- Towards a general purpose machine translation system for Sranantongo Machine translation for Sranantongo (Sranan, srn), a low-resource Creole language spoken predominantly in Surinam, is virgin territory. In this study we create a general purpose machine translation system for srn. In order to facilitate this research, we introduce the SRNcorpus, a collection of parallel Dutch (nl) to srn and monolingual srn data. We experiment with a wide range of proven machine translation methods. Our results demonstrate a strong baseline machine translation system for srn. 2 authors · Dec 13, 2022
12 ViPer: Visual Personalization of Generative Models via Individual Preference Learning Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual's visual preference. Current generative models are, however, unpersonalized, as they are tuned to produce outputs that appeal to a broad audience. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by first capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user's structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user's visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users' visual preferences. 5 authors · Jul 24, 2024 2
- Adapting Decoder-Based Language Models for Diverse Encoder Downstream Tasks Decoder-based transformers, while revolutionizing language modeling and scaling to immense sizes, have not completely overtaken encoder-heavy architectures in natural language processing. Specifically, encoder-only models remain dominant in tasks like classification, regression, and ranking. This is primarily due to the inherent structure of decoder-based models, which limits their direct applicability to these tasks. In this paper, we introduce Gemma Encoder, adapting the powerful Gemma decoder model to an encoder architecture, thereby unlocking its potential for a wider range of non-generative applications. To optimize the adaptation from decoder to encoder, we systematically analyze various pooling strategies, attention mechanisms, and hyperparameters (e.g., dropout rate). Furthermore, we benchmark Gemma Encoder against established approaches on the GLUE benchmarks, and MS MARCO ranking benchmark, demonstrating its effectiveness and versatility. 10 authors · Mar 4