operations
This paper presents EasyRAG, a simple, lightweight, and efficient retrieval-augmented generation framework for automated network operations. Our framework has three advantages. The first is accurate question answering. We designed a straightforward RAG scheme based on (1) a specific data processing workflow (2) dual-route sparse retrieval for coarse ranking (3) LLM Reranker for reranking (4) LLM answer generation and optimization. This approach achieved first place in the GLM4 track in the preliminary round and second place in the GLM4 track in the semifinals. The second is simple deployment. Our method primarily consists of BM25 retrieval and BGE-reranker reranking, requiring no fine-tuning of any models, occupying minimal VRAM, easy to deploy, and highly scalable; we provide a flexible code library with various search and generation strategies, facilitating custom process implementation. The last one is efficient inference. We designed an efficient inference acceleration scheme for the entire coarse ranking, reranking, and generation process that significantly reduces the inference latency of RAG while maintaining a good level of accuracy; each acceleration scheme can be plug-and-play into any component of the RAG process, consistently enhancing the efficiency of the RAG system. Our code and data are released at https://github.com/BUAADreamer/EasyRAG.
Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation
Retrieval and ranking models are the backbone of many applications such as web search, open domain QA, or text-based recommender systems. The latency of neural ranking models at query time is largely dependent on the architecture and deliberate choices by their designers to trade-off effectiveness for higher efficiency. This focus on low query latency of a rising number of efficient ranking architectures make them feasible for production deployment. In machine learning an increasingly common approach to close the effectiveness gap of more efficient models is to apply knowledge distillation from a large teacher model to a smaller student model. We find that different ranking architectures tend to produce output scores in different magnitudes. Based on this finding, we propose a cross-architecture training procedure with a margin focused loss (Margin-MSE), that adapts knowledge distillation to the varying score output distributions of different BERT and non-BERT passage ranking architectures. We apply the teachable information as additional fine-grained labels to existing training triples of the MSMARCO-Passage collection. We evaluate our procedure of distilling knowledge from state-of-the-art concatenated BERT models to four different efficient architectures (TK, ColBERT, PreTT, and a BERT CLS dot product model). We show that across our evaluated architectures our Margin-MSE knowledge distillation significantly improves re-ranking effectiveness without compromising their efficiency. Additionally, we show our general distillation method to improve nearest neighbor based index retrieval with the BERT dot product model, offering competitive results with specialized and much more costly training methods. To benefit the community, we publish the teacher-score training files in a ready-to-use package.
AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models
Evaluation is critical for assessing capabilities, tracking scientific progress, and informing model selection. In this paper, we present three desiderata for a good benchmark for language models: (i) salience (e.g., knowledge about World War II is more salient than a random day in history), (ii) novelty (i.e., the benchmark reveals new trends in model rankings not shown by previous benchmarks), and (iii) difficulty (i.e., the benchmark should be difficult for existing models, leaving headroom for future improvement). We operationalize these three desiderata and cast benchmark creation as a search problem, that of finding benchmarks that that satisfy all three desiderata. To tackle this search problem, we present AutoBencher, which uses a language model to automatically search for datasets that meet the three desiderata. AutoBencher uses privileged information (e.g. relevant documents) to construct reliable datasets, and adaptivity with reranking to optimize for the search objective. We use AutoBencher to create datasets for math, multilingual, and knowledge-intensive question answering. The scalability of AutoBencher allows it to test fine-grained categories and tail knowledge, creating datasets that are on average 27% more novel and 22% more difficult than existing benchmarks. A closer investigation of our constructed datasets shows that we can identify specific gaps in LM knowledge in language models that are not captured by existing benchmarks, such as Gemini Pro performing much worse on question answering about the Permian Extinction and Fordism, while OpenAGI-7B performing surprisingly well on QA about COVID-19.
Analyzing Sentence Fusion in Abstractive Summarization
While recent work in abstractive summarization has resulted in higher scores in automatic metrics, there is little understanding on how these systems combine information taken from multiple document sentences. In this paper, we analyze the outputs of five state-of-the-art abstractive summarizers, focusing on summary sentences that are formed by sentence fusion. We ask assessors to judge the grammaticality, faithfulness, and method of fusion for summary sentences. Our analysis reveals that system sentences are mostly grammatical, but often fail to remain faithful to the original article.
Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning
Retrieval-Augmented Generation (RAG) offers a cost-effective approach to injecting real-time knowledge into large language models (LLMs). Nevertheless, constructing and validating high-quality knowledge repositories require considerable effort. We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG), which conceptualizes LLMs as students by providing them with abundant raw reading materials and encouraging them to engage in autonomous reading to record factual information in their own words. The resulting concise, well-organized mental indices are interconnected through common topics or complementary facts to form a pseudo-graph database. During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes, identifying fact paths and subsequently exploring the related contexts. Adhering to the principle of the path taken by many is the best, it integrates highly corroborated fact paths to provide a structured and refined sub-graph assisting LLMs. We validated PG-RAG on three specialized question-answering datasets. In single-document tasks, PG-RAG significantly outperformed the current best baseline, KGP-LLaMA, across all key evaluation metrics, with an average overall performance improvement of 11.6%. Specifically, its BLEU score increased by approximately 14.3%, and the QE-F1 metric improved by 23.7%. In multi-document scenarios, the average metrics of PG-RAG were at least 2.35% higher than the best baseline. Notably, the BLEU score and QE-F1 metric showed stable improvements of around 7.55% and 12.75%, respectively. Our code: https://github.com/IAAR-Shanghai/PGRAG.
Corpus for Automatic Structuring of Legal Documents
In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper.
Improving BERT-based Query-by-Document Retrieval with Multi-Task Optimization
Query-by-document (QBD) retrieval is an Information Retrieval task in which a seed document acts as the query and the goal is to retrieve related documents -- it is particular common in professional search tasks. In this work we improve the retrieval effectiveness of the BERT re-ranker, proposing an extension to its fine-tuning step to better exploit the context of queries. To this end, we use an additional document-level representation learning objective besides the ranking objective when fine-tuning the BERT re-ranker. Our experiments on two QBD retrieval benchmarks show that the proposed multi-task optimization significantly improves the ranking effectiveness without changing the BERT re-ranker or using additional training samples. In future work, the generalizability of our approach to other retrieval tasks should be further investigated.
U-CREAT: Unsupervised Case Retrieval using Events extrAcTion
The task of Prior Case Retrieval (PCR) in the legal domain is about automatically citing relevant (based on facts and precedence) prior legal cases in a given query case. To further promote research in PCR, in this paper, we propose a new large benchmark (in English) for the PCR task: IL-PCR (Indian Legal Prior Case Retrieval) corpus. Given the complex nature of case relevance and the long size of legal documents, BM25 remains a strong baseline for ranking the cited prior documents. In this work, we explore the role of events in legal case retrieval and propose an unsupervised retrieval method-based pipeline U-CREAT (Unsupervised Case Retrieval using Events Extraction). We find that the proposed unsupervised retrieval method significantly increases performance compared to BM25 and makes retrieval faster by a considerable margin, making it applicable to real-time case retrieval systems. Our proposed system is generic, we show that it generalizes across two different legal systems (Indian and Canadian), and it shows state-of-the-art performance on the benchmarks for both the legal systems (IL-PCR and COLIEE corpora).
Quasar: Datasets for Question Answering by Search and Reading
We present two new large-scale datasets aimed at evaluating systems designed to comprehend a natural language query and extract its answer from a large corpus of text. The Quasar-S dataset consists of 37000 cloze-style (fill-in-the-gap) queries constructed from definitions of software entity tags on the popular website Stack Overflow. The posts and comments on the website serve as the background corpus for answering the cloze questions. The Quasar-T dataset consists of 43000 open-domain trivia questions and their answers obtained from various internet sources. ClueWeb09 serves as the background corpus for extracting these answers. We pose these datasets as a challenge for two related subtasks of factoid Question Answering: (1) searching for relevant pieces of text that include the correct answer to a query, and (2) reading the retrieved text to answer the query. We also describe a retrieval system for extracting relevant sentences and documents from the corpus given a query, and include these in the release for researchers wishing to only focus on (2). We evaluate several baselines on both datasets, ranging from simple heuristics to powerful neural models, and show that these lag behind human performance by 16.4% and 32.1% for Quasar-S and -T respectively. The datasets are available at https://github.com/bdhingra/quasar .
Named entity recognition for Serbian legal documents: Design, methodology and dataset development
Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.
Context Aware Query Rewriting for Text Rankers using LLM
Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.
Automatic Metrics in Natural Language Generation: A Survey of Current Evaluation Practices
Automatic metrics are extensively used to evaluate natural language processing systems. However, there has been increasing focus on how they are used and reported by practitioners within the field. In this paper, we have conducted a survey on the use of automatic metrics, focusing particularly on natural language generation (NLG) tasks. We inspect which metrics are used as well as why they are chosen and how their use is reported. Our findings from this survey reveal significant shortcomings, including inappropriate metric usage, lack of implementation details and missing correlations with human judgements. We conclude with recommendations that we believe authors should follow to enable more rigour within the field.
Challenging Decoder helps in Masked Auto-Encoder Pre-training for Dense Passage Retrieval
Recently, various studies have been directed towards exploring dense passage retrieval techniques employing pre-trained language models, among which the masked auto-encoder (MAE) pre-training architecture has emerged as the most promising. The conventional MAE framework relies on leveraging the passage reconstruction of decoder to bolster the text representation ability of encoder, thereby enhancing the performance of resulting dense retrieval systems. Within the context of building the representation ability of the encoder through passage reconstruction of decoder, it is reasonable to postulate that a ``more demanding'' decoder will necessitate a corresponding increase in the encoder's ability. To this end, we propose a novel token importance aware masking strategy based on pointwise mutual information to intensify the challenge of the decoder. Importantly, our approach can be implemented in an unsupervised manner, without adding additional expenses to the pre-training phase. Our experiments verify that the proposed method is both effective and robust on large-scale supervised passage retrieval datasets and out-of-domain zero-shot retrieval benchmarks.
CiteME: Can Language Models Accurately Cite Scientific Claims?
Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.
CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines.
SelfCite: Self-Supervised Alignment for Context Attribution in Large Language Models
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses. Instead of only relying on costly and labor-intensive annotations, SelfCite leverages a reward signal provided by the LLM itself through context ablation: If a citation is necessary, removing the cited text from the context should prevent the same response; if sufficient, retaining the cited text alone should preserve the same response. This reward can guide the inference-time best-of-N sampling strategy to improve citation quality significantly, as well as be used in preference optimization to directly fine-tune the models for generating better citations. The effectiveness of SelfCite is demonstrated by increasing citation F1 up to 5.3 points on the LongBench-Cite benchmark across five long-form question answering tasks.
Bonafide at LegalLens 2024 Shared Task: Using Lightweight DeBERTa Based Encoder For Legal Violation Detection and Resolution
In this work, we present two systems -- Named Entity Resolution (NER) and Natural Language Inference (NLI) -- for detecting legal violations within unstructured textual data and for associating these violations with potentially affected individuals, respectively. Both these systems are lightweight DeBERTa based encoders that outperform the LLM baselines. The proposed NER system achieved an F1 score of 60.01\% on Subtask A of the LegalLens challenge, which focuses on identifying violations. The proposed NLI system achieved an F1 score of 84.73\% on Subtask B of the LegalLens challenge, which focuses on resolving these violations by matching them with pre-existing legal complaints of class action cases. Our NER system ranked sixth and NLI system ranked fifth on the LegalLens leaderboard. We release the trained models and inference scripts.
Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models
Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval.
Fine-Tuning LLaMA for Multi-Stage Text Retrieval
The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace.
MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation
Large Language Models (LLMs) are becoming essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses. However, the existing RAG systems frequently struggle with the quality of retrieval documents, as irrelevant or noisy documents degrade performance, increase computational overhead, and undermine response reliability. To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG), a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents. Specifically, MAIN-RAG introduces an adaptive filtering mechanism that dynamically adjusts the relevance filtering threshold based on score distributions, effectively minimizing noise while maintaining high recall of relevant documents. The proposed approach leverages inter-agent consensus to ensure robust document selection without requiring additional training data or fine-tuning. Experimental results across four QA benchmarks demonstrate that MAIN-RAG consistently outperforms traditional RAG approaches, achieving a 2-11% improvement in answer accuracy while reducing the number of irrelevant retrieved documents. Quantitative analysis further reveals that our approach achieves superior response consistency and answer accuracy over baseline methods, offering a competitive and practical alternative to training-based solutions.
OARelatedWork: A Large-Scale Dataset of Related Work Sections with Full-texts from Open Access Sources
This paper introduces OARelatedWork, the first large-scale multi-document summarization dataset for related work generation containing whole related work sections and full-texts of cited papers. The dataset includes 94 450 papers and 5 824 689 unique referenced papers. It was designed for the task of automatically generating related work to shift the field toward generating entire related work sections from all available content instead of generating parts of related work sections from abstracts only, which is the current mainstream in this field for abstractive approaches. We show that the estimated upper bound for extractive summarization increases by 217% in the ROUGE-2 score, when using full content instead of abstracts. Furthermore, we show the benefits of full content data on naive, oracle, traditional, and transformer-based baselines. Long outputs, such as related work sections, pose challenges for automatic evaluation metrics like BERTScore due to their limited input length. We tackle this issue by proposing and evaluating a meta-metric using BERTScore. Despite operating on smaller blocks, we show this meta-metric correlates with human judgment, comparably to the original BERTScore.
Active Retrieval Augmented Generation
Despite the remarkable ability of large language models (LMs) to comprehend and generate language, they have a tendency to hallucinate and create factually inaccurate output. Augmenting LMs by retrieving information from external knowledge resources is one promising solution. Most existing retrieval augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input. This is limiting, however, in more general scenarios involving generation of long texts, where continually gathering information throughout generation is essential. In this work, we provide a generalized view of active retrieval augmented generation, methods that actively decide when and what to retrieve across the course of the generation. We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic method which iteratively uses a prediction of the upcoming sentence to anticipate future content, which is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive performance on all tasks, demonstrating the effectiveness of our method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
Rethinking Automatic Evaluation in Sentence Simplification
Automatic evaluation remains an open research question in Natural Language Generation. In the context of Sentence Simplification, this is particularly challenging: the task requires by nature to replace complex words with simpler ones that shares the same meaning. This limits the effectiveness of n-gram based metrics like BLEU. Going hand in hand with the recent advances in NLG, new metrics have been proposed, such as BERTScore for Machine Translation. In summarization, the QuestEval metric proposes to automatically compare two texts by questioning them. In this paper, we first propose a simple modification of QuestEval allowing it to tackle Sentence Simplification. We then extensively evaluate the correlations w.r.t. human judgement for several metrics including the recent BERTScore and QuestEval, and show that the latter obtain state-of-the-art correlations, outperforming standard metrics like BLEU and SARI. More importantly, we also show that a large part of the correlations are actually spurious for all the metrics. To investigate this phenomenon further, we release a new corpus of evaluated simplifications, this time not generated by systems but instead, written by humans. This allows us to remove the spurious correlations and draw very different conclusions from the original ones, resulting in a better understanding of these metrics. In particular, we raise concerns about very low correlations for most of traditional metrics. Our results show that the only significant measure of the Meaning Preservation is our adaptation of QuestEval.
KTRL+F: Knowledge-Augmented In-Document Search
We introduce a new problem KTRL+F, a knowledge-augmented in-document search task that necessitates real-time identification of all semantic targets within a document with the awareness of external sources through a single natural query. This task addresses following unique challenges for in-document search: 1) utilizing knowledge outside the document for extended use of additional information about targets to bridge the semantic gap between the query and the targets, and 2) balancing between real-time applicability with the performance. We analyze various baselines in KTRL+F and find there are limitations of existing models, such as hallucinations, low latency, or difficulties in leveraging external knowledge. Therefore we propose a Knowledge-Augmented Phrase Retrieval model that shows a promising balance between speed and performance by simply augmenting external knowledge embedding in phrase embedding. Additionally, we conduct a user study to verify whether solving KTRL+F can enhance search experience of users. It demonstrates that even with our simple model users can reduce the time for searching with less queries and reduced extra visits to other sources for collecting evidence. We encourage the research community to work on KTRL+F to enhance more efficient in-document information access.
Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification
A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.