--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: pos-polish-gpt2-small results: [] license: mit datasets: - clarin-pl/nkjp-pos language: - pl --- # pos-polish-gpt2-small This model was trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) on [clarin-pl/nkjp-pos](https://huggingface.co/datasets/clarin-pl/nkjp-pos) dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Precision: 0.8793 - Recall: 0.9255 - F1: 0.9018 - Accuracy: 0.9371 ## Model description Trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) ## Intended uses & limitations Part-of-speech tagging for Polish language. Tags description at the bottom of http://nkjp.pl/poliqarp/help/plse2.html ## Training and evaluation data Dataset: [clarin-pl/nkjp-pos](https://huggingface.co/datasets/clarin-pl/nkjp-pos) Datacollator: ```py from transformers import DataCollatorForTokenClassification data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ## Training procedure GPU: RTX 3090 Training time: 00:50:24 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | | 0.0 | 0 | 3.6116 | 0.0464 | 0.0524 | 0.0492 | 0.0676 | | 0.2303 | 1.0 | 1222 | 0.2159 | 0.8737 | 0.9225 | 0.8974 | 0.9347 | | 0.1776 | 2.0 | 2444 | 0.2124 | 0.8799 | 0.9254 | 0.9021 | 0.9381 | | 0.1467 | 3.0 | 3666 | 0.2205 | 0.8759 | 0.9241 | 0.8994 | 0.9368 | | 0.1254 | 4.0 | 4889 | 0.2304 | 0.8792 | 0.9256 | 0.9018 | 0.9377 | | 0.1091 | 5.0 | 6111 | 0.2480 | 0.8787 | 0.9251 | 0.9013 | 0.9375 | | 0.0949 | 6.0 | 7333 | 0.2651 | 0.8794 | 0.9250 | 0.9016 | 0.9373 | | 0.0857 | 7.0 | 8555 | 0.2794 | 0.8791 | 0.9251 | 0.9015 | 0.9372 | | 0.079 | 8.0 | 9778 | 0.2922 | 0.8789 | 0.9247 | 0.9012 | 0.9366 | | 0.0736 | 9.0 | 11000 | 0.3037 | 0.8807 | 0.9256 | 0.9026 | 0.9375 | | 0.0691 | 10.0 | 12220 | 0.3109 | 0.8793 | 0.9255 | 0.9018 | 0.9371 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0