Papers
arxiv:2101.07243

Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models

Published on Jan 18, 2021
Authors:
,
,
,
,

Abstract

Symmetries such as gauge invariance and anyonic symmetry play a crucial role in quantum many-body physics. We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states, including a wide range of architectures such as Transformer and recurrent neural network (RNN), for quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries or anyonic constraint. We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes, and the X-cube fracton model. We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models. We simulate the dynamics and the ground states of the quantum link model of U(1) lattice gauge theory, obtain the phase diagram for the 2D Z_2 gauge theory, determine the phase transition and the central charge of the SU(2)_3 anyonic chain, and also compute the ground state energy of the SU(2) invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed matter physics, high energy physics and quantum information science.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2101.07243 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2101.07243 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2101.07243 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.