Papers
arxiv:2212.05055

Sparse Upcycling: Training Mixture-of-Experts from Dense Checkpoints

Published on Dec 9, 2022
Authors:
,
,
,
,
,
,
,
,

Abstract

Training large, deep neural networks to convergence can be prohibitively expensive. As a result, often only a small selection of popular, dense models are reused across different contexts and tasks. Increasingly, sparsely activated models, which seek to decouple model size from computation costs, are becoming an attractive alternative to dense models. Although more efficient in terms of quality and computation cost, sparse models remain data-hungry and costly to train from scratch in the large scale regime. In this work, we propose sparse upcycling -- a simple way to reuse sunk training costs by initializing a sparsely activated Mixture-of-Experts model from a dense checkpoint. We show that sparsely upcycled T5 Base, Large, and XL language models and Vision Transformer Base and Large models, respectively, significantly outperform their dense counterparts on SuperGLUE and ImageNet, using only ~50% of the initial dense pretraining sunk cost. The upcycled models also outperform sparse models trained from scratch on 100% of the initial dense pretraining computation budget.

Community

Sign up or log in to comment

Models citing this paper 23

Browse 23 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2212.05055 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2212.05055 in a Space README.md to link it from this page.

Collections including this paper 15