File size: 16,946 Bytes
6dfca99 62de5e3 07fe920 6dfca99 07fe920 6dfca99 62de5e3 07fe920 6dfca99 07fe920 6dfca99 62de5e3 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 6dfca99 07fe920 62de5e3 6dfca99 07fe920 6dfca99 07fe920 62de5e3 6dfca99 07fe920 6dfca99 62de5e3 6dfca99 07fe920 62de5e3 07fe920 6dfca99 07fe920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1879136
- loss:CachedGISTEmbedLoss
license: mit
metrics:
- recall
- precision
- f1
base_model:
- BAAI/bge-m3
library_name: sentence-transformers
---
# π KURE-v1
Introducing Korea University Retrieval Embedding model, KURE-v1
It has shown remarkable performance in Korean text retrieval, speficially overwhelming most multilingual embedding models.
To our knowledge, It is one of the best publicly opened Korean retrieval models.
For details, visit the [KURE repository](https://github.com/nlpai-lab/KURE)
---
## Model Versions
| Model Name | Dimension | Sequence Length | Introduction |
|:----:|:---:|:---:|:---:|
| [KURE-v1](https://huggingface.co/nlpai-lab/KURE-v1) | 1024 | 8192 | Fine-tuned [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) with Korean data via [CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)
| [KoE5](https://huggingface.co/nlpai-lab/KoE5) | 1024 | 512 | Fine-tuned [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) with [ko-triplet-v1.0](https://huggingface.co/datasets/nlpai-lab/ko-triplet-v1.0) via [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) |
## Model Description
This is the model card of a π€ transformers model that has been pushed on the Hub.
- **Developed by:** [NLP&AI Lab](http://nlp.korea.ac.kr/)
- **Language(s) (NLP):** Korean, English
- **License:** MIT
- **Finetuned from model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
## Example code
### Install Dependencies
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
### Python code
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("nlpai-lab/KURE-v1")
# Run inference
sentences = [
'νλ²κ³Ό λ²μμ‘°μ§λ²μ μ΄λ€ λ°©μμ ν΅ν΄ κΈ°λ³ΈκΆ λ³΄μ₯ λ±μ λ€μν λ²μ λͺ¨μμ κ°λ₯νκ² νμ΄',
'4. μμ¬μ κ³Ό κ°μ λ°©ν₯ μμ μ΄ν΄λ³Έ λ°μ κ°μ΄ μ°λ¦¬ νλ²κ³Ό ο½’λ²μμ‘°μ§ λ²ο½£μ λλ²μ ꡬμ±μ λ€μννμ¬ κΈ°λ³ΈκΆ λ³΄μ₯κ³Ό λ―Όμ£Όμ£Όμ ν립μ μμ΄ λ€κ°μ μΈ λ²μ λͺ¨μμ κ°λ₯νκ² νλ κ²μ κ·Όλ³Έ κ·λ²μΌλ‘ νκ³ μλ€. λμ±μ΄ ν©μ체λ‘μμ λλ²μ μ리λ₯Ό μ±ννκ³ μλ κ² μμ κ·Έ ꡬμ±μ λ€μμ±μ μμ²νλ κ²μΌλ‘ ν΄μλλ€. μ΄μ κ°μ κ΄μ μμ λ³Ό λ νμ§ λ²μμ₯κΈ κ³ μλ²κ΄μ μ€μ¬μΌλ‘ λλ²μμ ꡬμ±νλ κ΄νμ κ°μ ν νμκ° μλ κ²μΌλ‘ 보μΈλ€.',
'μ°λ°©νλ²μ¬νμλ 2001λ
1μ 24μΌ 5:3μ λ€μ견ν΄λ‘ γλ²μμ‘°μ§λ²γ μ 169μ‘° μ 2λ¬Έμ΄ νλ²μ ν©μΉλλ€λ νκ²°μ λ΄λ Έμ β 5μΈμ λ€μ μ¬νκ΄μ μμ‘κ΄κ³μΈμ μΈκ²©κΆ 보νΈ, 곡μ ν μ μ°¨μ 보μ₯κ³Ό λ°©ν΄λ°μ§ μλ λ²κ³Ό μ§μ€ λ°κ²¬ λ±μ κ·Όκ±°λ‘ νμ¬ ν
λ λΉμ 촬μμ λν μ λμ μΈ κΈμ§λ₯Ό νλ²μ ν©μΉνλ κ²μΌλ‘ 보μμ β κ·Έλ¬λ λλ¨Έμ§ 3μΈμ μ¬νκ΄μ νμ λ²μμ μμ‘μ μ°¨λ νΉλ³ν μΈκ²©κΆ 보νΈμ μ΄μ΅λ μμΌλ©°, ν
λ λΉμ 곡κ°μ£Όμλ‘ μΈν΄ λ²κ³Ό μ§μ€ λ°κ²¬μ κ³Όμ μ΄ μΈμ λ μνλ‘κ² λλ κ²μ μλλΌλ©΄μ λ°λμ견μ μ μν¨ β μλνλ©΄ νμ λ²μμ μμ‘μ μ°¨μμλ μμ‘λΉμ¬μκ° κ°μΈμ μΌλ‘ μ§μ μ¬λ¦¬μ μ°Έμν기보λ€λ λ³νΈμ¬κ° μ°Έμνλ κ²½μ°κ° λ§μΌλ©°, μ¬λ¦¬λμλ μ¬μ€λ¬Έμ κ° μλ λ²λ₯ λ¬Έμ κ° λλΆλΆμ΄κΈ° λλ¬Έμ΄λΌλ κ²μ β‘ ννΈ, μ°λ°©νλ²μ¬νμλ γμ°λ°©νλ²μ¬νμλ²γ(Bundesverfassungsgerichtsgesetz: BVerfGG) μ 17aμ‘°μ λ°λΌ μ νμ μ΄λλ§ μ¬νμ λν λ°©μ‘μ νμ©νκ³ μμ β γμ°λ°©νλ²μ¬νμλ²γ μ 17μ‘°μμ γλ²μμ‘°μ§λ²γ μ 14μ λ΄μ§ μ 16μ μ κ·μ μ μ€μ©νλλ‘ νκ³ μμ§λ§, λ
Ήμμ΄λ 촬μμ ν΅ν μ¬ν곡κ°μ κ΄λ ¨νμ¬μλ γλ²μμ‘°μ§λ²γκ³Ό λ€λ₯Έ λ΄μ©μ κ·μ νκ³ μμ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# Results for KURE-v1
# tensor([[1.0000, 0.6967, 0.5306],
# [0.6967, 1.0000, 0.4427],
# [0.5306, 0.4427, 1.0000]])
```
## Training Details
### Training Data
#### KURE-v1
- Korean query-document-hard_negative(5) data
- 2,000,000 examples
### Training Procedure
- **loss:** Used **[CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)** by sentence-transformers
- **batch size:** 4096
- **learning rate:** 2e-05
- **epochs:** 1
## Evaluation
### Metrics
- Recall, Precision, NDCG, F1
### Benchmark Datasets
- [Ko-StrategyQA](https://huggingface.co/datasets/taeminlee/Ko-StrategyQA): νκ΅μ΄ ODQA multi-hop κ²μ λ°μ΄ν°μ
(StrategyQA λ²μ)
- [AutoRAGRetrieval](https://huggingface.co/datasets/yjoonjang/markers_bm): κΈμ΅, 곡곡, μλ£, λ²λ₯ , μ»€λ¨Έμ€ 5κ° λΆμΌμ λν΄, pdfλ₯Ό νμ±νμ¬ κ΅¬μ±ν νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- [MIRACLRetrieval]([url](https://huggingface.co/datasets/miracl/miracl)): Wikipedia κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- [PublicHealthQA]([url](https://huggingface.co/datasets/xhluca/publichealth-qa)): μλ£ λ° κ³΅μ€λ³΄κ±΄ λλ©μΈμ λν νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- [BelebeleRetrieval]([url](https://huggingface.co/datasets/facebook/belebele)): FLORES-200 κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy): Wikipedia κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- [MultiLongDocRetrieval](https://huggingface.co/datasets/Shitao/MLDR): λ€μν λλ©μΈμ νκ΅μ΄ μ₯λ¬Έ κ²μ λ°μ΄ν°μ
- [XPQARetrieval](https://huggingface.co/datasets/jinaai/xpqa): λ€μν λλ©μΈμ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
## Results
μλλ λͺ¨λ λͺ¨λΈμ, λͺ¨λ λ²€μΉλ§ν¬ λ°μ΄ν°μ
μ λν νκ· κ²°κ³Όμ
λλ€.
μμΈν κ²°κ³Όλ [KURE Github](https://github.com/nlpai-lab/KURE/tree/main/eval/results)μμ νμΈνμ€ μ μμ΅λλ€.
### Top-k 1
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.52640** | **0.60551** | **0.60551** | **0.55784** |
| dragonkue/BGE-m3-ko | 0.52361 | 0.60394 | 0.60394 | 0.55535 |
| BAAI/bge-m3 | 0.51778 | 0.59846 | 0.59846 | 0.54998 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.51246 | 0.59384 | 0.59384 | 0.54489 |
| nlpai-lab/KoE5 | 0.50157 | 0.57790 | 0.57790 | 0.53178 |
| intfloat/multilingual-e5-large | 0.50052 | 0.57727 | 0.57727 | 0.53122 |
| jinaai/jina-embeddings-v3 | 0.48287 | 0.56068 | 0.56068 | 0.51361 |
| BAAI/bge-multilingual-gemma2 | 0.47904 | 0.55472 | 0.55472 | 0.50916 |
| intfloat/multilingual-e5-large-instruct | 0.47842 | 0.55435 | 0.55435 | 0.50826 |
| intfloat/multilingual-e5-base | 0.46950 | 0.54490 | 0.54490 | 0.49947 |
| intfloat/e5-mistral-7b-instruct | 0.46772 | 0.54394 | 0.54394 | 0.49781 |
| Alibaba-NLP/gte-multilingual-base | 0.46469 | 0.53744 | 0.53744 | 0.49353 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.46633 | 0.53625 | 0.53625 | 0.49429 |
| openai/text-embedding-3-large | 0.44884 | 0.51688 | 0.51688 | 0.47572 |
| Salesforce/SFR-Embedding-2_R | 0.43748 | 0.50815 | 0.50815 | 0.46504 |
| upskyy/bge-m3-korean | 0.43125 | 0.50245 | 0.50245 | 0.45945 |
| jhgan/ko-sroberta-multitask | 0.33788 | 0.38497 | 0.38497 | 0.35678 |
### Top-k 3
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.68678** | **0.28711** | **0.65538** | **0.39835** |
| dragonkue/BGE-m3-ko | 0.67834 | 0.28385 | 0.64950 | 0.39378 |
| BAAI/bge-m3 | 0.67526 | 0.28374 | 0.64556 | 0.39291 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.67128 | 0.28193 | 0.64042 | 0.39072 |
| intfloat/multilingual-e5-large | 0.65807 | 0.27777 | 0.62822 | 0.38423 |
| nlpai-lab/KoE5 | 0.65174 | 0.27329 | 0.62369 | 0.37882 |
| BAAI/bge-multilingual-gemma2 | 0.64415 | 0.27416 | 0.61105 | 0.37782 |
| jinaai/jina-embeddings-v3 | 0.64116 | 0.27165 | 0.60954 | 0.37511 |
| intfloat/multilingual-e5-large-instruct | 0.64353 | 0.27040 | 0.60790 | 0.37453 |
| Alibaba-NLP/gte-multilingual-base | 0.63744 | 0.26404 | 0.59695 | 0.36764 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.63163 | 0.25937 | 0.59237 | 0.36263 |
| intfloat/multilingual-e5-base | 0.62099 | 0.26144 | 0.59179 | 0.36203 |
| intfloat/e5-mistral-7b-instruct | 0.62087 | 0.26144 | 0.58917 | 0.36188 |
| openai/text-embedding-3-large | 0.61035 | 0.25356 | 0.57329 | 0.35270 |
| Salesforce/SFR-Embedding-2_R | 0.60001 | 0.25253 | 0.56346 | 0.34952 |
| upskyy/bge-m3-korean | 0.59215 | 0.25076 | 0.55722 | 0.34623 |
| jhgan/ko-sroberta-multitask | 0.46930 | 0.18994 | 0.43293 | 0.26696 |
### Top-k 5
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.73851** | **0.19130** | **0.67479** | **0.29903** |
| dragonkue/BGE-m3-ko | 0.72517 | 0.18799 | 0.66692 | 0.29401 |
| BAAI/bge-m3 | 0.72954 | 0.18975 | 0.66615 | 0.29632 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.72962 | 0.18875 | 0.66236 | 0.29542 |
| nlpai-lab/KoE5 | 0.70820 | 0.18287 | 0.64499 | 0.28628 |
| intfloat/multilingual-e5-large | 0.70124 | 0.18316 | 0.64402 | 0.28588 |
| BAAI/bge-multilingual-gemma2 | 0.70258 | 0.18556 | 0.63338 | 0.28851 |
| jinaai/jina-embeddings-v3 | 0.69933 | 0.18256 | 0.63133 | 0.28505 |
| intfloat/multilingual-e5-large-instruct | 0.69018 | 0.17838 | 0.62486 | 0.27933 |
| Alibaba-NLP/gte-multilingual-base | 0.69365 | 0.17789 | 0.61896 | 0.27879 |
| intfloat/multilingual-e5-base | 0.67250 | 0.17406 | 0.61119 | 0.27247 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.67447 | 0.17114 | 0.60952 | 0.26943 |
| intfloat/e5-mistral-7b-instruct | 0.67449 | 0.17484 | 0.60935 | 0.27349 |
| openai/text-embedding-3-large | 0.66365 | 0.17004 | 0.59389 | 0.26677 |
| Salesforce/SFR-Embedding-2_R | 0.65622 | 0.17018 | 0.58494 | 0.26612 |
| upskyy/bge-m3-korean | 0.65477 | 0.17015 | 0.58073 | 0.26589 |
| jhgan/ko-sroberta-multitask | 0.53136 | 0.13264 | 0.45879 | 0.20976 |
### Top-k 10
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.79682** | **0.10624** | **0.69473** | **0.18524** |
| dragonkue/BGE-m3-ko | 0.78450 | 0.10492 | 0.68748 | 0.18288 |
| BAAI/bge-m3 | 0.79195 | 0.10592 | 0.68723 | 0.18456 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.78669 | 0.10462 | 0.68189 | 0.18260 |
| intfloat/multilingual-e5-large | 0.75902 | 0.10147 | 0.66370 | 0.17693 |
| nlpai-lab/KoE5 | 0.75296 | 0.09937 | 0.66012 | 0.17369 |
| BAAI/bge-multilingual-gemma2 | 0.76153 | 0.10364 | 0.65330 | 0.18003 |
| jinaai/jina-embeddings-v3 | 0.76277 | 0.10240 | 0.65290 | 0.17843 |
| intfloat/multilingual-e5-large-instruct | 0.74851 | 0.09888 | 0.64451 | 0.17283 |
| Alibaba-NLP/gte-multilingual-base | 0.75631 | 0.09938 | 0.64025 | 0.17363 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.74092 | 0.09607 | 0.63258 | 0.16847 |
| intfloat/multilingual-e5-base | 0.73512 | 0.09717 | 0.63216 | 0.16977 |
| intfloat/e5-mistral-7b-instruct | 0.73795 | 0.09777 | 0.63076 | 0.17078 |
| openai/text-embedding-3-large | 0.72946 | 0.09571 | 0.61670 | 0.16739 |
| Salesforce/SFR-Embedding-2_R | 0.71662 | 0.09546 | 0.60589 | 0.16651 |
| upskyy/bge-m3-korean | 0.71895 | 0.09583 | 0.60258 | 0.16712 |
| jhgan/ko-sroberta-multitask | 0.61225 | 0.07826 | 0.48687 | 0.13757 |
<br/>
## Citation
If you find our paper or models helpful, please consider cite as follows:
```text
@misc{KURE,
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
year = {2024},
url = {https://github.com/nlpai-lab/KURE}
},
@misc{KoE5,
author = {NLP & AI Lab and Human-Inspired AI research},
title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
year = {2024},
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
}
``` |