Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCut-and-Paste: Subject-Driven Video Editing with Attention Control
This paper presents a novel framework termed Cut-and-Paste for real-word semantic video editing under the guidance of text prompt and additional reference image. While the text-driven video editing has demonstrated remarkable ability to generate highly diverse videos following given text prompts, the fine-grained semantic edits are hard to control by plain textual prompt only in terms of object details and edited region, and cumbersome long text descriptions are usually needed for the task. We therefore investigate subject-driven video editing for more precise control of both edited regions and background preservation, and fine-grained semantic generation. We achieve this goal by introducing an reference image as supplementary input to the text-driven video editing, which avoids racking your brain to come up with a cumbersome text prompt describing the detailed appearance of the object. To limit the editing area, we refer to a method of cross attention control in image editing and successfully extend it to video editing by fusing the attention map of adjacent frames, which strikes a balance between maintaining video background and spatio-temporal consistency. Compared with current methods, the whole process of our method is like ``cut" the source object to be edited and then ``paste" the target object provided by reference image. We demonstrate that our method performs favorably over prior arts for video editing under the guidance of text prompt and extra reference image, as measured by both quantitative and subjective evaluations.
Shortcut-V2V: Compression Framework for Video-to-Video Translation based on Temporal Redundancy Reduction
Video-to-video translation aims to generate video frames of a target domain from an input video. Despite its usefulness, the existing networks require enormous computations, necessitating their model compression for wide use. While there exist compression methods that improve computational efficiency in various image/video tasks, a generally-applicable compression method for video-to-video translation has not been studied much. In response, we present Shortcut-V2V, a general-purpose compression framework for video-to-video translation. Shourcut-V2V avoids full inference for every neighboring video frame by approximating the intermediate features of a current frame from those of the previous frame. Moreover, in our framework, a newly-proposed block called AdaBD adaptively blends and deforms features of neighboring frames, which makes more accurate predictions of the intermediate features possible. We conduct quantitative and qualitative evaluations using well-known video-to-video translation models on various tasks to demonstrate the general applicability of our framework. The results show that Shourcut-V2V achieves comparable performance compared to the original video-to-video translation model while saving 3.2-5.7x computational cost and 7.8-44x memory at test time.
Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
Text-to-image (T2I) diffusion models achieve state-of-the-art results in image synthesis and editing. However, leveraging such pretrained models for video editing is considered a major challenge. Many existing works attempt to enforce temporal consistency in the edited video through explicit correspondence mechanisms, either in pixel space or between deep features. These methods, however, struggle with strong nonrigid motion. In this paper, we introduce a fundamentally different approach, which is based on the observation that spatiotemporal slices of natural videos exhibit similar characteristics to natural images. Thus, the same T2I diffusion model that is normally used only as a prior on video frames, can also serve as a strong prior for enhancing temporal consistency by applying it on spatiotemporal slices. Based on this observation, we present Slicedit, a method for text-based video editing that utilizes a pretrained T2I diffusion model to process both spatial and spatiotemporal slices. Our method generates videos that retain the structure and motion of the original video while adhering to the target text. Through extensive experiments, we demonstrate Slicedit's ability to edit a wide range of real-world videos, confirming its clear advantages compared to existing competing methods. Webpage: https://matankleiner.github.io/slicedit/
Vript: A Video Is Worth Thousands of Words
Advancements in multimodal learning, particularly in video understanding and generation, require high-quality video-text datasets for improved model performance. Vript addresses this issue with a meticulously annotated corpus of 12K high-resolution videos, offering detailed, dense, and script-like captions for over 420K clips. Each clip has a caption of ~145 words, which is over 10x longer than most video-text datasets. Unlike captions only documenting static content in previous datasets, we enhance video captioning to video scripting by documenting not just the content, but also the camera operations, which include the shot types (medium shot, close-up, etc) and camera movements (panning, tilting, etc). By utilizing the Vript, we explore three training paradigms of aligning more text with the video modality rather than clip-caption pairs. This results in Vriptor, a top-performing video captioning model among open-source models, comparable to GPT-4V in performance. Vriptor is also a powerful model capable of end-to-end generation of dense and detailed captions for long videos. Moreover, we introduce Vript-Hard, a benchmark consisting of three video understanding tasks that are more challenging than existing benchmarks: Vript-HAL is the first benchmark evaluating action and object hallucinations in video LLMs, Vript-RR combines reasoning with retrieval resolving question ambiguity in long-video QAs, and Vript-ERO is a new task to evaluate the temporal understanding of events in long videos rather than actions in short videos in previous works. All code, models, and datasets are available in https://github.com/mutonix/Vript.
RACCooN: Remove, Add, and Change Video Content with Auto-Generated Narratives
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. It supports the addition of video objects, inpainting, and attribute modification within a unified framework, surpassing existing video editing and inpainting benchmarks. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
OnlineRefer: A Simple Online Baseline for Referring Video Object Segmentation
Referring video object segmentation (RVOS) aims at segmenting an object in a video following human instruction. Current state-of-the-art methods fall into an offline pattern, in which each clip independently interacts with text embedding for cross-modal understanding. They usually present that the offline pattern is necessary for RVOS, yet model limited temporal association within each clip. In this work, we break up the previous offline belief and propose a simple yet effective online model using explicit query propagation, named OnlineRefer. Specifically, our approach leverages target cues that gather semantic information and position prior to improve the accuracy and ease of referring predictions for the current frame. Furthermore, we generalize our online model into a semi-online framework to be compatible with video-based backbones. To show the effectiveness of our method, we evaluate it on four benchmarks, \ie, Refer-Youtube-VOS, Refer-DAVIS17, A2D-Sentences, and JHMDB-Sentences. Without bells and whistles, our OnlineRefer with a Swin-L backbone achieves 63.5 J&F and 64.8 J&F on Refer-Youtube-VOS and Refer-DAVIS17, outperforming all other offline methods.
Jump Cut Smoothing for Talking Heads
A jump cut offers an abrupt, sometimes unwanted change in the viewing experience. We present a novel framework for smoothing these jump cuts, in the context of talking head videos. We leverage the appearance of the subject from the other source frames in the video, fusing it with a mid-level representation driven by DensePose keypoints and face landmarks. To achieve motion, we interpolate the keypoints and landmarks between the end frames around the cut. We then use an image translation network from the keypoints and source frames, to synthesize pixels. Because keypoints can contain errors, we propose a cross-modal attention scheme to select and pick the most appropriate source amongst multiple options for each key point. By leveraging this mid-level representation, our method can achieve stronger results than a strong video interpolation baseline. We demonstrate our method on various jump cuts in the talking head videos, such as cutting filler words, pauses, and even random cuts. Our experiments show that we can achieve seamless transitions, even in the challenging cases where the talking head rotates or moves drastically in the jump cut.
VADER: Video Alignment Differencing and Retrieval
We propose VADER, a spatio-temporal matching, alignment, and change summarization method to help fight misinformation spread via manipulated videos. VADER matches and coarsely aligns partial video fragments to candidate videos using a robust visual descriptor and scalable search over adaptively chunked video content. A transformer-based alignment module then refines the temporal localization of the query fragment within the matched video. A space-time comparator module identifies regions of manipulation between aligned content, invariant to any changes due to any residual temporal misalignments or artifacts arising from non-editorial changes of the content. Robustly matching video to a trusted source enables conclusions to be drawn on video provenance, enabling informed trust decisions on content encountered.
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset is publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO under the CC BY 4.0 License.
Probabilistic Adaptation of Text-to-Video Models
Large text-to-video models trained on internet-scale data have demonstrated exceptional capabilities in generating high-fidelity videos from arbitrary textual descriptions. However, adapting these models to tasks with limited domain-specific data, such as animation or robotics videos, poses a significant computational challenge, since finetuning a pretrained large model can be prohibitively expensive. Inspired by how a small modifiable component (e.g., prompts, prefix-tuning) can adapt a large language model to perform new tasks without requiring access to the model weights, we investigate how to adapt a large pretrained text-to-video model to a variety of downstream domains and tasks without finetuning. In answering this question, we propose Video Adapter, which leverages the score function of a large pretrained video diffusion model as a probabilistic prior to guide the generation of a task-specific small video model. Our experiments show that Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model that is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data. More videos can be found on the website https://video-adapter.github.io/.
Video ChatCaptioner: Towards Enriched Spatiotemporal Descriptions
Video captioning aims to convey dynamic scenes from videos using natural language, facilitating the understanding of spatiotemporal information within our environment. Although there have been recent advances, generating detailed and enriched video descriptions continues to be a substantial challenge. In this work, we introduce Video ChatCaptioner, an innovative approach for creating more comprehensive spatiotemporal video descriptions. Our method employs a ChatGPT model as a controller, specifically designed to select frames for posing video content-driven questions. Subsequently, a robust algorithm is utilized to answer these visual queries. This question-answer framework effectively uncovers intricate video details and shows promise as a method for enhancing video content. Following multiple conversational rounds, ChatGPT can summarize enriched video content based on previous conversations. We qualitatively demonstrate that our Video ChatCaptioner can generate captions containing more visual details about the videos. The code is publicly available at https://github.com/Vision-CAIR/ChatCaptioner