- An Evaluation Dataset for Legal Word Embedding: A Case Study On Chinese Codex Word embedding is a modern distributed word representations approach widely used in many natural language processing tasks. Converting the vocabulary in a legal document into a word embedding model facilitates subjecting legal documents to machine learning, deep learning, and other algorithms and subsequently performing the downstream tasks of natural language processing vis-\`a-vis, for instance, document classification, contract review, and machine translation. The most common and practical approach of accuracy evaluation with the word embedding model uses a benchmark set with linguistic rules or the relationship between words to perform analogy reasoning via algebraic calculation. This paper proposes establishing a 1,134 Legal Analogical Reasoning Questions Set (LARQS) from the 2,388 Chinese Codex corpus using five kinds of legal relations, which are then used to evaluate the accuracy of the Chinese word embedding model. Moreover, we discovered that legal relations might be ubiquitous in the word embedding model. 2 authors · Mar 28, 2022
- ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation Code-switching is a speech phenomenon occurring when a speaker switches language during a conversation. Despite the spontaneous nature of code-switching in conversational spoken language, most existing works collect code-switching data from read speech instead of spontaneous speech. ASCEND (A Spontaneous Chinese-English Dataset) is a high-quality Mandarin Chinese-English code-switching corpus built on spontaneous multi-turn conversational dialogue sources collected in Hong Kong. We report ASCEND's design and procedure for collecting the speech data, including annotations. ASCEND consists of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English. Furthermore, we conduct baseline experiments using pre-trained wav2vec 2.0 models, achieving a best performance of 22.69\% character error rate and 27.05% mixed error rate. 14 authors · Dec 12, 2021
- CLUECorpus2020: A Large-scale Chinese Corpus for Pre-training Language Model In this paper, we introduce the Chinese corpus from CLUE organization, CLUECorpus2020, a large-scale corpus that can be used directly for self-supervised learning such as pre-training of a language model, or language generation. It has 100G raw corpus with 35 billion Chinese characters, which is retrieved from Common Crawl. To better understand this corpus, we conduct language understanding experiments on both small and large scale, and results show that the models trained on this corpus can achieve excellent performance on Chinese. We release a new Chinese vocabulary with a size of 8K, which is only one-third of the vocabulary size used in Chinese Bert released by Google. It saves computational cost and memory while works as good as original vocabulary. We also release both large and tiny versions of the pre-trained model on this corpus. The former achieves the state-of-the-art result, and the latter retains most precision while accelerating training and prediction speed for eight times compared to Bert-base. To facilitate future work on self-supervised learning on Chinese, we release our dataset, new vocabulary, codes, and pre-trained models on Github. 3 authors · Mar 3, 2020
8 OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs. 6 authors · Jan 14 2
1 CCAE: A Corpus of Chinese-based Asian Englishes Language models have been foundations in various scenarios of NLP applications, but it has not been well applied in language variety studies, even for the most popular language like English. This paper represents one of the few initial efforts to utilize the NLP technology in the paradigm of World Englishes, specifically in creating a multi-variety corpus for studying Asian Englishes. We present an overview of the CCAE -- Corpus of Chinese-based Asian English, a suite of corpora comprising six Chinese-based Asian English varieties. It is based on 340 million tokens in 448 thousand web documents from six regions. The ontology of data would make the corpus a helpful resource with enormous research potential for Asian Englishes (especially for Chinese Englishes for which there has not been a publicly accessible corpus yet so far) and an ideal source for variety-specific language modeling and downstream tasks, thus setting the stage for NLP-based World Englishes studies. And preliminary experiments on this corpus reveal the practical value of CCAE. Finally, we make CCAE available at https://huggingface.co/datasets/CCAE/CCAE-Corpus{this https URL}. 4 authors · Oct 8, 2023
- MC^2: A Multilingual Corpus of Minority Languages in China Large-scale corpora play a vital role in the construction of large language models (LLMs). However, existing LLMs exhibit limited abilities in understanding low-resource languages, including the minority languages in China, due to a lack of training data. To improve the accessibility of these languages, we present MC^2, a Multilingual Corpus of Minority Languages in China, which is the largest open-source corpus so far. It encompasses four underrepresented languages, i.e., Tibetan, Uyghur, Kazakh in the Kazakh Arabic script, and Mongolian in the traditional Mongolian script. Notably, two writing systems in MC^2 are long neglected in previous corpora. As we identify serious contamination in the low-resource language split in the existing multilingual corpora, we propose a quality-centric solution for collecting MC^2, prioritizing quality and accuracy while enhancing representativeness and diversity. By in-depth analysis, we demonstrate the new research challenges MC^2 brings, such as long-text modeling and multiplicity of writing systems. We hope MC^2 can help enhance the equity of the underrepresented languages in China and provide a reliable data foundation for further research on low-resource languages. 6 authors · Nov 14, 2023
- Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language Pre-training We introduce CDBERT, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBERT as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters' glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e., Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding. 4 authors · May 30, 2023
- A Bilingual Parallel Corpus with Discourse Annotations Machine translation (MT) has almost achieved human parity at sentence-level translation. In response, the MT community has, in part, shifted its focus to document-level translation. However, the development of document-level MT systems is hampered by the lack of parallel document corpora. This paper describes BWB, a large parallel corpus first introduced in Jiang et al. (2022), along with an annotated test set. The BWB corpus consists of Chinese novels translated by experts into English, and the annotated test set is designed to probe the ability of machine translation systems to model various discourse phenomena. Our resource is freely available, and we hope it will serve as a guide and inspiration for more work in document-level machine translation. 6 authors · Oct 26, 2022
- Chinesewebtext: Large-scale high-quality Chinese web text extracted with effective evaluation model During the development of large language models (LLMs), the scale and quality of the pre-training data play a crucial role in shaping LLMs' capabilities. To accelerate the research of LLMs, several large-scale datasets, such as C4 [1], Pile [2], RefinedWeb [3] and WanJuan [4], have been released to the public. However, most of the released corpus focus mainly on English, and there is still lack of complete tool-chain for extracting clean texts from web data. Furthermore, fine-grained information of the corpus, e.g. the quality of each text, is missing. To address these challenges, we propose in this paper a new complete tool-chain EvalWeb to extract Chinese clean texts from noisy web data. First, similar to previous work, manually crafted rules are employed to discard explicit noisy texts from the raw crawled web contents. Second, a well-designed evaluation model is leveraged to assess the remaining relatively clean data, and each text is assigned a specific quality score. Finally, we can easily utilize an appropriate threshold to select the high-quality pre-training data for Chinese. Using our proposed approach, we release the largest and latest large-scale high-quality Chinese web text ChineseWebText, which consists of 1.42 TB and each text is associated with a quality score, facilitating the LLM researchers to choose the data according to the desired quality thresholds. We also release a much cleaner subset of 600 GB Chinese data with the quality exceeding 90%. 10 authors · Nov 2, 2023
14 Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models. 16 authors · Apr 5, 2024 2
- Yuan 1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot Learning Recent work like GPT-3 has demonstrated excellent performance of Zero-Shot and Few-Shot learning on many natural language processing (NLP) tasks by scaling up model size, dataset size and the amount of computation. However, training a model like GPT-3 requires huge amount of computational resources which makes it challengeable to researchers. In this work, we propose a method that incorporates large-scale distributed training performance into model architecture design. With this method, Yuan 1.0, the current largest singleton language model with 245B parameters, achieves excellent performance on thousands GPUs during training, and the state-of-the-art results on NLP tasks. A data processing method is designed to efficiently filter massive amount of raw data. The current largest high-quality Chinese corpus with 5TB high quality texts is built based on this method. In addition, a calibration and label expansion method is proposed to improve the Zero-Shot and Few-Shot performance, and steady improvement is observed on the accuracy of various tasks. Yuan 1.0 presents strong capacity of natural language generation, and the generated articles are difficult to distinguish from the human-written ones. 11 authors · Oct 10, 2021
- AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising. 5 authors · Sep 16, 2017
- CMNER: A Chinese Multimodal NER Dataset based on Social Media Multimodal Named Entity Recognition (MNER) is a pivotal task designed to extract named entities from text with the support of pertinent images. Nonetheless, a notable paucity of data for Chinese MNER has considerably impeded the progress of this natural language processing task within the Chinese domain. Consequently, in this study, we compile a Chinese Multimodal NER dataset (CMNER) utilizing data sourced from Weibo, China's largest social media platform. Our dataset encompasses 5,000 Weibo posts paired with 18,326 corresponding images. The entities are classified into four distinct categories: person, location, organization, and miscellaneous. We perform baseline experiments on CMNER, and the outcomes underscore the effectiveness of incorporating images for NER. Furthermore, we conduct cross-lingual experiments on the publicly available English MNER dataset (Twitter2015), and the results substantiate our hypothesis that Chinese and English multimodal NER data can mutually enhance the performance of the NER model. 6 authors · Feb 21, 2024
- Transfer Learning across Several Centuries: Machine and Historian Integrated Method to Decipher Royal Secretary's Diary A named entity recognition and classification plays the first and foremost important role in capturing semantics in data and anchoring in translation as well as downstream study for history. However, NER in historical text has faced challenges such as scarcity of annotated corpus, multilanguage variety, various noise, and different convention far different from the contemporary language model. This paper introduces Korean historical corpus (Diary of Royal secretary which is named SeungJeongWon) recorded over several centuries and recently added with named entity information as well as phrase markers which historians carefully annotated. We fined-tuned the language model on history corpus, conducted extensive comparative experiments using our language model and pretrained muti-language models. We set up the hypothesis of combination of time and annotation information and tested it based on statistical t test. Our finding shows that phrase markers clearly improve the performance of NER model in predicting unseen entity in documents written far different time period. It also shows that each of phrase marker and corpus-specific trained model does not improve the performance. We discuss the future research directions and practical strategies to decipher the history document. 5 authors · Jun 26, 2023
1 The Russian Legislative Corpus We present the comprehensive Russian primary and secondary legislation corpus covering 1991 to 2023. The corpus collects all 281,413 texts (176,523,268 tokens) of non-secret federal regulations and acts, along with their metadata. The corpus has two versions the original text with minimal preprocessing and a version prepared for linguistic analysis with morphosyntactic markup. 2 authors · Jun 7, 2024
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
4 Building a Large Japanese Web Corpus for Large Language Models Open Japanese large language models (LLMs) have been trained on the Japanese portions of corpora such as CC-100, mC4, and OSCAR. However, these corpora were not created for the quality of Japanese texts. This study builds a large Japanese web corpus by extracting and refining text from the Common Crawl archive (21 snapshots of approximately 63.4 billion pages crawled between 2020 and 2023). This corpus consists of approximately 312.1 billion characters (approximately 173 million pages), which is the largest of all available training corpora for Japanese LLMs, surpassing CC-100 (approximately 25.8 billion characters), mC4 (approximately 239.7 billion characters) and OSCAR 23.10 (approximately 74 billion characters). To confirm the quality of the corpus, we performed continual pre-training on Llama 2 7B, 13B, 70B, Mistral 7B v0.1, and Mixtral 8x7B Instruct as base LLMs and gained consistent (6.6-8.1 points) improvements on Japanese benchmark datasets. We also demonstrate that the improvement on Llama 2 13B brought from the presented corpus was the largest among those from other existing corpora. 10 authors · Apr 26, 2024
- Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through Image-IDS Aligning Scene text recognition has been studied for decades due to its broad applications. However, despite Chinese characters possessing different characteristics from Latin characters, such as complex inner structures and large categories, few methods have been proposed for Chinese Text Recognition (CTR). Particularly, the characteristic of large categories poses challenges in dealing with zero-shot and few-shot Chinese characters. In this paper, inspired by the way humans recognize Chinese texts, we propose a two-stage framework for CTR. Firstly, we pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS). This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character. Subsequently, the learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition through image-IDS matching. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on both Chinese character recognition (CCR) and CTR. The experimental results demonstrate that the proposed method performs best in CCR and outperforms previous methods in most scenarios of the CTR benchmark. It is worth noting that the proposed method can recognize zero-shot Chinese characters in text images without fine-tuning, whereas previous methods require fine-tuning when new classes appear. The code is available at https://github.com/FudanVI/FudanOCR/tree/main/image-ids-CTR. 4 authors · Sep 3, 2023
- ConFiguRe: Exploring Discourse-level Chinese Figures of Speech Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe. 6 authors · Sep 15, 2022
- ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the {\it glyph} and {\it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert. 8 authors · Jun 30, 2021
- HmBlogs: A big general Persian corpus This paper introduces the hmBlogs corpus for Persian, as a low resource language. This corpus has been prepared based on a collection of nearly 20 million blog posts over a period of about 15 years from a space of Persian blogs and includes more than 6.8 billion tokens. It can be claimed that this corpus is currently the largest Persian corpus that has been prepared independently for the Persian language. This corpus is presented in both raw and preprocessed forms, and based on the preprocessed corpus some word embedding models are produced. By the provided models, the hmBlogs is compared with some of the most important corpora available in Persian, and the results show the superiority of the hmBlogs corpus over the others. These evaluations also present the importance and effects of corpora, evaluation datasets, model production methods, different hyperparameters and even the evaluation methods. In addition to evaluating the corpus and its produced language models, this research also presents a semantic analogy dataset. 2 authors · Nov 3, 2021
4 COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning Recently, there have been significant advancements in large language models (LLMs), particularly focused on the English language. These advancements have enabled these LLMs to understand and execute complex instructions with unprecedented accuracy and fluency. However, despite these advancements, there remains a noticeable gap in the development of Chinese instruction tuning. The unique linguistic features and cultural depth of the Chinese language pose challenges for instruction tuning tasks. Existing datasets are either derived from English-centric LLMs or are ill-suited for aligning with the interaction patterns of real-world Chinese users. To bridge this gap, we introduce COIG-CQIA, a high-quality Chinese instruction tuning dataset. Our aim is to build a diverse, wide-ranging instruction-tuning dataset to better align model behavior with human interactions. To this end, we collect a high-quality human-written corpus from various sources on the Chinese Internet, including Q&A communities, Wikis, examinations, and existing NLP datasets. This corpus was rigorously filtered and carefully processed to form the COIG-CQIA dataset. Furthermore, we train models of various scales on different subsets of CQIA, following in-depth evaluation and analyses. The findings from our experiments offer valuable insights for selecting and developing Chinese instruction-tuning datasets. We also find that models trained on CQIA-Subset achieve competitive results in human assessment as well as knowledge and security benchmarks. Data are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA 21 authors · Mar 26, 2024
1 C-Pack: Packaged Resources To Advance General Chinese Embedding We introduce C-Pack, a package of resources that significantly advance the field of general Chinese embeddings. C-Pack includes three critical resources. 1) C-MTEB is a comprehensive benchmark for Chinese text embeddings covering 6 tasks and 35 datasets. 2) C-MTP is a massive text embedding dataset curated from labeled and unlabeled Chinese corpora for training embedding models. 3) C-TEM is a family of embedding models covering multiple sizes. Our models outperform all prior Chinese text embeddings on C-MTEB by up to +10% upon the time of the release. We also integrate and optimize the entire suite of training methods for C-TEM. Along with our resources on general Chinese embedding, we release our data and models for English text embeddings. The English models achieve state-of-the-art performance on MTEB benchmark; meanwhile, our released English data is 2 times larger than the Chinese data. All these resources are made publicly available at https://github.com/FlagOpen/FlagEmbedding. 4 authors · Sep 14, 2023
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks. The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy, Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti) and natural language inference (XNLI). 10 authors · Aug 31, 2019
- Named Entity Recognition in Indian court judgments Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed. 6 authors · Nov 7, 2022
6 Skywork: A More Open Bilingual Foundation Model In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves state of the art performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs. 30 authors · Oct 30, 2023 1
- Kanbun-LM: Reading and Translating Classical Chinese in Japanese Methods by Language Models Recent studies in natural language processing (NLP) have focused on modern languages and achieved state-of-the-art results in many tasks. Meanwhile, little attention has been paid to ancient texts and related tasks. Classical Chinese first came to Japan approximately 2,000 years ago. It was gradually adapted to a Japanese form called Kanbun-Kundoku (Kanbun) in Japanese reading and translating methods, which has significantly impacted Japanese literature. However, compared to the rich resources for ancient texts in mainland China, Kanbun resources remain scarce in Japan. To solve this problem, we construct the first Classical-Chinese-to-Kanbun dataset in the world. Furthermore, we introduce two tasks, character reordering and machine translation, both of which play a significant role in Kanbun comprehension. We also test the current language models on these tasks and discuss the best evaluation method by comparing the results with human scores. We release our code and dataset on GitHub. 3 authors · May 22, 2023
- A Sentence Cloze Dataset for Chinese Machine Reading Comprehension Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through https://github.com/ymcui/cmrc2019 8 authors · Apr 7, 2020
- CLiMP: A Benchmark for Chinese Language Model Evaluation Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of these models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP), which can be used to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1,000 minimal pairs (MPs) for 16 syntactic contrasts in Mandarin, covering 9 major Mandarin linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluated 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier-noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level. 5 authors · Jan 26, 2021
2 Developing a Named Entity Recognition Dataset for Tagalog We present the development of a Named Entity Recognition (NER) dataset for Tagalog. This corpus helps fill the resource gap present in Philippine languages today, where NER resources are scarce. The texts were obtained from a pretraining corpora containing news reports, and were labeled by native speakers in an iterative fashion. The resulting dataset contains ~7.8k documents across three entity types: Person, Organization, and Location. The inter-annotator agreement, as measured by Cohen's kappa, is 0.81. We also conducted extensive empirical evaluation of state-of-the-art methods across supervised and transfer learning settings. Finally, we released the data and processing code publicly to inspire future work on Tagalog NLP. 1 authors · Nov 13, 2023 2
- LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated. 6 authors · Sep 30, 2024
- CLUENER2020: Fine-grained Named Entity Recognition Dataset and Benchmark for Chinese In this paper, we introduce the NER dataset from CLUE organization (CLUENER2020), a well-defined fine-grained dataset for named entity recognition in Chinese. CLUENER2020 contains 10 categories. Apart from common labels like person, organization, and location, it contains more diverse categories. It is more challenging than current other Chinese NER datasets and could better reflect real-world applications. For comparison, we implement several state-of-the-art baselines as sequence labeling tasks and report human performance, as well as its analysis. To facilitate future work on fine-grained NER for Chinese, we release our dataset, baselines, and leader-board. 10 authors · Jan 13, 2020
- Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT, as it can readily take advantage of linguistic resources such as grammar books and dictionaries. Such resources are usually selectively integrated into the prompt so that LLMs can directly perform translation without any specific training, via their in-context learning capability (ICL). However, the relative importance of each type of resource e.g., dictionary, grammar book, and retrieved parallel examples, is not entirely clear. To address this gap, this study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language as our case study. To remove any prior knowledge of Manchu encoded in the LLM parameters and single out the effect of ICL, we also experiment with an encrypted version of Manchu texts. Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help. In a follow-up study, we showcase a promising application of in-context MT: parallel data augmentation as a way to bootstrap the conventional MT model. When monolingual data abound, generating synthetic parallel data through in-context MT offers a pathway to mitigate data scarcity and build effective and efficient low-resource neural MT systems. 5 authors · Feb 17
- An open dataset for the evolution of oracle bone characters: EVOBC The earliest extant Chinese characters originate from oracle bone inscriptions, which are closely related to other East Asian languages. These inscriptions hold immense value for anthropology and archaeology. However, deciphering oracle bone script remains a formidable challenge, with only approximately 1,600 of the over 4,500 extant characters elucidated to date. Further scholarly investigation is required to comprehensively understand this ancient writing system. Artificial Intelligence technology is a promising avenue for deciphering oracle bone characters, particularly concerning their evolution. However, one of the challenges is the lack of datasets mapping the evolution of these characters over time. In this study, we systematically collected ancient characters from authoritative texts and websites spanning six historical stages: Oracle Bone Characters - OBC (15th century B.C.), Bronze Inscriptions - BI (13th to 221 B.C.), Seal Script - SS (11th to 8th centuries B.C.), Spring and Autumn period Characters - SAC (770 to 476 B.C.), Warring States period Characters - WSC (475 B.C. to 221 B.C.), and Clerical Script - CS (221 B.C. to 220 A.D.). Subsequently, we constructed an extensive dataset, namely EVolution Oracle Bone Characters (EVOBC), consisting of 229,170 images representing 13,714 distinct character categories. We conducted validation and simulated deciphering on the constructed dataset, and the results demonstrate its high efficacy in aiding the study of oracle bone script. This openly accessible dataset aims to digitalize ancient Chinese scripts across multiple eras, facilitating the decipherment of oracle bone script by examining the evolution of glyph forms. 9 authors · Jan 22, 2024
- An Improved Traditional Chinese Evaluation Suite for Foundation Model We present TMMLU+, a new benchmark designed for Traditional Chinese language understanding. TMMLU+ is a multi-choice question-answering dataset with 66 subjects from elementary to professional level. It is six times larger and boasts a more balanced subject distribution than its predecessor, Taiwan Massive Multitask Language Understanding (TMMLU). We also benchmark closed-source models and 26 open-weight Chinese large language models (LLMs) of parameters ranging from 1.8B to 72B on the proposed TMMLU+. Our findings reveal that (1.) Traditional Chinese models still trail behind their Simplified Chinese counterparts, highlighting a need for more focused advancements in LLMs catering to Traditional Chinese. (2.) Current LLMs still fall short of human performance in average scores, indicating a potential need for future research to delve deeper into social science and humanities subjects. (3.) Among all the tokenization compression metrics examined, we identify that only the fertility score uniquely demonstrates strong correlations with our benchmark results. We foresee that TMMLU+ will pinpoint areas for future model improvement, thereby narrowing the gap between machine and human linguistic capabilities and supporting researchers in developing Traditional Chinese LLMs. Our dataset, along with the benchmark source code, is accessible at huggingface.co/datasets/ikala/tmmluplus. 7 authors · Mar 4, 2024
- 1.5 billion words Arabic Corpus This study is an attempt to build a contemporary linguistic corpus for Arabic language. The corpus produced, is a text corpus includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there is about three million unique words. The data were collected from newspaper articles in ten major news sources from eight Arabic countries, over a period of fourteen years. The corpus was encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages, namely: SGML, and XML. 1 authors · Nov 12, 2016
1 Mergen: The First Manchu-Korean Machine Translation Model Trained on Augmented Data The Manchu language, with its roots in the historical Manchurian region of Northeast China, is now facing a critical threat of extinction, as there are very few speakers left. In our efforts to safeguard the Manchu language, we introduce Mergen, the first-ever attempt at a Manchu-Korean Machine Translation (MT) model. To develop this model, we utilize valuable resources such as the Manwen Laodang(a historical book) and a Manchu-Korean dictionary. Due to the scarcity of a Manchu-Korean parallel dataset, we expand our data by employing word replacement guided by GloVe embeddings, trained on both monolingual and parallel texts. Our approach is built around an encoder-decoder neural machine translation model, incorporating a bi-directional Gated Recurrent Unit (GRU) layer. The experiments have yielded promising results, showcasing a significant enhancement in Manchu-Korean translation, with a remarkable 20-30 point increase in the BLEU score. 4 authors · Nov 29, 2023
- ChID: A Large-scale Chinese IDiom Dataset for Cloze Test Cloze-style reading comprehension in Chinese is still limited due to the lack of various corpora. In this paper we propose a large-scale Chinese cloze test dataset ChID, which studies the comprehension of idiom, a unique language phenomenon in Chinese. In this corpus, the idioms in a passage are replaced by blank symbols and the correct answer needs to be chosen from well-designed candidate idioms. We carefully study how the design of candidate idioms and the representation of idioms affect the performance of state-of-the-art models. Results show that the machine accuracy is substantially worse than that of human, indicating a large space for further research. 3 authors · Jun 4, 2019
- Russian Web Tables: A Public Corpus of Web Tables for Russian Language Based on Wikipedia Corpora that contain tabular data such as WebTables are a vital resource for the academic community. Essentially, they are the backbone of any modern research in information management. They are used for various tasks of data extraction, knowledge base construction, question answering, column semantic type detection and many other. Such corpora are useful not only as a source of data, but also as a base for building test datasets. So far, there were no such corpora for the Russian language and this seriously hindered research in the aforementioned areas. In this paper, we present the first corpus of Web tables created specifically out of Russian language material. It was built via a special toolkit we have developed to crawl the Russian Wikipedia. Both the corpus and the toolkit are open-source and publicly available. Finally, we present a short study that describes Russian Wikipedia tables and their statistics. 3 authors · Oct 3, 2022
- ChineseWebText 2.0: Large-Scale High-quality Chinese Web Text with Multi-dimensional and fine-grained information During the development of large language models (LLMs), pre-training data play a critical role in shaping LLMs' capabilities. In recent years several large-scale and high-quality pre-training datasets have been released to accelerate the research of LLMs, including ChineseWebText1.0, C4, Pile, WanJuan, MAPCC and others. However, as LLMs continue to evolve, focus has increasingly shifted to domain-specific capabilities and safety concerns, making those previous coarse-grained texts insufficient for meeting training requirements. Furthermore, fine-grained information, such as quality, domain and toxicity, is becoming increasingly important in building powerful and reliable LLMs for various scenarios. To address these challenges, in this paper we propose a new tool-chain called MDFG-tool for constructing large-scale and high-quality Chinese datasets with multi-dimensional and fine-grained information. First, we employ manually crafted rules to discard explicit noisy texts from raw contents. Second, the quality evaluation model, domain classifier, and toxicity evaluation model are well-designed to assess the remaining cleaned data respectively. Finally, we integrate these three types of fine-grained information for each text. With this approach, we release the largest, high-quality and fine-grained Chinese text ChineseWebText2.0, which consists of 3.8TB and each text is associated with a quality score, domain labels, a toxicity label and a toxicity score, facilitating the LLM researchers to select data based on various types of fine-grained information. The data, codes and the tool-chain are available on this website https://github.com/CASIA-LM/ChineseWebText-2.0 8 authors · Nov 29, 2024
- S2ORC: The Semantic Scholar Open Research Corpus We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text. 5 authors · Nov 7, 2019
- General Detection-based Text Line Recognition We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten (HTR), with Latin, Chinese, or ciphered characters. Detection-based approaches have until now been largely discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with sufficiently diverse data enables learning reasonable character localization for any script; (ii) modern transformer-based detectors can jointly detect a large number of instances, and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach, dubbed DTLR, builds on a completely different paradigm than state-of-the-art HTR methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, we demonstrate good performance on a large range of scripts, usually tackled with specialized approaches. In particular, we improve state-of-the-art performances for Chinese script recognition on the CASIA v2 dataset, and for cipher recognition on the Borg and Copiale datasets. Our code and models are available at https://github.com/raphael-baena/DTLR. 3 authors · Sep 25, 2024
- CNMBert: A Model For Hanyu Pinyin Abbreviation to Character Conversion Task The task of converting hanyu pinyin abbreviations to Chinese characters is a significant branch within the domain of Chinese Spelling Correction (CSC) behind many downstream applications. This task is typically one of text-length alignment and seems easy to solve; however, due to the limited informational content in pinyin abbreviations, achieving accurate conversion is challenging. In this paper, we treat this as a Fill-Mask task then propose CNMBert, which stands for zh-CN Pinyin Multi-mask Bert Model, as a solution to this issue. CNMBert surpasses fine-tuning GPT models, achieving a 60.56 MRR score and 51.09 accuracy on a 10,229-sample pinyin abbreviation test dataset, providing a viable solution to this task. 2 authors · Nov 18, 2024
- Solving the unsolvable: Translating case law in Hong Kong This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system. 5 authors · Jan 16
- T2Ranking: A large-scale Chinese Benchmark for Passage Ranking Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/ 11 authors · Apr 7, 2023
- Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information This paper presents the first publicly available version of the Carolina Corpus and discusses its future directions. Carolina is a large open corpus of Brazilian Portuguese texts under construction using web-as-corpus methodology enhanced with provenance, typology, versioning, and text integrality. The corpus aims at being used both as a reliable source for research in Linguistics and as an important resource for Computer Science research on language models, contributing towards removing Portuguese from the set of low-resource languages. Here we present the construction of the corpus methodology, comparing it with other existing methodologies, as well as the corpus current state: Carolina's first public version has 653,322,577 tokens, distributed over 7 broad types. Each text is annotated with several different metadata categories in its header, which we developed using TEI annotation standards. We also present ongoing derivative works and invite NLP researchers to contribute with their own. 14 authors · Mar 28, 2023
- Refining Corpora from a Model Calibration Perspective for Chinese Spelling Correction Chinese Spelling Correction (CSC) commonly lacks large-scale high-quality corpora, due to the labor-intensive labeling of spelling errors in real-life human writing or typing scenarios. Two data augmentation methods are widely adopted: (1) Random Replacement with the guidance of confusion sets and (2) OCR/ASR-based Generation that simulates character misusing. However, both methods inevitably introduce noisy data (e.g., false spelling errors), potentially leading to over-correction. By carefully analyzing the two types of corpora, we find that though the latter achieves more robust generalization performance, the former yields better-calibrated CSC models. We then provide a theoretical analysis of this empirical observation, based on which a corpus refining strategy is proposed. Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence. By learning a simple BERT-based model on the refined OCR/ASR-based corpus, we set up impressive state-of-the-art performance on three widely-used benchmarks, while significantly alleviating over-correction (e.g., lowering false positive predictions). 7 authors · Jul 22, 2024
- A Dataset for Analysing News Framing in Chinese Media Framing is an essential device in news reporting, allowing the writer to influence public perceptions of current affairs. While there are existing automatic news framing detection datasets in various languages, none of them focus on news framing in the Chinese language which has complex character meanings and unique linguistic features. This study introduces the first Chinese News Framing dataset, to be used as either a stand-alone dataset or a supplementary resource to the SemEval-2023 task 3 dataset. We detail its creation and we run baseline experiments to highlight the need for such a dataset and create benchmarks for future research, providing results obtained through fine-tuning XLM-RoBERTa-Base and using GPT-4o in the zero-shot setting. We find that GPT-4o performs significantly worse than fine-tuned XLM-RoBERTa across all languages. For the Chinese language, we obtain an F1-micro (the performance metric for SemEval task 3, subtask 2) score of 0.719 using only samples from our Chinese News Framing dataset and a score of 0.753 when we augment the SemEval dataset with Chinese news framing samples. With positive news frame detection results, this dataset is a valuable resource for detecting news frames in the Chinese language and is a valuable supplement to the SemEval-2023 task 3 dataset. 5 authors · Mar 6
- OCNLI: Original Chinese Natural Language Inference Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g., SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world's languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language. 6 authors · Oct 12, 2020
- ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark. 10 authors · Oct 24, 2024
- hmBERT: Historical Multilingual Language Models for Named Entity Recognition Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usually scanned and Optical Character Recognition (OCR) needs to be performed. As a result, the historical corpora contain errors. Also, entities like location or organization can change over time, which poses another challenge. Overall, historical texts come with several peculiarities that differ greatly from modern texts and large labeled corpora for training a neural tagger are hardly available for this domain. In this work, we tackle NER for historical German, English, French, Swedish, and Finnish by training large historical language models. We circumvent the need for large amounts of labeled data by using unlabeled data for pretraining a language model. We propose hmBERT, a historical multilingual BERT-based language model, and release the model in several versions of different sizes. Furthermore, we evaluate the capability of hmBERT by solving downstream NER as part of this year's HIPE-2022 shared task and provide detailed analysis and insights. For the Multilingual Classical Commentary coarse-grained NER challenge, our tagger HISTeria outperforms the other teams' models for two out of three languages. 4 authors · May 31, 2022
- New Textual Corpora for Serbian Language Modeling This paper will present textual corpora for Serbian (and Serbo-Croatian), usable for the training of large language models and publicly available at one of the several notable online repositories. Each corpus will be classified using multiple methods and its characteristics will be detailed. Additionally, the paper will introduce three new corpora: a new umbrella web corpus of Serbo-Croatian, a new high-quality corpus based on the doctoral dissertations stored within National Repository of Doctoral Dissertations from all Universities in Serbia, and a parallel corpus of abstract translation from the same source. The uniqueness of both old and new corpora will be accessed via frequency-based stylometric methods, and the results will be briefly discussed. 2 authors · May 15, 2024
13 Taiyi-Diffusion-XL: Advancing Bilingual Text-to-Image Generation with Large Vision-Language Model Support Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at https://huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/{this https URL}, fostering further research and collaboration in this domain. 9 authors · Jan 26, 2024 2
15 Benchmarking Chinese Knowledge Rectification in Large Language Models While Large Language Models (LLMs) exhibit remarkable generative capabilities, they are not without flaws, particularly in the form of hallucinations. This issue is even more pronounced when LLMs are applied to specific languages and domains. For example, LLMs may generate nonsense information when handling Chinese ancient poetry, proverbs, or idioms, owing to the lack of specific knowledge. To this end, this paper introduces a benchmark for rectifying Chinese knowledge in LLMs via knowledge editing. Specifically, we introduce a new Chinese dataset, CKnowEdit, by collecting seven type of knowledge from various sources, including classical texts, idioms, and content from Baidu Tieba Ruozhiba, thereby accounting for the unique polyphony, antithesis, and logical constructs inherent in the Chinese language. Through the analysis of this dataset, we uncover the challenges faced by current LLMs in mastering Chinese. Furthermore, our evaluation of state-of-the-art knowledge editing techniques on this dataset unveil the substantial scope for advancement in the rectification of Chinese knowledge. Code and dataset are available at https://github.com/zjunlp/EasyEdit. 6 authors · Sep 9, 2024 3
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method As the scale of training corpora for large language models (LLMs) grows, model developers become increasingly reluctant to disclose details on their data. This lack of transparency poses challenges to scientific evaluation and ethical deployment. Recently, pretraining data detection approaches, which infer whether a given text was part of an LLM's training data through black-box access, have been explored. The Min-K\% Prob method, which has achieved state-of-the-art results, assumes that a non-training example tends to contain a few outlier words with low token probabilities. However, the effectiveness may be limited as it tends to misclassify non-training texts that contain many common words with high probabilities predicted by LLMs. To address this issue, we introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection. We compute the cross-entropy (i.e., the divergence) between the token probability distribution and the token frequency distribution to derive a detection score. We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text. Experimental results on English-language benchmarks and PatentMIA demonstrate that our proposed method significantly outperforms existing methods. Our code and PatentMIA benchmark are available at https://github.com/zhang-wei-chao/DC-PDD. 6 authors · Sep 23, 2024
- CRENER: A Character Relation Enhanced Chinese NER Model Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model. 2 authors · Dec 14, 2024
- Extending the Pre-Training of BLOOM for Improved Support of Traditional Chinese: Models, Methods and Results In this paper we present the multilingual language model BLOOM-zh that features enhanced support for Traditional Chinese. BLOOM-zh has its origins in the open-source BLOOM models presented by BigScience in 2022. Starting from released models, we extended the pre-training of BLOOM by additional 7.4 billion tokens in Traditional Chinese and English covering a variety of domains such as news articles, books, encyclopedias, educational materials as well as spoken language. In order to show the properties of BLOOM-zh, both existing and newly created benchmark scenarios are used for evaluating the performance. BLOOM-zh outperforms its predecessor on most Traditional Chinese benchmarks while maintaining its English capability. We release all our models to the research community. 9 authors · Mar 8, 2023
- A Large Parallel Corpus of Full-Text Scientific Articles The Scielo database is an important source of scientific information in Latin America, containing articles from several research domains. A striking characteristic of Scielo is that many of its full-text contents are presented in more than one language, thus being a potential source of parallel corpora. In this article, we present the development of a parallel corpus from Scielo in three languages: English, Portuguese, and Spanish. Sentences were automatically aligned using the Hunalign algorithm for all language pairs, and for a subset of trilingual articles also. We demonstrate the capabilities of our corpus by training a Statistical Machine Translation system (Moses) for each language pair, which outperformed related works on scientific articles. Sentence alignment was also manually evaluated, presenting an average of 98.8% correctly aligned sentences across all languages. Our parallel corpus is freely available in the TMX format, with complementary information regarding article metadata. 3 authors · May 6, 2019
- Word and Document Embeddings based on Neural Network Approaches Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ... 1 authors · Nov 17, 2016
- TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available. 4 authors · Jan 12, 2024
- BianCang: A Traditional Chinese Medicine Large Language Model The rise of large language models (LLMs) has driven significant progress in medical applications, including traditional Chinese medicine (TCM). However, current medical LLMs struggle with TCM diagnosis and syndrome differentiation due to substantial differences between TCM and modern medical theory, and the scarcity of specialized, high-quality corpora. This paper addresses these challenges by proposing BianCang, a TCM-specific LLM, using a two-stage training process that first injects domain-specific knowledge and then aligns it through targeted stimulation. To enhance diagnostic and differentiation capabilities, we constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China. We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM. Evaluations across 11 test sets involving 29 models and 4 tasks demonstrate the effectiveness of BianCang, offering valuable insights for future research. Code, datasets, and models are available at https://github.com/QLU-NLP/BianCang. 8 authors · Nov 17, 2024
- The Multilingual TEDx Corpus for Speech Recognition and Translation We present the Multilingual TEDx corpus, built to support speech recognition (ASR) and speech translation (ST) research across many non-English source languages. The corpus is a collection of audio recordings from TEDx talks in 8 source languages. We segment transcripts into sentences and align them to the source-language audio and target-language translations. The corpus is released along with open-sourced code enabling extension to new talks and languages as they become available. Our corpus creation methodology can be applied to more languages than previous work, and creates multi-way parallel evaluation sets. We provide baselines in multiple ASR and ST settings, including multilingual models to improve translation performance for low-resource language pairs. 8 authors · Feb 2, 2021
1 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Improving Access to Justice for the Indian Population: A Benchmark for Evaluating Translation of Legal Text to Indian Languages Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only about 10% of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners. 5 authors · Oct 15, 2023
- Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean? This article offers an empirical study on the different ways of encoding Chinese, Japanese, Korean (CJK) and English languages for text classification. Different encoding levels are studied, including UTF-8 bytes, characters, words, romanized characters and romanized words. For all encoding levels, whenever applicable, we provide comparisons with linear models, fastText and convolutional networks. For convolutional networks, we compare between encoding mechanisms using character glyph images, one-hot (or one-of-n) encoding, and embedding. In total there are 473 models, using 14 large-scale text classification datasets in 4 languages including Chinese, English, Japanese and Korean. Some conclusions from these results include that byte-level one-hot encoding based on UTF-8 consistently produces competitive results for convolutional networks, that word-level n-grams linear models are competitive even without perfect word segmentation, and that fastText provides the best result using character-level n-gram encoding but can overfit when the features are overly rich. 2 authors · Aug 8, 2017
- Fine-grained Contract NER using instruction based model Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * . 3 authors · Jan 24, 2024
- Revisiting Pre-Trained Models for Chinese Natural Language Processing Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks, and consecutive variants have been proposed to further improve the performance of the pre-trained language models. In this paper, we target on revisiting Chinese pre-trained language models to examine their effectiveness in a non-English language and release the Chinese pre-trained language model series to the community. We also propose a simple but effective model called MacBERT, which improves upon RoBERTa in several ways, especially the masking strategy that adopts MLM as correction (Mac). We carried out extensive experiments on eight Chinese NLP tasks to revisit the existing pre-trained language models as well as the proposed MacBERT. Experimental results show that MacBERT could achieve state-of-the-art performances on many NLP tasks, and we also ablate details with several findings that may help future research. Resources available: https://github.com/ymcui/MacBERT 6 authors · Apr 28, 2020
- LatinCy: Synthetic Trained Pipelines for Latin NLP This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work. 1 authors · May 7, 2023
- Measuring Massive Multitask Chinese Understanding The development of large-scale Chinese language models is flourishing, yet there is a lack of corresponding capability assessments. Therefore, we propose a test to measure the multitask accuracy of large Chinese language models. This test encompasses four major domains, including medicine, law, psychology, and education, with 15 subtasks in medicine and 8 subtasks in education. We found that the best-performing models in the zero-shot setting outperformed the worst-performing models by nearly 18.6 percentage points on average. Across the four major domains, the highest average zero-shot accuracy of all models is 0.512. In the subdomains, only the GPT-3.5-turbo model achieved a zero-shot accuracy of 0.693 in clinical medicine, which was the highest accuracy among all models across all subtasks. All models performed poorly in the legal domain, with the highest zero-shot accuracy reaching only 0.239. By comprehensively evaluating the breadth and depth of knowledge across multiple disciplines, this test can more accurately identify the shortcomings of the models. 1 authors · Apr 25, 2023
- N-LTP: An Open-source Neural Language Technology Platform for Chinese We introduce N-LTP, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as Stanza, that adopt an independent model for each task, N-LTP adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method DBLP:journals/corr/abs-1907-04829 where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at https://github.com/HIT-SCIR/ltp. 4 authors · Sep 24, 2020
- BBT-Fin: Comprehensive Construction of Chinese Financial Domain Pre-trained Language Model, Corpus and Benchmark To advance Chinese financial natural language processing (NLP), we introduce BBT-FinT5, a new Chinese financial pre-training language model based on the T5 model. To support this effort, we have built BBT-FinCorpus, a large-scale financial corpus with approximately 300GB of raw text from four different sources. In general domain NLP, comprehensive benchmarks like GLUE and SuperGLUE have driven significant advancements in language model pre-training by enabling head-to-head comparisons among models. Drawing inspiration from these benchmarks, we propose BBT-CFLEB, a Chinese Financial Language understanding and generation Evaluation Benchmark, which includes six datasets covering both understanding and generation tasks. Our aim is to facilitate research in the development of NLP within the Chinese financial domain. Our model, corpus and benchmark are released at https://github.com/ssymmetry/BBT-FinCUGE-Applications. Our work belongs to the Big Bang Transformer (BBT), a large-scale pre-trained language model project. 9 authors · Feb 18, 2023
1 RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models models via Romanization This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages, specifically those using non-Latin scripts. We propose an innovative approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Focusing on Hindi, we demonstrate through Hindi-to-English translation and sentiment analysis tasks that romanized text not only significantly improves inference efficiency due to its lower fertility compared to native text but also achieves competitive performance with limited pre-training. Additionally, our novel multi-script prompting approach, which combines romanized and native texts, shows promise in further enhancing task performance. These findings suggest the potential of romanization in bridging the language gap for LLM applications, with future work aimed at expanding this approach to more languages and tasks. 5 authors · Jan 25, 2024
- Introducing RONEC -- the Romanian Named Entity Corpus We present RONEC - the Named Entity Corpus for the Romanian language. The corpus contains over 26000 entities in ~5000 annotated sentences, belonging to 16 distinct classes. The sentences have been extracted from a copy-right free newspaper, covering several styles. This corpus represents the first initiative in the Romanian language space specifically targeted for named entity recognition. It is available in BRAT and CoNLL-U Plus formats, and it is free to use and extend at github.com/dumitrescustefan/ronec . 2 authors · Sep 3, 2019
2 Multilingual Encoder Knows more than You Realize: Shared Weights Pretraining for Extremely Low-Resource Languages While multilingual language models like XLM-R have advanced multilingualism in NLP, they still perform poorly in extremely low-resource languages. This situation is exacerbated by the fact that modern LLMs such as LLaMA and Qwen support far fewer languages than XLM-R, making text generation models non-existent for many languages in the world. To tackle this challenge, we propose a novel framework for adapting multilingual encoders to text generation in extremely low-resource languages. By reusing the weights between the encoder and the decoder, our framework allows the model to leverage the learned semantic space of the encoder, enabling efficient learning and effective generalization in low-resource languages. Applying this framework to four Chinese minority languages, we present XLM-SWCM, and demonstrate its superior performance on various downstream tasks even when compared with much larger models. 7 authors · Feb 15 2
- A Multilingual Parallel Corpora Collection Effort for Indian Languages We present sentence aligned parallel corpora across 10 Indian Languages - Hindi, Telugu, Tamil, Malayalam, Gujarati, Urdu, Bengali, Oriya, Marathi, Punjabi, and English - many of which are categorized as low resource. The corpora are compiled from online sources which have content shared across languages. The corpora presented significantly extends present resources that are either not large enough or are restricted to a specific domain (such as health). We also provide a separate test corpus compiled from an independent online source that can be independently used for validating the performance in 10 Indian languages. Alongside, we report on the methods of constructing such corpora using tools enabled by recent advances in machine translation and cross-lingual retrieval using deep neural network based methods. 4 authors · Jul 15, 2020
- SLING: Sino Linguistic Evaluation of Large Language Models To understand what kinds of linguistic knowledge are encoded by pretrained Chinese language models (LMs), we introduce the benchmark of Sino LINGuistics (SLING), which consists of 38K minimal sentence pairs in Mandarin Chinese grouped into 9 high-level linguistic phenomena. Each pair demonstrates the acceptability contrast of a specific syntactic or semantic phenomenon (e.g., The keys are lost vs. The keys is lost), and an LM should assign lower perplexity to the acceptable sentence. In contrast to the CLiMP dataset (Xiang et al., 2021), which also contains Chinese minimal pairs and was created by translating the vocabulary of the English BLiMP dataset, the minimal pairs in SLING are derived primarily by applying syntactic and lexical transformations to naturally-occurring, linguist-annotated sentences from the Chinese Treebank 9.0, thus addressing severe issues in CLiMP's data generation process. We test 18 publicly available pretrained monolingual (e.g., BERT-base-zh, CPM) and multi-lingual (e.g., mT5, XLM) language models on SLING. Our experiments show that the average accuracy for LMs is far below human performance (69.7% vs. 97.1%), while BERT-base-zh achieves the highest accuracy (84.8%) of all tested LMs, even much larger ones. Additionally, we find that most LMs have a strong gender and number (singular/plural) bias, and they perform better on local phenomena than hierarchical ones. 4 authors · Oct 20, 2022
- Character, Word, or Both? Revisiting the Segmentation Granularity for Chinese Pre-trained Language Models Pretrained language models (PLMs) have shown marvelous improvements across various NLP tasks. Most Chinese PLMs simply treat an input text as a sequence of characters, and completely ignore word information. Although Whole Word Masking can alleviate this, the semantics in words is still not well represented. In this paper, we revisit the segmentation granularity of Chinese PLMs. We propose a mixed-granularity Chinese BERT (MigBERT) by considering both characters and words. To achieve this, we design objective functions for learning both character and word-level representations. We conduct extensive experiments on various Chinese NLP tasks to evaluate existing PLMs as well as the proposed MigBERT. Experimental results show that MigBERT achieves new SOTA performance on all these tasks. Further analysis demonstrates that words are semantically richer than characters. More interestingly, we show that MigBERT also works with Japanese. Our code and model have been released here~https://github.com/xnliang98/MigBERT. 8 authors · Mar 20, 2023
- A Parallel Corpus of Theses and Dissertations Abstracts In Brazil, the governmental body responsible for overseeing and coordinating post-graduate programs, CAPES, keeps records of all theses and dissertations presented in the country. Information regarding such documents can be accessed online in the Theses and Dissertations Catalog (TDC), which contains abstracts in Portuguese and English, and additional metadata. Thus, this database can be a potential source of parallel corpora for the Portuguese and English languages. In this article, we present the development of a parallel corpus from TDC, which is made available by CAPES under the open data initiative. Approximately 240,000 documents were collected and aligned using the Hunalign tool. We demonstrate the capability of our developed corpus by training Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) models for both language directions, followed by a comparison with Google Translate (GT). Both translation models presented better BLEU scores than GT, with NMT system being the most accurate one. Sentence alignment was also manually evaluated, presenting an average of 82.30% correctly aligned sentences. Our parallel corpus is freely available in TMX format, with complementary information regarding document metadata 3 authors · May 5, 2019
- Advancing the Evaluation of Traditional Chinese Language Models: Towards a Comprehensive Benchmark Suite The evaluation of large language models is an essential task in the field of language understanding and generation. As language models continue to advance, the need for effective benchmarks to assess their performance has become imperative. In the context of Traditional Chinese, there is a scarcity of comprehensive and diverse benchmarks to evaluate the capabilities of language models, despite the existence of certain benchmarks such as DRCD, TTQA, CMDQA, and FGC dataset. To address this gap, we propose a novel set of benchmarks that leverage existing English datasets and are tailored to evaluate language models in Traditional Chinese. These benchmarks encompass a wide range of tasks, including contextual question-answering, summarization, classification, and table understanding. The proposed benchmarks offer a comprehensive evaluation framework, enabling the assessment of language models' capabilities across different tasks. In this paper, we evaluate the performance of GPT-3.5, Taiwan-LLaMa-v1.0, and Model 7-C, our proprietary model, on these benchmarks. The evaluation results highlight that our model, Model 7-C, achieves performance comparable to GPT-3.5 with respect to a part of the evaluated capabilities. In an effort to advance the evaluation of language models in Traditional Chinese and stimulate further research in this field, we have open-sourced our benchmark and opened the model for trial. 6 authors · Sep 15, 2023
- MIZAN: A Large Persian-English Parallel Corpus One of the most major and essential tasks in natural language processing is machine translation that is now highly dependent upon multilingual parallel corpora. Through this paper, we introduce the biggest Persian-English parallel corpus with more than one million sentence pairs collected from masterpieces of literature. We also present acquisition process and statistics of the corpus, and experiment a base-line statistical machine translation system using the corpus. 1 authors · Jan 6, 2018
- Romanization-based Large-scale Adaptation of Multilingual Language Models Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages. 5 authors · Apr 18, 2023
- Investigating Glyph Phonetic Information for Chinese Spell Checking: What Works and What's Next While pre-trained Chinese language models have demonstrated impressive performance on a wide range of NLP tasks, the Chinese Spell Checking (CSC) task remains a challenge. Previous research has explored using information such as glyphs and phonetics to improve the ability to distinguish misspelled characters, with good results. However, the generalization ability of these models is not well understood: it is unclear whether they incorporate glyph-phonetic information and, if so, whether this information is fully utilized. In this paper, we aim to better understand the role of glyph-phonetic information in the CSC task and suggest directions for improvement. Additionally, we propose a new, more challenging, and practical setting for testing the generalizability of CSC models. All code is made publicly available. 4 authors · Dec 7, 2022
4 GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 https://huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 https://github.com/cisnlp/GlotCC. 3 authors · Oct 31, 2024 2
- Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents Legal artificial intelligence (LegalAI) aims to benefit legal systems with the technology of artificial intelligence, especially natural language processing (NLP). Recently, inspired by the success of pre-trained language models (PLMs) in the generic domain, many LegalAI researchers devote their effort to apply PLMs to legal tasks. However, utilizing PLMs to address legal tasks is still challenging, as the legal documents usually consist of thousands of tokens, which is far longer than the length that mainstream PLMs can process. In this paper, we release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding. We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering. The experimental results demonstrate that our model can achieve promising improvement on tasks with long documents as inputs. 5 authors · May 9, 2021
- AISHELL-NER: Named Entity Recognition from Chinese Speech Named Entity Recognition (NER) from speech is among Spoken Language Understanding (SLU) tasks, aiming to extract semantic information from the speech signal. NER from speech is usually made through a two-step pipeline that consists of (1) processing the audio using an Automatic Speech Recognition (ASR) system and (2) applying an NER tagger to the ASR outputs. Recent works have shown the capability of the End-to-End (E2E) approach for NER from English and French speech, which is essentially entity-aware ASR. However, due to the many homophones and polyphones that exist in Chinese, NER from Chinese speech is effectively a more challenging task. In this paper, we introduce a new dataset AISEHLL-NER for NER from Chinese speech. Extensive experiments are conducted to explore the performance of several state-of-the-art methods. The results demonstrate that the performance could be improved by combining entity-aware ASR and pretrained NER tagger, which can be easily applied to the modern SLU pipeline. The dataset is publicly available at github.com/Alibaba-NLP/AISHELL-NER. 6 authors · Feb 17, 2022
- CFBenchmark: Chinese Financial Assistant Benchmark for Large Language Model Large language models (LLMs) have demonstrated great potential in the financial domain. Thus, it becomes important to assess the performance of LLMs in the financial tasks. In this work, we introduce CFBenchmark, to evaluate the performance of LLMs for Chinese financial assistant. The basic version of CFBenchmark is designed to evaluate the basic ability in Chinese financial text processing from three aspects~(i.e. recognition, classification, and generation) including eight tasks, and includes financial texts ranging in length from 50 to over 1,800 characters. We conduct experiments on several LLMs available in the literature with CFBenchmark-Basic, and the experimental results indicate that while some LLMs show outstanding performance in specific tasks, overall, there is still significant room for improvement in basic tasks of financial text processing with existing models. In the future, we plan to explore the advanced version of CFBenchmark, aiming to further explore the extensive capabilities of language models in more profound dimensions as a financial assistant in Chinese. Our codes are released at https://github.com/TongjiFinLab/CFBenchmark. 7 authors · Nov 9, 2023
- CPM: A Large-scale Generative Chinese Pre-trained Language Model Pre-trained Language Models (PLMs) have proven to be beneficial for various downstream NLP tasks. Recently, GPT-3, with 175 billion parameters and 570GB training data, drew a lot of attention due to the capacity of few-shot (even zero-shot) learning. However, applying GPT-3 to address Chinese NLP tasks is still challenging, as the training corpus of GPT-3 is primarily English, and the parameters are not publicly available. In this technical report, we release the Chinese Pre-trained Language Model (CPM) with generative pre-training on large-scale Chinese training data. To the best of our knowledge, CPM, with 2.6 billion parameters and 100GB Chinese training data, is the largest Chinese pre-trained language model, which could facilitate several downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. Extensive experiments demonstrate that CPM achieves strong performance on many NLP tasks in the settings of few-shot (even zero-shot) learning. The code and parameters are available at https://github.com/TsinghuaAI/CPM-Generate. 25 authors · Dec 1, 2020
- InternLM-Law: An Open Source Chinese Legal Large Language Model While large language models (LLMs) have showcased impressive capabilities, they struggle with addressing legal queries due to the intricate complexities and specialized expertise required in the legal field. In this paper, we introduce InternLM-Law, a specialized LLM tailored for addressing diverse legal queries related to Chinese laws, spanning from responding to standard legal questions (e.g., legal exercises in textbooks) to analyzing complex real-world legal situations. We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries, and implement a data filtering and processing pipeline to ensure its diversity and quality. Our training approach involves a novel two-stage process: initially fine-tuning LLMs on both legal-specific and general-purpose content to equip the models with broad knowledge, followed by exclusive fine-tuning on high-quality legal data to enhance structured output generation. InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks. We make InternLM-Law and our dataset publicly available to facilitate future research in applying LLMs within the legal domain. 12 authors · Jun 21, 2024
- CNewSum: A Large-scale Chinese News Summarization Dataset with Human-annotated Adequacy and Deducibility Level Automatic text summarization aims to produce a brief but crucial summary for the input documents. Both extractive and abstractive methods have witnessed great success in English datasets in recent years. However, there has been a minimal exploration of text summarization in Chinese, limited by the lack of large-scale datasets. In this paper, we present a large-scale Chinese news summarization dataset CNewSum, which consists of 304,307 documents and human-written summaries for the news feed. It has long documents with high-abstractive summaries, which can encourage document-level understanding and generation for current summarization models. An additional distinguishing feature of CNewSum is that its test set contains adequacy and deducibility annotations for the summaries. The adequacy level measures the degree of summary information covered by the document, and the deducibility indicates the reasoning ability the model needs to generate the summary. These annotations can help researchers analyze and target their model performance bottleneck. We examine recent methods on CNewSum and release our dataset to provide a solid testbed for automatic Chinese summarization research. 5 authors · Oct 20, 2021
- Pre-Training with Whole Word Masking for Chinese BERT Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks, and its consecutive variants have been proposed to further improve the performance of the pre-trained language models. In this paper, we aim to first introduce the whole word masking (wwm) strategy for Chinese BERT, along with a series of Chinese pre-trained language models. Then we also propose a simple but effective model called MacBERT, which improves upon RoBERTa in several ways. Especially, we propose a new masking strategy called MLM as correction (Mac). To demonstrate the effectiveness of these models, we create a series of Chinese pre-trained language models as our baselines, including BERT, RoBERTa, ELECTRA, RBT, etc. We carried out extensive experiments on ten Chinese NLP tasks to evaluate the created Chinese pre-trained language models as well as the proposed MacBERT. Experimental results show that MacBERT could achieve state-of-the-art performances on many NLP tasks, and we also ablate details with several findings that may help future research. We open-source our pre-trained language models for further facilitating our research community. Resources are available: https://github.com/ymcui/Chinese-BERT-wwm 5 authors · Jun 19, 2019
1 Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca Large Language Models (LLMs), such as ChatGPT and GPT-4, have revolutionized natural language processing research and demonstrated potential in Artificial General Intelligence (AGI). However, the expensive training and deployment of LLMs present challenges to transparent and open academic research. To address these issues, this project open-sources the Chinese LLaMA and Alpaca large models, emphasizing instruction fine-tuning. We expand the original LLaMA's Chinese vocabulary by adding 20K Chinese tokens, increasing encoding efficiency and enhancing basic semantic understanding. By incorporating secondary pre-training using Chinese data and fine-tuning with Chinese instruction data, we substantially improve the models' comprehension and execution of instructions. Our pilot study serves as a foundation for researchers adapting LLaMA and Alpaca models to other languages. Resources are made publicly available through GitHub, fostering open research in the Chinese NLP community and beyond. GitHub repository: https://github.com/ymcui/Chinese-LLaMA-Alpaca 3 authors · Apr 17, 2023
- ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations We focus on electronic theses and dissertations (ETDs), aiming to improve access and expand their utility, since more than 6 million are publicly available, and they constitute an important corpus to aid research and education across disciplines. The corpus is growing as new born-digital documents are included, and since millions of older theses and dissertations have been converted to digital form to be disseminated electronically in institutional repositories. In ETDs, as with other scholarly works, figures and tables can communicate a large amount of information in a concise way. Although methods have been proposed for extracting figures and tables from born-digital PDFs, they do not work well with scanned ETDs. Considering this problem, our assessment of state-of-the-art figure extraction systems is that the reason they do not function well on scanned PDFs is that they have only been trained on born-digital documents. To address this limitation, we present ScanBank, a new dataset containing 10 thousand scanned page images, manually labeled by humans as to the presence of the 3.3 thousand figures or tables found therein. We use this dataset to train a deep neural network model based on YOLOv5 to accurately extract figures and tables from scanned ETDs. We pose and answer important research questions aimed at finding better methods for figure extraction from scanned documents. One of those concerns the value for training, of data augmentation techniques applied to born-digital documents which are used to train models better suited for figure extraction from scanned documents. To the best of our knowledge, ScanBank is the first manually annotated dataset for figure and table extraction for scanned ETDs. A YOLOv5-based model, trained on ScanBank, outperforms existing comparable open-source and freely available baseline methods by a considerable margin. 4 authors · Jun 23, 2021
2 Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model In the realm of language models, the nuanced linguistic and cultural intricacies of Traditional Chinese, as spoken in Taiwan, have been largely overlooked. This paper introduces Taiwan LLM, a pioneering Large Language Model that specifically caters to the Traditional Chinese language, with a focus on the variant used in Taiwan. Leveraging a comprehensive pretraining corpus and instruction-finetuning datasets, we have developed a model that not only understands the complexities of Traditional Chinese but also embodies the cultural context of Taiwan. Taiwan LLM represents the first of its kind, a model that is not only linguistically accurate but also culturally resonant with its user base. Our evaluations demonstrate that Taiwan LLM achieves superior performance in understanding and generating Traditional Chinese text, outperforming existing models that are predominantly trained on Simplified Chinese or English. The open-source release of Taiwan LLM invites collaboration and further innovation, ensuring that the linguistic diversity of Chinese speakers is embraced and well-served. The model, datasets, and further resources are made publicly available to foster ongoing research and development in this field. 2 authors · Nov 29, 2023
- Exploring Large Language Models for Classical Philology Recent advances in NLP have led to the creation of powerful language models for many languages including Ancient Greek and Latin. While prior work on Classical languages unanimously uses BERT, in this work we create four language models for Ancient Greek that vary along two dimensions to study their versatility for tasks of interest for Classical languages: we explore (i) encoder-only and encoder-decoder architectures using RoBERTa and T5 as strong model types, and create for each of them (ii) a monolingual Ancient Greek and a multilingual instance that includes Latin and English. We evaluate all models on morphological and syntactic tasks, including lemmatization, which demonstrates the added value of T5's decoding abilities. We further define two probing tasks to investigate the knowledge acquired by models pre-trained on Classical texts. Our experiments provide the first benchmarking analysis of existing models of Ancient Greek. Results show that our models provide significant improvements over the SoTA. The systematic analysis of model types can inform future research in designing language models for Classical languages, including the development of novel generative tasks. We make all our models available as community resources, along with a large curated pre-training corpus for Ancient Greek, to support the creation of a larger, comparable model zoo for Classical Philology. Our models and resources are available at https://github.com/Heidelberg-NLP/ancient-language-models. 2 authors · May 23, 2023
33 Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models. 14 authors · Nov 11, 2024 3
- PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling Document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially in academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of academic papers sourced from arXiv, multiple strategies are proposed to generate automatically 1M QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal PDF understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong. 9 authors · Oct 8, 2024
24 Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT 45 authors · May 14, 2024 2
- FineWeb-zhtw: Scalable Curation of Traditional Chinese Text Data from the Web The quality and size of a pretraining dataset significantly influence the performance of large language models (LLMs). While there have been numerous efforts in the curation of such a dataset for English users, there is a relative lack of similar initiatives for Traditional Chinese. Building upon this foundation of FineWeb, we introduce FineWeb-zhtw, a dataset tailored specifically for Traditional Chinese users. We came up with multiple stages of meticulously designed filters to cater to the linguistic difference between English and Traditional Chinese, to ensure comprehensiveness and quality. We determined effectiveness from querying dataset samples with three main objectives. Our code and datasets are publicly available. 9 authors · Nov 25, 2024
- Unsilencing Colonial Archives via Automated Entity Recognition Colonial archives are at the center of increased interest from a variety of perspectives, as they contain traces of historically marginalized people. Unfortunately, like most archives, they remain difficult to access due to significant persisting barriers. We focus here on one of them: the biases to be found in historical findings aids, such as indexes of person names, which remain in use to this day. In colonial archives, indexes can perpetuate silences by omitting to include mentions of historically marginalized persons. In order to overcome such limitations and pluralize the scope of existing finding aids, we propose using automated entity recognition. To this end, we contribute a fit-for-purpose annotation typology and apply it on the colonial archive of the Dutch East India Company (VOC). We release a corpus of nearly 70,000 annotations as a shared task, for which we provide baselines using state-of-the-art neural network models. Our work intends to stimulate further contributions in the direction of broadening access to (colonial) archives, integrating automation as a possible means to this end. 4 authors · Oct 3, 2022
- Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet. 8 authors · Apr 18, 2021
- HistRED: A Historical Document-Level Relation Extraction Dataset Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license. 4 authors · Jul 9, 2023
- Taiyi: A Bilingual Fine-Tuned Large Language Model for Diverse Biomedical Tasks Recent advancements in large language models (LLMs) have shown promising results across a variety of natural language processing (NLP) tasks. The application of LLMs to specific domains, such as biomedicine, has achieved increased attention. However, most biomedical LLMs focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To further investigate the effectiveness of the LLMs on diverse biomedical NLP tasks in different languages, we present Taiyi, a bilingual (English and Chinese) fine-tuned LLM for diverse biomedical tasks. In this work, we first curated a comprehensive collection of 140 existing biomedical text mining datasets across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. The source code, datasets, and model for Taiyi are freely available at https://github.com/DUTIR-BioNLP/Taiyi-LLM. 20 authors · Nov 20, 2023
- TCBERT: A Technical Report for Chinese Topic Classification BERT Bidirectional Encoder Representations from Transformers or BERT~devlin-etal-2019-bert has been one of the base models for various NLP tasks due to its remarkable performance. Variants customized for different languages and tasks are proposed to further improve the performance. In this work, we investigate supervised continued pre-training~gururangan-etal-2020-dont on BERT for Chinese topic classification task. Specifically, we incorporate prompt-based learning and contrastive learning into the pre-training. To adapt to the task of Chinese topic classification, we collect around 2.1M Chinese data spanning various topics. The pre-trained Chinese Topic Classification BERTs (TCBERTs) with different parameter sizes are open-sourced at https://huggingface.co/IDEA-CCNL. 8 authors · Nov 21, 2022
- Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0 In this work, we explore whether the recently demonstrated zero-shot abilities of the T0 model extend to Named Entity Recognition for out-of-distribution languages and time periods. Using a historical newspaper corpus in 3 languages as test-bed, we use prompts to extract possible named entities. Our results show that a naive approach for prompt-based zero-shot multilingual Named Entity Recognition is error-prone, but highlights the potential of such an approach for historical languages lacking labeled datasets. Moreover, we also find that T0-like models can be probed to predict the publication date and language of a document, which could be very relevant for the study of historical texts. 7 authors · Apr 11, 2022
- AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale AISHELL-1 is by far the largest open-source speech corpus available for Mandarin speech recognition research. It was released with a baseline system containing solid training and testing pipelines for Mandarin ASR. In AISHELL-2, 1000 hours of clean read-speech data from iOS is published, which is free for academic usage. On top of AISHELL-2 corpus, an improved recipe is developed and released, containing key components for industrial applications, such as Chinese word segmentation, flexible vocabulary expension and phone set transformation etc. Pipelines support various state-of-the-art techniques, such as time-delayed neural networks and Lattic-Free MMI objective funciton. In addition, we also release dev and test data from other channels(Android and Mic). For research community, we hope that AISHELL-2 corpus can be a solid resource for topics like transfer learning and robust ASR. For industry, we hope AISHELL-2 recipe can be a helpful reference for building meaningful industrial systems and products. 4 authors · Aug 30, 2018
- Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset. 3 authors · Jul 3, 2024
- Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text. C^3 is available at https://dataset.org/c3/. 4 authors · Apr 21, 2019
- AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines In this paper, we present AISHELL-3, a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. The corpus contains roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers. Their auxiliary attributes such as gender, age group and native accents are explicitly marked and provided in the corpus. Accordingly, transcripts in Chinese character-level and pinyin-level are provided along with the recordings. We present a baseline system that uses AISHELL-3 for multi-speaker Madarin speech synthesis. The multi-speaker speech synthesis system is an extension on Tacotron-2 where a speaker verification model and a corresponding loss regarding voice similarity are incorporated as the feedback constraint. We aim to use the presented corpus to build a robust synthesis model that is able to achieve zero-shot voice cloning. The system trained on this dataset also generalizes well on speakers that are never seen in the training process. Objective evaluation results from our experiments show that the proposed multi-speaker synthesis system achieves high voice similarity concerning both speaker embedding similarity and equal error rate measurement. The dataset, baseline system code and generated samples are available online. 5 authors · Oct 22, 2020
- CebuaNER: A New Baseline Cebuano Named Entity Recognition Model Despite being one of the most linguistically diverse groups of countries, computational linguistics and language processing research in Southeast Asia has struggled to match the level of countries from the Global North. Thus, initiatives such as open-sourcing corpora and the development of baseline models for basic language processing tasks are important stepping stones to encourage the growth of research efforts in the field. To answer this call, we introduce CebuaNER, a new baseline model for named entity recognition (NER) in the Cebuano language. Cebuano is the second most-used native language in the Philippines, with over 20 million speakers. To build the model, we collected and annotated over 4,000 news articles, the largest of any work in the language, retrieved from online local Cebuano platforms to train algorithms such as Conditional Random Field and Bidirectional LSTM. Our findings show promising results as a new baseline model, achieving over 70% performance on precision, recall, and F1 across all entity tags, as well as potential efficacy in a crosslingual setup with Tagalog. 9 authors · Oct 1, 2023
4 WikiNER-fr-gold: A Gold-Standard NER Corpus We address in this article the the quality of the WikiNER corpus, a multilingual Named Entity Recognition corpus, and provide a consolidated version of it. The annotation of WikiNER was produced in a semi-supervised manner i.e. no manual verification has been carried out a posteriori. Such corpus is called silver-standard. In this paper we propose WikiNER-fr-gold which is a revised version of the French proportion of WikiNER. Our corpus consists of randomly sampled 20% of the original French sub-corpus (26,818 sentences with 700k tokens). We start by summarizing the entity types included in each category in order to define an annotation guideline, and then we proceed to revise the corpus. Finally we present an analysis of errors and inconsistency observed in the WikiNER-fr corpus, and we discuss potential future work directions. 3 authors · Oct 29, 2024 4
11 Building Foundations for Natural Language Processing of Historical Turkish: Resources and Models This paper introduces foundational resources and models for natural language processing (NLP) of historical Turkish, a domain that has remained underexplored in computational linguistics. We present the first named entity recognition (NER) dataset, HisTR and the first Universal Dependencies treebank, OTA-BOUN for a historical form of the Turkish language along with transformer-based models trained using these datasets for named entity recognition, dependency parsing, and part-of-speech tagging tasks. Additionally, we introduce Ottoman Text Corpus (OTC), a clean corpus of transliterated historical Turkish texts that spans a wide range of historical periods. Our experimental results show significant improvements in the computational analysis of historical Turkish, achieving promising results in tasks that require understanding of historical linguistic structures. They also highlight existing challenges, such as domain adaptation and language variations across time periods. All of the presented resources and models are made available at https://huggingface.co/bucolin to serve as a benchmark for future progress in historical Turkish NLP. 7 authors · Jan 8 3
- A Finnish News Corpus for Named Entity Recognition We present a corpus of Finnish news articles with a manually prepared named entity annotation. The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The articles are extracted from the archives of Digitoday, a Finnish online technology news source. The corpus is available for research purposes. We present baseline experiments on the corpus using a rule-based and two deep learning systems on two, in-domain and out-of-domain, test sets. 4 authors · Aug 12, 2019
- An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora. 9 authors · Apr 30, 2021
- Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version. 2 authors · Nov 2, 2018
- Corpus for Automatic Structuring of Legal Documents In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper. 7 authors · Jan 31, 2022
- Legal Documents Drafting with Fine-Tuned Pre-Trained Large Language Model With the development of large-scale Language Models (LLM), fine-tuning pre-trained LLM has become a mainstream paradigm for solving downstream tasks of natural language processing. However, training a language model in the legal field requires a large number of legal documents so that the language model can learn legal terminology and the particularity of the format of legal documents. The typical NLP approaches usually rely on many manually annotated data sets for training. However, in the legal field application, it is difficult to obtain a large number of manually annotated data sets, which restricts the typical method applied to the task of drafting legal documents. The experimental results of this paper show that not only can we leverage a large number of annotation-free legal documents without Chinese word segmentation to fine-tune a large-scale language model, but more importantly, it can fine-tune a pre-trained LLM on the local computer to achieve the generating legal document drafts task, and at the same time achieve the protection of information privacy and to improve information security issues. 2 authors · Jun 6, 2024
- PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for Languages in India This paper introduces PMIndiaSum, a new multilingual and massively parallel headline summarization corpus focused on languages in India. Our corpus covers four language families, 14 languages, and the largest to date, 196 language pairs. It provides a testing ground for all cross-lingual pairs. We detail our workflow to construct the corpus, including data acquisition, processing, and quality assurance. Furthermore, we publish benchmarks for monolingual, cross-lingual, and multilingual summarization by fine-tuning, prompting, as well as translate-and-summarize. Experimental results confirm the crucial role of our data in aiding the summarization of Indian texts. Our dataset is publicly available and can be freely modified and re-distributed. 6 authors · May 15, 2023
- A Benchmark for Chinese-English Scene Text Image Super-resolution Scene Text Image Super-resolution (STISR) aims to recover high-resolution (HR) scene text images with visually pleasant and readable text content from the given low-resolution (LR) input. Most existing works focus on recovering English texts, which have relatively simple character structures, while little work has been done on the more challenging Chinese texts with diverse and complex character structures. In this paper, we propose a real-world Chinese-English benchmark dataset, namely Real-CE, for the task of STISR with the emphasis on restoring structurally complex Chinese characters. The benchmark provides 1,935/783 real-world LR-HR text image pairs~(contains 33,789 text lines in total) for training/testing in 2times and 4times zooming modes, complemented by detailed annotations, including detection boxes and text transcripts. Moreover, we design an edge-aware learning method, which provides structural supervision in image and feature domains, to effectively reconstruct the dense structures of Chinese characters. We conduct experiments on the proposed Real-CE benchmark and evaluate the existing STISR models with and without our edge-aware loss. The benchmark, including data and source code, is available at https://github.com/mjq11302010044/Real-CE. 5 authors · Aug 6, 2023
1 MultiLegalPile: A 689GB Multilingual Legal Corpus Large, high-quality datasets are crucial for training Large Language Models (LLMs). However, so far, there are few datasets available for specialized critical domains such as law and the available ones are often only for the English language. We curate and release MultiLegalPile, a 689GB corpus in 24 languages from 17 jurisdictions. The MultiLegalPile corpus, which includes diverse legal data sources with varying licenses, allows for pretraining NLP models under fair use, with more permissive licenses for the Eurlex Resources and Legal mC4 subsets. We pretrain two RoBERTa models and one Longformer multilingually, and 24 monolingual models on each of the language-specific subsets and evaluate them on LEXTREME. Additionally, we evaluate the English and multilingual models on LexGLUE. Our multilingual models set a new SotA on LEXTREME and our English models on LexGLUE. We release the dataset, the trained models, and all of the code under the most open possible licenses. 5 authors · Jun 3, 2023
- Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context In this paper, we introduce Libriheavy, a large-scale ASR corpus consisting of 50,000 hours of read English speech derived from LibriVox. To the best of our knowledge, Libriheavy is the largest freely-available corpus of speech with supervisions. Different from other open-sourced datasets that only provide normalized transcriptions, Libriheavy contains richer information such as punctuation, casing and text context, which brings more flexibility for system building. Specifically, we propose a general and efficient pipeline to locate, align and segment the audios in previously published Librilight to its corresponding texts. The same as Librilight, Libriheavy also has three training subsets small, medium, large of the sizes 500h, 5000h, 50000h respectively. We also extract the dev and test evaluation sets from the aligned audios and guarantee there is no overlapping speakers and books in training sets. Baseline systems are built on the popular CTC-Attention and transducer models. Additionally, we open-source our dataset creatation pipeline which can also be used to other audio alignment tasks. 8 authors · Sep 14, 2023
11 Can MLLMs Understand the Deep Implication Behind Chinese Images? As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images. CII-Bench stands out in several ways compared to existing benchmarks. Firstly, to ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model's understanding of Chinese traditional culture. Through extensive experiments on CII-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on CII-Bench. The highest accuracy of MLLMs attains 64.4%, where as human accuracy averages 78.2%, peaking at an impressive 81.0%. Subsequently, MLLMs perform worse on Chinese traditional culture images, suggesting limitations in their ability to understand high-level semantics and lack a deep knowledge base of Chinese traditional culture. Finally, it is observed that most models exhibit enhanced accuracy when image emotion hints are incorporated into the prompts. We believe that CII-Bench will enable MLLMs to gain a better understanding of Chinese semantics and Chinese-specific images, advancing the journey towards expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io/. 21 authors · Oct 17, 2024 2
1 Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). We have released our codes, models, and demos in https://github.com/OFA-Sys/Chinese-CLIP 7 authors · Nov 2, 2022
- Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval. 6 authors · Nov 4, 2024
- Named Entity Recognition and Classification on Historical Documents: A Survey After decades of massive digitisation, an unprecedented amount of historical documents is available in digital format, along with their machine-readable texts. While this represents a major step forward with respect to preservation and accessibility, it also opens up new opportunities in terms of content mining and the next fundamental challenge is to develop appropriate technologies to efficiently search, retrieve and explore information from this 'big data of the past'. Among semantic indexing opportunities, the recognition and classification of named entities are in great demand among humanities scholars. Yet, named entity recognition (NER) systems are heavily challenged with diverse, historical and noisy inputs. In this survey, we present the array of challenges posed by historical documents to NER, inventory existing resources, describe the main approaches deployed so far, and identify key priorities for future developments. 5 authors · Sep 23, 2021
- Towards Fully Automated Manga Translation We tackle the problem of machine translation of manga, Japanese comics. Manga translation involves two important problems in machine translation: context-aware and multimodal translation. Since text and images are mixed up in an unstructured fashion in Manga, obtaining context from the image is essential for manga translation. However, it is still an open problem how to extract context from image and integrate into MT models. In addition, corpus and benchmarks to train and evaluate such model is currently unavailable. In this paper, we make the following four contributions that establishes the foundation of manga translation research. First, we propose multimodal context-aware translation framework. We are the first to incorporate context information obtained from manga image. It enables us to translate texts in speech bubbles that cannot be translated without using context information (e.g., texts in other speech bubbles, gender of speakers, etc.). Second, for training the model, we propose the approach to automatic corpus construction from pairs of original manga and their translations, by which large parallel corpus can be constructed without any manual labeling. Third, we created a new benchmark to evaluate manga translation. Finally, on top of our proposed methods, we devised a first comprehensive system for fully automated manga translation. 4 authors · Dec 28, 2020
2 Evolution and Transformation of Scientific Knowledge over the Sphaera Corpus: A Network Study We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses. 6 authors · Apr 1, 2020
- GERNERMED++: Transfer Learning in German Medical NLP We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp 3 authors · Jun 29, 2022
- Exploring and Adapting Chinese GPT to Pinyin Input Method While GPT has become the de-facto method for text generation tasks, its application to pinyin input method remains unexplored. In this work, we make the first exploration to leverage Chinese GPT for pinyin input method. We find that a frozen GPT achieves state-of-the-art performance on perfect pinyin. However, the performance drops dramatically when the input includes abbreviated pinyin. A reason is that an abbreviated pinyin can be mapped to many perfect pinyin, which links to even larger number of Chinese characters. We mitigate this issue with two strategies, including enriching the context with pinyin and optimizing the training process to help distinguish homophones. To further facilitate the evaluation of pinyin input method, we create a dataset consisting of 270K instances from 15 domains. Results show that our approach improves performance on abbreviated pinyin across all domains. Model analysis demonstrates that both strategies contribute to the performance boost. 8 authors · Mar 1, 2022
1 LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model Large language models (LLMs), including both proprietary and open-source models, have showcased remarkable capabilities in addressing a wide range of downstream tasks. Nonetheless, when it comes to practical Chinese legal tasks, these models fail to meet the actual requirements. Proprietary models do not ensure data privacy for sensitive legal cases, while open-source models demonstrate unsatisfactory performance due to their lack of legal knowledge. To address this problem, we introduce LawGPT, the first open-source model specifically designed for Chinese legal applications. LawGPT comprises two key components: legal-oriented pre-training and legal supervised fine-tuning. Specifically, we employ large-scale Chinese legal documents for legal-oriented pre-training to incorporate legal domain knowledge. To further improve the model's performance on downstream legal tasks, we create a knowledge-driven instruction dataset for legal supervised fine-tuning. Our experimental results demonstrate that LawGPT outperforms the open-source LLaMA 7B model. Our code and resources are publicly available at https://github.com/pengxiao-song/LaWGPT and have received 5.7K stars on GitHub. 7 authors · Jun 6, 2024
- Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released 5 authors · Oct 5, 2023
- Digestion Algorithm in Hierarchical Symbolic Forests: A Fast Text Normalization Algorithm and Semantic Parsing Framework for Specific Scenarios and Lightweight Deployment Text Normalization and Semantic Parsing have numerous applications in natural language processing, such as natural language programming, paraphrasing, data augmentation, constructing expert systems, text matching, and more. Despite the prominent achievements of deep learning in Large Language Models (LLMs), the interpretability of neural network architectures is still poor, which affects their credibility and hence limits the deployments of risk-sensitive scenarios. In certain scenario-specific domains with scarce data, rapidly obtaining a large number of supervised learning labels is challenging, and the workload of manually labeling data would be enormous. Catastrophic forgetting in neural networks further leads to low data utilization rates. In situations where swift responses are vital, the density of the model makes local deployment difficult and the response time long, which is not conducive to local applications of these fields. Inspired by the multiplication rule, a principle of combinatorial mathematics, and human thinking patterns, a multilayer framework along with its algorithm, the Digestion Algorithm in Hierarchical Symbolic Forests (DAHSF), is proposed to address these above issues, combining text normalization and semantic parsing workflows. The Chinese Scripting Language "Fire Bunny Intelligent Development Platform V2.0" is an important test and application of the technology discussed in this paper. DAHSF can run locally in scenario-specific domains on little datasets, with model size and memory usage optimized by at least two orders of magnitude, thus improving the execution speed, and possessing a promising optimization outlook. 1 authors · Dec 18, 2024
1 YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction The difficulty of the information extraction task lies in dealing with the task-specific label schemas and heterogeneous data structures. Recent work has proposed methods based on large language models to uniformly model different information extraction tasks. However, these existing methods are deficient in their information extraction capabilities for Chinese languages other than English. In this paper, we propose an end-to-end chat-enhanced instruction tuning framework for universal information extraction (YAYI-UIE), which supports both Chinese and English. Specifically, we utilize dialogue data and information extraction data to enhance the information extraction performance jointly. Experimental results show that our proposed framework achieves state-of-the-art performance on Chinese datasets while also achieving comparable performance on English datasets under both supervised settings and zero-shot settings. 10 authors · Dec 24, 2023
2 CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation Benchmark datasets have a significant impact on accelerating research in programming language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster machine learning research for program understanding and generation. CodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison. CodeXGLUE also features three baseline systems, including the BERT-style, GPT-style, and Encoder-Decoder models, to make it easy for researchers to use the platform. The availability of such data and baselines can help the development and validation of new methods that can be applied to various program understanding and generation problems. 22 authors · Feb 9, 2021
5 NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals. 4 authors · Oct 22, 2023 6
1 BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus BibleTTS is a large, high-quality, open speech dataset for ten languages spoken in Sub-Saharan Africa. The corpus contains up to 86 hours of aligned, studio quality 48kHz single speaker recordings per language, enabling the development of high-quality text-to-speech models. The ten languages represented are: Akuapem Twi, Asante Twi, Chichewa, Ewe, Hausa, Kikuyu, Lingala, Luganda, Luo, and Yoruba. This corpus is a derivative work of Bible recordings made and released by the Open.Bible project from Biblica. We have aligned, cleaned, and filtered the original recordings, and additionally hand-checked a subset of the alignments for each language. We present results for text-to-speech models with Coqui TTS. The data is released under a commercial-friendly CC-BY-SA license. 19 authors · Jul 7, 2022
- A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval. 2 authors · Dec 19, 2018
4 HistNERo: Historical Named Entity Recognition for the Romanian Language This work introduces HistNERo, the first Romanian corpus for Named Entity Recognition (NER) in historical newspapers. The dataset contains 323k tokens of text, covering more than half of the 19th century (i.e., 1817) until the late part of the 20th century (i.e., 1990). Eight native Romanian speakers annotated the dataset with five named entities. The samples belong to one of the following four historical regions of Romania, namely Bessarabia, Moldavia, Transylvania, and Wallachia. We employed this proposed dataset to perform several experiments for NER using Romanian pre-trained language models. Our results show that the best model achieved a strict F1-score of 55.69%. Also, by reducing the discrepancies between regions through a novel domain adaption technique, we improved the performance on this corpus to a strict F1-score of 66.80%, representing an absolute gain of more than 10%. 11 authors · Apr 30, 2024 4
1 Evaluating the Capability of Large-scale Language Models on Chinese Grammatical Error Correction Task Large-scale language models (LLMs) has shown remarkable capability in various of Natural Language Processing (NLP) tasks and attracted lots of attention recently. However, some studies indicated that large language models fail to achieve promising result beyond the state-of-the-art models in English grammatical error correction (GEC) tasks. In this report, we aim to explore the how large language models perform on Chinese grammatical error correction tasks and provide guidance for future work. We conduct experiments with 3 different LLMs of different model scale on 4 Chinese GEC dataset. Our experimental results indicate that the performances of LLMs on automatic evaluation metrics falls short of the previous sota models because of the problem of over-correction. Furthermore, we also discover notable variations in the performance of LLMs when evaluated on different data distributions. Our findings demonstrates that further investigation is required for the application of LLMs on Chinese GEC task. 2 authors · Jul 8, 2023
- Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing. 8 authors · Jun 7, 2021
3 Sentence Embedding Models for Ancient Greek Using Multilingual Knowledge Distillation Contextual language models have been trained on Classical languages, including Ancient Greek and Latin, for tasks such as lemmatization, morphological tagging, part of speech tagging, authorship attribution, and detection of scribal errors. However, high-quality sentence embedding models for these historical languages are significantly more difficult to achieve due to the lack of training data. In this work, we use a multilingual knowledge distillation approach to train BERT models to produce sentence embeddings for Ancient Greek text. The state-of-the-art sentence embedding approaches for high-resource languages use massive datasets, but our distillation approach allows our Ancient Greek models to inherit the properties of these models while using a relatively small amount of translated sentence data. We build a parallel sentence dataset using a sentence-embedding alignment method to align Ancient Greek documents with English translations, and use this dataset to train our models. We evaluate our models on translation search, semantic similarity, and semantic retrieval tasks and investigate translation bias. We make our training and evaluation datasets freely available at https://github.com/kevinkrahn/ancient-greek-datasets . 3 authors · Aug 24, 2023
- Does Corpus Quality Really Matter for Low-Resource Languages? The vast majority of non-English corpora are derived from automatically filtered versions of CommonCrawl. While prior work has identified major issues on the quality of these datasets (Kreutzer et al., 2021), it is not clear how this impacts downstream performance. Taking representation learning in Basque as a case study, we explore tailored crawling (manually identifying and scraping websites with high-quality content) as an alternative to filtering CommonCrawl. Our new corpus, called EusCrawl, is similar in size to the Basque portion of popular multilingual corpora like CC100 and mC4, yet it has a much higher quality according to native annotators. For instance, 66% of documents are rated as high-quality for EusCrawl, in contrast with <33% for both mC4 and CC100. Nevertheless, we obtain similar results on downstream NLU tasks regardless of the corpus used for pre-training. Our work suggests that NLU performance in low-resource languages is not primarily constrained by the quality of the data, and other factors like corpus size and domain coverage can play a more important role. 5 authors · Mar 15, 2022
- NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance Recently, many works have proposed various financial large language models (FinLLMs) by pre-training from scratch or fine-tuning open-sourced LLMs on financial corpora. However, existing FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions. In this paper, we propose a novel LLM, called numeric-sensitive large language model (NumLLM), for Chinese finance. We first construct a financial corpus from financial textbooks which is essential for improving numeric capability of LLMs during fine-tuning. After that, we train two individual low-rank adaptation (LoRA) modules by fine-tuning on our constructed financial corpus. One module is for adapting general-purpose LLMs to financial domain, and the other module is for enhancing the ability of NumLLM to understand financial text with numeric variables. Lastly, we merge the two LoRA modules into the foundation model to obtain NumLLM for inference. Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model and can achieve the best overall performance compared to all baselines, on both numeric and non-numeric questions. 4 authors · May 1, 2024
- A Large-Scale Chinese Short-Text Conversation Dataset The advancements of neural dialogue generation models show promising results on modeling short-text conversations. However, training such models usually needs a large-scale high-quality dialogue corpus, which is hard to access. In this paper, we present a large-scale cleaned Chinese conversation dataset, LCCC, which contains a base version (6.8million dialogues) and a large version (12.0 million dialogues). The quality of our dataset is ensured by a rigorous data cleaning pipeline, which is built based on a set of rules and a classifier that is trained on manually annotated 110K dialogue pairs. We also release pre-training dialogue models which are trained on LCCC-base and LCCC-large respectively. The cleaned dataset and the pre-training models will facilitate the research of short-text conversation modeling. All the models and datasets are available at https://github.com/thu-coai/CDial-GPT. 7 authors · Aug 10, 2020
- CSDR-BERT: a pre-trained scientific dataset match model for Chinese Scientific Dataset Retrieval As the number of open and shared scientific datasets on the Internet increases under the open science movement, efficiently retrieving these datasets is a crucial task in information retrieval (IR) research. In recent years, the development of large models, particularly the pre-training and fine-tuning paradigm, which involves pre-training on large models and fine-tuning on downstream tasks, has provided new solutions for IR match tasks. In this study, we use the original BERT token in the embedding layer, improve the Sentence-BERT model structure in the model layer by introducing the SimCSE and K-Nearest Neighbors method, and use the cosent loss function in the optimization phase to optimize the target output. Our experimental results show that our model outperforms other competing models on both public and self-built datasets through comparative experiments and ablation implementations. This study explores and validates the feasibility and efficiency of pre-training techniques for semantic retrieval of Chinese scientific datasets. 7 authors · Jan 30, 2023
- HC4: A New Suite of Test Collections for Ad Hoc CLIR HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems. 4 authors · Jan 24, 2022
2 Do Language Models Care About Text Quality? Evaluating Web-Crawled Corpora Across 11 Languages Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion's share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs. 7 authors · Mar 13, 2024 1
2 A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively. 5 authors · Apr 18, 2023
2 CodeSearchNet Challenge: Evaluating the State of Semantic Code Search Semantic code search is the task of retrieving relevant code given a natural language query. While related to other information retrieval tasks, it requires bridging the gap between the language used in code (often abbreviated and highly technical) and natural language more suitable to describe vague concepts and ideas. To enable evaluation of progress on code search, we are releasing the CodeSearchNet Corpus and are presenting the CodeSearchNet Challenge, which consists of 99 natural language queries with about 4k expert relevance annotations of likely results from CodeSearchNet Corpus. The corpus contains about 6 million functions from open-source code spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). The CodeSearchNet Corpus also contains automatically generated query-like natural language for 2 million functions, obtained from mechanically scraping and preprocessing associated function documentation. In this article, we describe the methodology used to obtain the corpus and expert labels, as well as a number of simple baseline solutions for the task. We hope that CodeSearchNet Challenge encourages researchers and practitioners to study this interesting task further and will host a competition and leaderboard to track the progress on the challenge. We are also keen on extending CodeSearchNet Challenge to more queries and programming languages in the future. 5 authors · Sep 20, 2019
- DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check One key characteristic of the Chinese spelling check (CSC) task is that incorrect characters are usually similar to the correct ones in either phonetics or glyph. To accommodate this, previous works usually leverage confusion sets, which suffer from two problems, i.e., difficulty in determining which character pairs to include and lack of probabilities to distinguish items in the set. In this paper, we propose a light-weight plug-and-play DISC (i.e., decoding intervention with similarity of characters) module for CSC models.DISC measures phonetic and glyph similarities between characters and incorporates this similarity information only during the inference phase. This method can be easily integrated into various existing CSC models, such as ReaLiSe, SCOPE, and ReLM, without additional training costs. Experiments on three CSC benchmarks demonstrate that our proposed method significantly improves model performance, approaching and even surpassing the current state-of-the-art models. 9 authors · Dec 17, 2024
- PMIndia -- A Collection of Parallel Corpora of Languages of India Parallel text is required for building high-quality machine translation (MT) systems, as well as for other multilingual NLP applications. For many South Asian languages, such data is in short supply. In this paper, we described a new publicly available corpus (PMIndia) consisting of parallel sentences which pair 13 major languages of India with English. The corpus includes up to 56000 sentences for each language pair. We explain how the corpus was constructed, including an assessment of two different automatic sentence alignment methods, and present some initial NMT results on the corpus. 2 authors · Jan 27, 2020
- WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition. 12 authors · Oct 7, 2021
1 Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for Bengali-English Machine Translation Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt. 7 authors · Sep 20, 2020
- Exploring Possibilities of AI-Powered Legal Assistance in Bangladesh through Large Language Modeling Purpose: Bangladesh's legal system struggles with major challenges like delays, complexity, high costs, and millions of unresolved cases, which deter many from pursuing legal action due to lack of knowledge or financial constraints. This research seeks to develop a specialized Large Language Model (LLM) to assist in the Bangladeshi legal system. Methods: We created UKIL-DB-EN, an English corpus of Bangladeshi legal documents, by collecting and scraping data on various legal acts. We fine-tuned the GPT-2 model on this dataset to develop GPT2-UKIL-EN, an LLM focused on providing legal assistance in English. Results: The model was rigorously evaluated using semantic assessments, including case studies supported by expert opinions. The evaluation provided promising results, demonstrating the potential for the model to assist in legal matters within Bangladesh. Conclusion: Our work represents the first structured effort toward building an AI-based legal assistant for Bangladesh. While the results are encouraging, further refinements are necessary to improve the model's accuracy, credibility, and safety. This is a significant step toward creating a legal AI capable of serving the needs of a population of 180 million. 4 authors · Oct 22, 2024
- Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark Modern Entity Linking (EL) systems entrench a popularity bias, yet there is no dataset focusing on tail and emerging entities in languages other than English. We present Hansel, a new benchmark in Chinese that fills the vacancy of non-English few-shot and zero-shot EL challenges. The test set of Hansel is human annotated and reviewed, created with a novel method for collecting zero-shot EL datasets. It covers 10K diverse documents in news, social media posts and other web articles, with Wikidata as its target Knowledge Base. We demonstrate that the existing state-of-the-art EL system performs poorly on Hansel (R@1 of 36.6% on Few-Shot). We then establish a strong baseline that scores a R@1 of 46.2% on Few-Shot and 76.6% on Zero-Shot on our dataset. We also show that our baseline achieves competitive results on TAC-KBP2015 Chinese Entity Linking task. 5 authors · Jul 26, 2022
- LongWanjuan: Towards Systematic Measurement for Long Text Quality The quality of training data are crucial for enhancing the long-text capabilities of foundation models. Despite existing efforts to refine data quality through heuristic rules and evaluations based on data diversity and difficulty, there's a lack of systematic approaches specifically tailored for assessing long texts. Addressing this gap, our work systematically measures the quality of long texts by evaluating three fundamental linguistic dimensions: coherence, cohesion, and complexity. Drawing inspiration from the aforementioned three dimensions, we introduce a suite of metrics designed to evaluate the quality of long texts, encompassing both statistical and pre-trained language model-based ones. Leveraging these metrics, we present LongWanjuan, a bilingual dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens. In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality. Furthermore, we devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks. The code and dataset are available at https://github.com/OpenLMLab/LongWanjuan. 7 authors · Feb 21, 2024
- LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2. 6 authors · Oct 26, 2023
1 The Multilingual Amazon Reviews Corpus We present the Multilingual Amazon Reviews Corpus (MARC), a large-scale collection of Amazon reviews for multilingual text classification. The corpus contains reviews in English, Japanese, German, French, Spanish, and Chinese, which were collected between 2015 and 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID, and the coarse-grained product category (e.g., 'books', 'appliances', etc.) The corpus is balanced across the 5 possible star ratings, so each rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000, and 5,000 reviews in the training, development, and test sets, respectively. We report baseline results for supervised text classification and zero-shot cross-lingual transfer learning by fine-tuning a multilingual BERT model on reviews data. We propose the use of mean absolute error (MAE) instead of classification accuracy for this task, since MAE accounts for the ordinal nature of the ratings. 4 authors · Oct 6, 2020
1 A New Massive Multilingual Dataset for High-Performance Language Technologies We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work. 13 authors · Mar 20, 2024
- Disentangled Phonetic Representation for Chinese Spelling Correction Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information. 3 authors · May 24, 2023
2 IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community. 7 authors · Feb 22, 2024
- CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction In this paper, we introduce the Chinese AI and Law challenge dataset (CAIL2018), the first large-scale Chinese legal dataset for judgment prediction. \dataset contains more than 2.6 million criminal cases published by the Supreme People's Court of China, which are several times larger than other datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional text classification baselines for judgment prediction and experimental results show that it is still a challenge for current models to predict the judgment results of legal cases, especially on prison terms. To help the researchers make improvements on legal judgment prediction, both \dataset and baselines will be released after the CAIL competitionhttp://cail.cipsc.org.cn/. 11 authors · Jul 3, 2018
1 Detecting and recognizing characters in Greek papyri with YOLOv8, DeiT and SimCLR Purpose: The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. Methods: We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Results: Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. Conclusion: The results demonstrate the potential for these techniques for automated character recognition on historical manuscripts. We ran the prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats. 2 authors · Jan 23, 2024
11 CCI3.0-HQ: a large-scale Chinese dataset of high quality designed for pre-training large language models We present CCI3.0-HQ (https://huggingface.co/datasets/BAAI/CCI3-HQ), a high-quality 500GB subset of the Chinese Corpora Internet 3.0 (CCI3.0)(https://huggingface.co/datasets/BAAI/CCI3-Data), developed using a novel two-stage hybrid filtering pipeline that significantly enhances data quality. To evaluate its effectiveness, we trained a 0.5B parameter model from scratch on 100B tokens across various datasets, achieving superior performance on 10 benchmarks in a zero-shot setting compared to CCI3.0, SkyPile, and WanjuanV1. The high-quality filtering process effectively distills the capabilities of the Qwen2-72B-instruct model into a compact 0.5B model, attaining optimal F1 scores for Chinese web data classification. We believe this open-access dataset will facilitate broader access to high-quality language models. 10 authors · Oct 24, 2024 3
- How does Burrows' Delta work on medieval Chinese poetic texts? Burrows' Delta was introduced in 2002 and has proven to be an effective tool for author attribution. Despite the fact that these are different languages, they mostly belong to the same grammatical type and use the same graphic principle to convey speech in writing: a phonemic alphabet with word separation using spaces. The question I want to address in this article is how well this attribution method works with texts in a language with a different grammatical structure and a script based on different principles. There are fewer studies analyzing the effectiveness of the Delta method on Chinese texts than on texts in European languages. I believe that such a low level of attention to Delta from sinologists is due to the structure of the scientific field dedicated to medieval Chinese poetry. Clustering based on intertextual distances worked flawlessly. Delta produced results where clustering showed that the samples of one author were most similar to each other, and Delta never confused different poets. Despite the fact that I used an unconventional approach and applied the Delta method to a language poorly suited for it, the method demonstrated its effectiveness. Tang dynasty poets are correctly identified using Delta, and the empirical pattern observed for authors writing in European standard languages has been confirmed once again. 1 authors · Jul 10, 2024
- Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}. 3 authors · Jul 8, 2024
- Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis This paper introduces Opencpop, a publicly available high-quality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet, and the corpus, as well as synthesized demos, can be found on the project homepage. 9 authors · Jan 19, 2022
1 Dialectal and Low Resource Machine Translation for Aromanian We present a neural machine translation system that can translate between Romanian, English, and Aromanian (an endangered Eastern Romance language); the first of its kind. BLEU scores range from 17 to 32 depending on the direction and genre of the text. Alongside, we release the biggest known Aromanian-Romanian bilingual corpus, consisting of 79k cleaned sentence pairs. Additional tools such as an agnostic sentence embedder (used for both text mining and automatic evaluation) and a diacritics converter are also presented. We publicly release our findings and models. Finally, we describe the deployment of our quantized model at https://arotranslate.com. 3 authors · Oct 23, 2024
- Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems Machine translation focuses mainly on high-resource languages (HRLs), while low-resource languages (LRLs) like Taiwanese Hokkien are relatively under-explored. The study aims to address this gap by developing a dual translation model between Taiwanese Hokkien and both Traditional Mandarin Chinese and English. We employ a pre-trained LLaMA 2-7B model specialized in Traditional Mandarin Chinese to leverage the orthographic similarities between Taiwanese Hokkien Han and Traditional Mandarin Chinese. Our comprehensive experiments involve translation tasks across various writing systems of Taiwanese Hokkien as well as between Taiwanese Hokkien and other HRLs. We find that the use of a limited monolingual corpus still further improves the model's Taiwanese Hokkien capabilities. We then utilize our translation model to standardize all Taiwanese Hokkien writing systems into Hokkien Han, resulting in further performance improvements. Additionally, we introduce an evaluation method incorporating back-translation and GPT-4 to ensure reliable translation quality assessment even for LRLs. The study contributes to narrowing the resource gap for Taiwanese Hokkien and empirically investigates the advantages and limitations of pre-training and fine-tuning based on LLaMA 2. 4 authors · Mar 18, 2024
- Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset Automatic speech recognition (ASR) on low resource languages improves the access of linguistic minorities to technological advantages provided by artificial intelligence (AI). In this paper, we address the problem of data scarcity for the Hong Kong Cantonese language by creating a new Cantonese dataset. Our dataset, Multi-Domain Cantonese Corpus (MDCC), consists of 73.6 hours of clean read speech paired with transcripts, collected from Cantonese audiobooks from Hong Kong. It comprises philosophy, politics, education, culture, lifestyle and family domains, covering a wide range of topics. We also review all existing Cantonese datasets and analyze them according to their speech type, data source, total size and availability. We further conduct experiments with Fairseq S2T Transformer, a state-of-the-art ASR model, on the biggest existing dataset, Common Voice zh-HK, and our proposed MDCC, and the results show the effectiveness of our dataset. In addition, we create a powerful and robust Cantonese ASR model by applying multi-dataset learning on MDCC and Common Voice zh-HK. 12 authors · Jan 7, 2022
- Improving Chinese Spelling Check by Character Pronunciation Prediction: The Effects of Adaptivity and Granularity Chinese spelling check (CSC) is a fundamental NLP task that detects and corrects spelling errors in Chinese texts. As most of these spelling errors are caused by phonetic similarity, effectively modeling the pronunciation of Chinese characters is a key factor for CSC. In this paper, we consider introducing an auxiliary task of Chinese pronunciation prediction (CPP) to improve CSC, and, for the first time, systematically discuss the adaptivity and granularity of this auxiliary task. We propose SCOPE which builds on top of a shared encoder two parallel decoders, one for the primary CSC task and the other for a fine-grained auxiliary CPP task, with a novel adaptive weighting scheme to balance the two tasks. In addition, we design a delicate iterative correction strategy for further improvements during inference. Empirical evaluation shows that SCOPE achieves new state-of-the-art on three CSC benchmarks, demonstrating the effectiveness and superiority of the auxiliary CPP task. Comprehensive ablation studies further verify the positive effects of adaptivity and granularity of the task. Code and data used in this paper are publicly available at https://github.com/jiahaozhenbang/SCOPE. 6 authors · Oct 19, 2022
- Are LLMs Effective Backbones for Fine-tuning? An Experimental Investigation of Supervised LLMs on Chinese Short Text Matching The recent success of Large Language Models (LLMs) has garnered significant attention in both academia and industry. Prior research on LLMs has primarily focused on enhancing or leveraging their generalization capabilities in zero- and few-shot settings. However, there has been limited investigation into effectively fine-tuning LLMs for a specific natural language understanding task in supervised settings. In this study, we conduct an experimental analysis by fine-tuning LLMs for the task of Chinese short text matching. We explore various factors that influence performance when fine-tuning LLMs, including task modeling methods, prompt formats, and output formats. 5 authors · Mar 28, 2024
1 Know thy corpus! Robust methods for digital curation of Web corpora This paper proposes a novel framework for digital curation of Web corpora in order to provide robust estimation of their parameters, such as their composition and the lexicon. In recent years language models pre-trained on large corpora emerged as clear winners in numerous NLP tasks, but no proper analysis of the corpora which led to their success has been conducted. The paper presents a procedure for robust frequency estimation, which helps in establishing the core lexicon for a given corpus, as well as a procedure for estimating the corpus composition via unsupervised topic models and via supervised genre classification of Web pages. The results of the digital curation study applied to several Web-derived corpora demonstrate their considerable differences. First, this concerns different frequency bursts which impact the core lexicon obtained from each corpus. Second, this concerns the kinds of texts they contain. For example, OpenWebText contains considerably more topical news and political argumentation in comparison to ukWac or Wikipedia. The tools and the results of analysis have been released. 1 authors · Mar 13, 2020
- CLUE: A Chinese Language Understanding Evaluation Benchmark The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com 32 authors · Apr 13, 2020
- Bianet: A Parallel News Corpus in Turkish, Kurdish and English We present a new open-source parallel corpus consisting of news articles collected from the Bianet magazine, an online newspaper that publishes Turkish news, often along with their translations in English and Kurdish. In this paper, we describe the collection process of the corpus and its statistical properties. We validate the benefit of using the Bianet corpus by evaluating bilingual and multilingual neural machine translation models in English-Turkish and English-Kurdish directions. 1 authors · May 14, 2018
1 Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs. 9 authors · Apr 7, 2024
- NorNE: Annotating Named Entities for Norwegian This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture. 5 authors · Nov 27, 2019
2 Larth: Dataset and Machine Translation for Etruscan Etruscan is an ancient language spoken in Italy from the 7th century BC to the 1st century AD. There are no native speakers of the language at the present day, and its resources are scarce, as there exist only around 12,000 known inscriptions. To the best of our knowledge, there are no publicly available Etruscan corpora for natural language processing. Therefore, we propose a dataset for machine translation from Etruscan to English, which contains 2891 translated examples from existing academic sources. Some examples are extracted manually, while others are acquired in an automatic way. Along with the dataset, we benchmark different machine translation models observing that it is possible to achieve a BLEU score of 10.1 with a small transformer model. Releasing the dataset can help enable future research on this language, similar languages or other languages with scarce resources. 2 authors · Oct 9, 2023
17 RetrieveGPT: Merging Prompts and Mathematical Models for Enhanced Code-Mixed Information Retrieval Code-mixing, the integration of lexical and grammatical elements from multiple languages within a single sentence, is a widespread linguistic phenomenon, particularly prevalent in multilingual societies. In India, social media users frequently engage in code-mixed conversations using the Roman script, especially among migrant communities who form online groups to share relevant local information. This paper focuses on the challenges of extracting relevant information from code-mixed conversations, specifically within Roman transliterated Bengali mixed with English. This study presents a novel approach to address these challenges by developing a mechanism to automatically identify the most relevant answers from code-mixed conversations. We have experimented with a dataset comprising of queries and documents from Facebook, and Query Relevance files (QRels) to aid in this task. Our results demonstrate the effectiveness of our approach in extracting pertinent information from complex, code-mixed digital conversations, contributing to the broader field of natural language processing in multilingual and informal text environments. We use GPT-3.5 Turbo via prompting alongwith using the sequential nature of relevant documents to frame a mathematical model which helps to detect relevant documents corresponding to a query. 2 authors · Nov 7, 2024 3
1 CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks. 7 authors · May 9, 2023
3 Cross-lingual Named Entity Corpus for Slavic Languages This paper presents a corpus manually annotated with named entities for six Slavic languages - Bulgarian, Czech, Polish, Slovenian, Russian, and Ukrainian. This work is the result of a series of shared tasks, conducted in 2017-2023 as a part of the Workshops on Slavic Natural Language Processing. The corpus consists of 5 017 documents on seven topics. The documents are annotated with five classes of named entities. Each entity is described by a category, a lemma, and a unique cross-lingual identifier. We provide two train-tune dataset splits - single topic out and cross topics. For each split, we set benchmarks using a transformer-based neural network architecture with the pre-trained multilingual models - XLM-RoBERTa-large for named entity mention recognition and categorization, and mT5-large for named entity lemmatization and linking. 3 authors · Mar 30, 2024