nickmuchi commited on
Commit
5252a1e
·
1 Parent(s): ca199e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -1
README.md CHANGED
@@ -1,8 +1,81 @@
1
  ---
2
  language:
3
  - en
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  pipeline_tag: object-detection
5
 
6
  ---
 
 
 
7
 
8
- This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the [licesne-plate-recognition](https://app.roboflow.com/objectdetection-jhgr1/license-plates-recognition/2) dataset from Roboflow.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - en
4
+ tags:
5
+ - object-detection
6
+ - license-plate-detection
7
+ - vehicle-detection
8
+ widget:
9
+ - src: https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ
10
+ example_title: "Skoda 1"
11
+ - src: https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5
12
+ example_title: "Skoda 2"
13
+ metrics:
14
+ - average precision
15
+ - recall
16
+ - IOU
17
  pipeline_tag: object-detection
18
 
19
  ---
20
+ # YOLOS (small-sized) model
21
+ This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the [licesne-plate-recognition](https://app.roboflow.com/objectdetection-jhgr1/license-plates-recognition/2) dataset from Roboflow which contains 5200 images in the training set and 380 in the validation set.
22
+ The original YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images).
23
 
24
+ ## Model description
25
+
26
+ YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
27
+ ## Intended uses & limitations
28
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models.
29
+
30
+ ### How to use
31
+
32
+ Here is how to use this model:
33
+
34
+ ```python
35
+ from transformers import YolosFeatureExtractor, YolosForObjectDetection
36
+ from PIL import Image
37
+ import requests
38
+
39
+ url = 'https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5'
40
+ image = Image.open(requests.get(url, stream=True).raw)
41
+ feature_extractor = YolosFeatureExtractor.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection')
42
+ model = YolosForObjectDetection.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection')
43
+ inputs = feature_extractor(images=image, return_tensors="pt")
44
+ outputs = model(**inputs)
45
+
46
+ # model predicts bounding boxes and corresponding face mask detection classes
47
+ logits = outputs.logits
48
+ bboxes = outputs.pred_boxes
49
+ ```
50
+ Currently, both the feature extractor and model support PyTorch.
51
+
52
+ ## Training data
53
+
54
+ The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
55
+
56
+ ### Training
57
+
58
+ This model was fine-tuned for 200 epochs on the [licesne-plate-recognition](https://app.roboflow.com/objectdetection-jhgr1/license-plates-recognition/2).
59
+
60
+ ## Evaluation results
61
+
62
+ This model achieves an AP (average precision) of **49.0**.
63
+
64
+ Accumulating evaluation results...
65
+
66
+ IoU metric: bbox
67
+
68
+ Metrics | Metric Parameter | Location | Dets | Value |
69
+ ---------------- | --------------------- | ------------| ------------- | ----- |
70
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.490 |
71
+ Average Precision | (AP) @[ IoU=0.50 | area= all | maxDets=100 ] | 0.792 |
72
+ Average Precision | (AP) @[ IoU=0.75 | area= all | maxDets=100 ] | 0.585 |
73
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.167 |
74
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.460 |
75
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.824 |
76
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] | 0.447 |
77
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] | 0.671 |
78
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.676 |
79
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.278 |
80
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.641 |
81
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.890 |