Papers
arxiv:2311.13534

LM-Cocktail: Resilient Tuning of Language Models via Model Merging

Published on Nov 22, 2023

Abstract

The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose LM-Cocktail which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging, where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain. We conduct comprehensive experiments with LLama and BGE model on popular benchmarks, including FLAN, MMLU, MTEB, whose results validate the efficacy of our proposed method. The code and checkpoints are available at https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail.

Community

Sign up or log in to comment

Models citing this paper 45

Browse 45 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2311.13534 in a dataset README.md to link it from this page.

Spaces citing this paper 721

Collections including this paper 2