Nisuga Sandira Jayawardana commited on
Commit
5740fc2
·
1 Parent(s): 92bd328

End of training

Browse files
Files changed (1) hide show
  1. README.md +6 -16
README.md CHANGED
@@ -17,27 +17,17 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.0335
21
- - Accuracy: 0.9946
22
 
23
  ## Model description
24
 
25
- This model can categorize a given food product title into Plant-based ("PLANT_BASED") or Animal-based("ANIMAL_BASED").
26
 
27
  ## Intended uses & limitations
28
 
29
- "whey" is an "ANIMAL_BASED" product derived from Cow's milk. Therefore it must be categorized as as an ANIMAL_BASED food product.
30
-
31
- Example usage:
32
- ```
33
- from transformers import pipeline
34
-
35
- text = "whey"
36
- classifier = pipeline("text-classification", model="nish-j/food_type_classification_model")
37
- classifier(text)
38
 
39
- >>> [{'label': 'ANIMAL_BASED', 'score': 0.9941352605819702}]
40
- ```
41
  ## Training and evaluation data
42
 
43
  More information needed
@@ -59,8 +49,8 @@ The following hyperparameters were used during training:
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
61
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
62
- | No log | 1.0 | 325 | 0.0324 | 0.9938 |
63
- | 0.0347 | 2.0 | 650 | 0.0335 | 0.9946 |
64
 
65
 
66
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.0249
21
+ - Accuracy: 0.9940
22
 
23
  ## Model description
24
 
25
+ More information needed
26
 
27
  ## Intended uses & limitations
28
 
29
+ More information needed
 
 
 
 
 
 
 
 
30
 
 
 
31
  ## Training and evaluation data
32
 
33
  More information needed
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | No log | 1.0 | 336 | 0.0351 | 0.9933 |
53
+ | 0.0711 | 2.0 | 672 | 0.0249 | 0.9940 |
54
 
55
 
56
  ### Framework versions