Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences
Language models for biological and chemical sequences enable crucial applications such as drug discovery, protein engineering, and precision medicine. Currently, these language models are predominantly based on Transformer architectures. While Transformers have yielded impressive results, their quadratic runtime dependency on the sequence length complicates their use for long genomic sequences and in-context learning on proteins and chemical sequences. Recently, the recurrent xLSTM architecture has been shown to perform favorably compared to Transformers and modern state-space model (SSM) architectures in the natural language domain. Similar to SSMs, xLSTMs have a linear runtime dependency on the sequence length and allow for constant-memory decoding at inference time, which makes them prime candidates for modeling long-range dependencies in biological and chemical sequences. In this work, we tailor xLSTM towards these domains and propose a suite of architectural variants called Bio-xLSTM. Extensive experiments in three large domains, genomics, proteins, and chemistry, were performed to assess xLSTM's ability to model biological and chemical sequences. The results show that models based on Bio-xLSTM a) can serve as proficient generative models for DNA, protein, and chemical sequences, b) learn rich representations for those modalities, and c) can perform in-context learning for proteins and small molecules.
Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.
Bio-Inspired Night Image Enhancement Based on Contrast Enhancement and Denoising
Due to the low accuracy of object detection and recognition in many intelligent surveillance systems at nighttime, the quality of night images is crucial. Compared with the corresponding daytime image, nighttime image is characterized as low brightness, low contrast and high noise. In this paper, a bio-inspired image enhancement algorithm is proposed to convert a low illuminance image to a brighter and clear one. Different from existing bio-inspired algorithm, the proposed method doesn't use any training sequences, we depend on a novel chain of contrast enhancement and denoising algorithms without using any forms of recursive functions. Our method can largely improve the brightness and contrast of night images, besides, suppress noise. Then we implement on real experiment, and simulation experiment to test our algorithms. Both results show the advantages of proposed algorithm over contrast pair, Meylan and Retinex.
Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory
The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.
SAIS: A Novel Bio-Inspired Artificial Immune System Based on Symbiotic Paradigm
We propose a novel type of Artificial Immune System (AIS): Symbiotic Artificial Immune Systems (SAIS), drawing inspiration from symbiotic relationships in biology. SAIS parallels the three key stages (i.e., mutualism, commensalism and parasitism) of population updating from the Symbiotic Organisms Search (SOS) algorithm. This parallel approach effectively addresses the challenges of large population size and enhances population diversity in AIS, which traditional AIS and SOS struggle to resolve efficiently. We conducted a series of experiments, which demonstrated that our SAIS achieved comparable performance to the state-of-the-art approach SOS and outperformed other popular AIS approaches and evolutionary algorithms across 26 benchmark problems. Furthermore, we investigated the problem of parameter selection and found that SAIS performs better in handling larger population sizes while requiring fewer generations. Finally, we believe SAIS, as a novel bio-inspired and immune-inspired algorithm, paves the way for innovation in bio-inspired computing with the symbiotic paradigm.
BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities
This paper introduces BiMediX2, a bilingual (Arabic-English) Bio-Medical EXpert Large Multimodal Model (LMM) with a unified architecture that integrates text and visual modalities, enabling advanced image understanding and medical applications. BiMediX2 leverages the Llama3.1 architecture and integrates text and visual capabilities to facilitate seamless interactions in both English and Arabic, supporting text-based inputs and multi-turn conversations involving medical images. The model is trained on an extensive bilingual healthcare dataset consisting of 1.6M samples of diverse medical interactions for both text and image modalities, mixed in Arabic and English. We also propose the first bilingual GPT-4o based medical LMM benchmark named BiMed-MBench. BiMediX2 is benchmarked on both text-based and image-based tasks, achieving state-of-the-art performance across several medical benchmarks. It outperforms recent state-of-the-art models in medical LLM evaluation benchmarks. Our model also sets a new benchmark in multimodal medical evaluations with over 9% improvement in English and over 20% in Arabic evaluations. Additionally, it surpasses GPT-4 by around 9% in UPHILL factual accuracy evaluations and excels in various medical Visual Question Answering, Report Generation, and Report Summarization tasks. The project page including source code and the trained model, is available at https://github.com/mbzuai-oryx/BiMediX2.
Using CSNNs to Perform Event-based Data Processing & Classification on ASL-DVS
Recent advancements in bio-inspired visual sensing and neuromorphic computing have led to the development of various highly efficient bio-inspired solutions with real-world applications. One notable application integrates event-based cameras with spiking neural networks (SNNs) to process event-based sequences that are asynchronous and sparse, making them difficult to handle. In this project, we develop a convolutional spiking neural network (CSNN) architecture that leverages convolutional operations and recurrent properties of a spiking neuron to learn the spatial and temporal relations in the ASL-DVS gesture dataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand gestures when displaying 24 letters (A to Y, excluding J and Z due to the nature of their symbols) from the American Sign Language (ASL). We performed classification on a pre-processed subset of the full ASL-DVS dataset to identify letter signs and achieved 100\% training accuracy. Specifically, this was achieved by training in the Google Cloud compute platform while using a learning rate of 0.0005, batch size of 25 (total of 20 batches), 200 iterations, and 10 epochs.
SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition
Event cameras are bio-inspired sensors that respond to local changes in light intensity and feature low latency, high energy efficiency, and high dynamic range. Meanwhile, Spiking Neural Networks (SNNs) have gained significant attention due to their remarkable efficiency and fault tolerance. By synergistically harnessing the energy efficiency inherent in event cameras and the spike-based processing capabilities of SNNs, their integration could enable ultra-low-power application scenarios, such as action recognition tasks. However, existing approaches often entail converting asynchronous events into conventional frames, leading to additional data mapping efforts and a loss of sparsity, contradicting the design concept of SNNs and event cameras. To address this challenge, we propose SpikePoint, a novel end-to-end point-based SNN architecture. SpikePoint excels at processing sparse event cloud data, effectively extracting both global and local features through a singular-stage structure. Leveraging the surrogate training method, SpikePoint achieves high accuracy with few parameters and maintains low power consumption, specifically employing the identity mapping feature extractor on diverse datasets. SpikePoint achieves state-of-the-art (SOTA) performance on four event-based action recognition datasets using only 16 timesteps, surpassing other SNN methods. Moreover, it also achieves SOTA performance across all methods on three datasets, utilizing approximately 0.3\% of the parameters and 0.5\% of power consumption employed by artificial neural networks (ANNs). These results emphasize the significance of Point Cloud and pave the way for many ultra-low-power event-based data processing applications.
BiRT: Bio-inspired Replay in Vision Transformers for Continual Learning
The ability of deep neural networks to continually learn and adapt to a sequence of tasks has remained challenging due to catastrophic forgetting of previously learned tasks. Humans, on the other hand, have a remarkable ability to acquire, assimilate, and transfer knowledge across tasks throughout their lifetime without catastrophic forgetting. The versatility of the brain can be attributed to the rehearsal of abstract experiences through a complementary learning system. However, representation rehearsal in vision transformers lacks diversity, resulting in overfitting and consequently, performance drops significantly compared to raw image rehearsal. Therefore, we propose BiRT, a novel representation rehearsal-based continual learning approach using vision transformers. Specifically, we introduce constructive noises at various stages of the vision transformer and enforce consistency in predictions with respect to an exponential moving average of the working model. Our method provides consistent performance gain over raw image and vanilla representation rehearsal on several challenging CL benchmarks, while being memory efficient and robust to natural and adversarial corruptions.
Natively neuromorphic LMU architecture for encoding-free SNN-based HAR on commercial edge devices
Neuromorphic models take inspiration from the human brain by adopting bio-plausible neuron models to build alternatives to traditional Machine Learning (ML) and Deep Learning (DL) solutions. The scarce availability of dedicated hardware able to actualize the emulation of brain-inspired computation, which is otherwise only simulated, yet still hinders the wide adoption of neuromorphic computing for edge devices and embedded systems. With this premise, we adopt the perspective of neuromorphic computing for conventional hardware and we present the L2MU, a natively neuromorphic Legendre Memory Unit (LMU) which entirely relies on Leaky Integrate-and-Fire (LIF) neurons. Specifically, the original recurrent architecture of LMU has been redesigned by modelling every constituent element with neural populations made of LIF or Current-Based (CuBa) LIF neurons. To couple neuromorphic computing and off-the-shelf edge devices, we equipped the L2MU with an input module for the conversion of real values into spikes, which makes it an encoding-free implementation of a Recurrent Spiking Neural Network (RSNN) able to directly work with raw sensor signals on non-dedicated hardware. As a use case to validate our network, we selected the task of Human Activity Recognition (HAR). We benchmarked our L2MU on smartwatch signals from hand-oriented activities, deploying it on three different commercial edge devices in compressed versions too. The reported results remark the possibility of considering neuromorphic models not only in an exclusive relationship with dedicated hardware but also as a suitable choice to work with common sensors and devices.
CausalImages: An R Package for Causal Inference with Earth Observation, Bio-medical, and Social Science Images
The causalimages R package enables causal inference with image and image sequence data, providing new tools for integrating novel data sources like satellite and bio-medical imagery into the study of cause and effect. One set of functions enables image-based causal inference analyses. For example, one key function decomposes treatment effect heterogeneity by images using an interpretable Bayesian framework. This allows for determining which types of images or image sequences are most responsive to interventions. A second modeling function allows researchers to control for confounding using images. The package also allows investigators to produce embeddings that serve as vector summaries of the image or video content. Finally, infrastructural functions are also provided, such as tools for writing large-scale image and image sequence data as sequentialized byte strings for more rapid image analysis. causalimages therefore opens new capabilities for causal inference in R, letting researchers use informative imagery in substantive analyses in a fast and accessible manner.
DSC-IITISM at FinCausal 2021: Combining POS tagging with Attention-based Contextual Representations for Identifying Causal Relationships in Financial Documents
Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop.
LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation
Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques.
Implementing Systemic Thinking for Automatic Schema Matching: An Agent-Based Modeling Approach
Several approaches are proposed to deal with the problem of the Automatic Schema Matching (ASM). The challenges and difficulties caused by the complexity and uncertainty characterizing both the process and the outcome of Schema Matching motivated us to investigate how bio-inspired emerging paradigm can help with understanding, managing, and ultimately overcoming those challenges. In this paper, we explain how we approached Automatic Schema Matching as a systemic and Complex Adaptive System (CAS) and how we modeled it using the approach of Agent-Based Modeling and Simulation (ABMS). This effort gives birth to a tool (prototype) for schema matching called Reflex-SMAS. A set of experiments demonstrates the viability of our approach on two main aspects: (i) effectiveness (increasing the quality of the found matchings) and (ii) efficiency (reducing the effort required for this efficiency). Our approach represents a significant paradigm-shift, in the field of Automatic Schema Matching.
Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision
In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.
Generations of Knowledge Graphs: The Crazy Ideas and the Business Impact
Knowledge Graphs (KGs) have been used to support a wide range of applications, from web search to personal assistant. In this paper, we describe three generations of knowledge graphs: entity-based KGs, which have been supporting general search and question answering (e.g., at Google and Bing); text-rich KGs, which have been supporting search and recommendations for products, bio-informatics, etc. (e.g., at Amazon and Alibaba); and the emerging integration of KGs and LLMs, which we call dual neural KGs. We describe the characteristics of each generation of KGs, the crazy ideas behind the scenes in constructing such KGs, and the techniques developed over time to enable industry impact. In addition, we use KGs as examples to demonstrate a recipe to evolve research ideas from innovations to production practice, and then to the next level of innovations, to advance both science and business.
A Three-Phase Analysis of Synergistic Effects During Co-pyrolysis of Algae and Wood for Biochar Yield Using Machine Learning
Pyrolysis techniques have served to be a groundbreaking technique for effectively utilising natural and man-made biomass products like plastics, wood, crop residue, fruit peels etc. Recent advancements have shown a greater yield of essential products like biochar, bio-oil and other non-condensable gases by blending different biomasses in a certain ratio. This synergy effect of combining two pyrolytic raw materials i.e co-pyrolysis of algae and wood biomass has been systematically studied and grouped into 3 phases in this research paper-kinetic analysis of co-pyrolysis, correlation among proximate and ultimate analysis with bio-char yield and lastly grouping of different weight ratios based on biochar yield up to a certain percentage. Different ML and DL algorithms have been utilized for regression and classification techniques to give a comprehensive overview of the effect of the synergy of two different biomass materials on biochar yield. For the first phase, the best prediction of biochar yield was obtained by using a decision tree regressor with a perfect MSE score of 0.00, followed by a gradient-boosting regressor. The second phase was analyzed using both ML and DL techniques. Within ML, SVR proved to be the most convenient model with an accuracy score of 0.972 with DNN employed for deep learning technique. Finally, for the third phase, binary classification was applied to biochar yield with and without heating rate for biochar yield percentage above and below 40%. The best technique for ML was Support Vector followed by Random forest while ANN was the most suitable Deep Learning Technique.
AD-BERT: Using Pre-trained contextualized embeddings to Predict the Progression from Mild Cognitive Impairment to Alzheimer's Disease
Objective: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000-2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting, and then pretrained a BERT model for AD (AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. The embeddings of all the sections of a patient's notes processed by AD-BERT were combined by MaxPooling to compute the probability of MCI-to-AD progression. For replication, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. Results: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.8170 and F1 score of 0.4178 on NMEDW dataset and AUC of 0.8830 and F1 score of 0.6836 on WCM dataset. Conclusion: We developed a deep learning framework using BERT models which provide an effective solution for prediction of MCI-to-AD progression using clinical note analysis.
LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies
Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.
BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials
The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.