nm-research commited on
Commit
26329c5
·
verified ·
1 Parent(s): 5409131

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +476 -0
README.md CHANGED
@@ -280,3 +280,479 @@ lm_eval \
280
  </tr>
281
  </tbody>
282
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
  </tr>
281
  </tbody>
282
  </table>
283
+
284
+
285
+ ## Inference Performance
286
+
287
+
288
+ This model achieves up to 1.6x speedup in both single-stream and multi-stream asynchronous deployment, depending on hardware and use-case scenario.
289
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
290
+
291
+ <details>
292
+ <summary>Benchmarking Command</summary>
293
+
294
+ ```
295
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
296
+ ```
297
+ </details>
298
+
299
+ ### Single-stream performance (measured with vLLM version 0.7.2)
300
+ <table>
301
+ <thead>
302
+ <tr>
303
+ <th></th>
304
+ <th></th>
305
+ <th></th>
306
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
307
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
308
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
309
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
310
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
311
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
312
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
313
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
314
+ </tr>
315
+ <tr>
316
+ <th>Hardware</th>
317
+ <th>Model</th>
318
+ <th>Average cost reduction</th>
319
+ <th>Latency (s)</th>
320
+ <th>QPD</th>
321
+ <th>Latency (s)</th>
322
+ <th>QPD</th>
323
+ <th>Latency (s)</th>
324
+ <th>QPD</th>
325
+ <th>Latency (s)</th>
326
+ <th>QPD</th>
327
+ <th>Latency (s)</th>
328
+ <th>QPD</th>
329
+ <th>Latency (s)</th>
330
+ <th>QPD</th>
331
+ <th>Latency (s)</th>
332
+ <th>QPD</th>
333
+ <th>Latency (s)</th>
334
+ <th>QPD</th>
335
+ </tr>
336
+ </thead>
337
+ <tbody style="text-align: center" >
338
+ <tr>
339
+ <th rowspan="3" valign="top">A6000x1</th>
340
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
341
+ <td>---</td>
342
+ <td>2.9</td>
343
+ <td>1576</td>
344
+ <td>5.7</td>
345
+ <td>788</td>
346
+ <td>2.9</td>
347
+ <td>1535</td>
348
+ <td>3.0</td>
349
+ <td>1496</td>
350
+ <td>22.6</td>
351
+ <td>199</td>
352
+ <td>23.2</td>
353
+ <td>194</td>
354
+ <td>12.1</td>
355
+ <td>370</td>
356
+ <td>38.5</td>
357
+ <td>117</td>
358
+ </tr>
359
+ <tr>
360
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w8a8</th>
361
+ <td>1.56</td>
362
+ <td>1.8</td>
363
+ <td>2495</td>
364
+ <td>3.7</td>
365
+ <td>1223</td>
366
+ <td>1.9</td>
367
+ <td>2384</td>
368
+ <td>1.9</td>
369
+ <td>2393</td>
370
+ <td>14.3</td>
371
+ <td>315</td>
372
+ <td>14.8</td>
373
+ <td>304</td>
374
+ <td>7.9</td>
375
+ <td>572</td>
376
+ <td>25.3</td>
377
+ <td>178</td>
378
+ </tr>
379
+ <tr>
380
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
381
+ <td>2.41</td>
382
+ <td>1.1</td>
383
+ <td>4086</td>
384
+ <td>2.3</td>
385
+ <td>1998</td>
386
+ <td>1.2</td>
387
+ <td>3783</td>
388
+ <td>1.3</td>
389
+ <td>3527</td>
390
+ <td>8.6</td>
391
+ <td>526</td>
392
+ <td>8.8</td>
393
+ <td>512</td>
394
+ <td>5.2</td>
395
+ <td>860</td>
396
+ <td>22.7</td>
397
+ <td>198</td>
398
+ </tr>
399
+ <tr>
400
+ <th rowspan="3" valign="top">A100x1</th>
401
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
402
+ <td>---</td>
403
+ <td>1.4</td>
404
+ <td>1389</td>
405
+ <td>2.9</td>
406
+ <td>691</td>
407
+ <td>1.5</td>
408
+ <td>1358</td>
409
+ <td>1.5</td>
410
+ <td>1329</td>
411
+ <td>11.5</td>
412
+ <td>175</td>
413
+ <td>11.6</td>
414
+ <td>174</td>
415
+ <td>6.2</td>
416
+ <td>326</td>
417
+ <td>21.5</td>
418
+ <td>93</td>
419
+ </tr>
420
+ <tr>
421
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w8a8</th>
422
+ <td>1.28</td>
423
+ <td>1.1</td>
424
+ <td>1850</td>
425
+ <td>2.2</td>
426
+ <td>905</td>
427
+ <td>1.1</td>
428
+ <td>1807</td>
429
+ <td>1.1</td>
430
+ <td>1750</td>
431
+ <td>8.6</td>
432
+ <td>233</td>
433
+ <td>8.7</td>
434
+ <td>230</td>
435
+ <td>4.7</td>
436
+ <td>431</td>
437
+ <td>23.1</td>
438
+ <td>87</td>
439
+ </tr>
440
+ <tr>
441
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
442
+ <td>1.72</td>
443
+ <td>0.8</td>
444
+ <td>2575</td>
445
+ <td>1.5</td>
446
+ <td>1298</td>
447
+ <td>0.8</td>
448
+ <td>2461</td>
449
+ <td>0.8</td>
450
+ <td>2382</td>
451
+ <td>6.1</td>
452
+ <td>331</td>
453
+ <td>6.2</td>
454
+ <td>323</td>
455
+ <td>3.6</td>
456
+ <td>566</td>
457
+ <td>22.7</td>
458
+ <td>89</td>
459
+ </tr>
460
+ <tr>
461
+ <th rowspan="3" valign="top">H100x1</th>
462
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
463
+ <td>---</td>
464
+ <td>0.9</td>
465
+ <td>1161</td>
466
+ <td>1.9</td>
467
+ <td>579</td>
468
+ <td>1.0</td>
469
+ <td>1138</td>
470
+ <td>1.0</td>
471
+ <td>1121</td>
472
+ <td>7.5</td>
473
+ <td>146</td>
474
+ <td>7.6</td>
475
+ <td>145</td>
476
+ <td>3.9</td>
477
+ <td>279</td>
478
+ <td>15.4</td>
479
+ <td>71</td>
480
+ </tr>
481
+ <tr>
482
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-FP8-dynamic</th>
483
+ <td>1.34</td>
484
+ <td>0.7</td>
485
+ <td>1585</td>
486
+ <td>1.4</td>
487
+ <td>786</td>
488
+ <td>0.7</td>
489
+ <td>1577</td>
490
+ <td>0.7</td>
491
+ <td>1524</td>
492
+ <td>5.3</td>
493
+ <td>207</td>
494
+ <td>5.5</td>
495
+ <td>197</td>
496
+ <td>2.9</td>
497
+ <td>382</td>
498
+ <td>14.3</td>
499
+ <td>77</td>
500
+ </tr>
501
+ <tr>
502
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
503
+ <td>1.33</td>
504
+ <td>0.7</td>
505
+ <td>1590</td>
506
+ <td>1.4</td>
507
+ <td>793</td>
508
+ <td>0.7</td>
509
+ <td>1549</td>
510
+ <td>0.7</td>
511
+ <td>1509</td>
512
+ <td>5.4</td>
513
+ <td>201</td>
514
+ <td>5.5</td>
515
+ <td>198</td>
516
+ <td>2.9</td>
517
+ <td>381</td>
518
+ <td>14.0</td>
519
+ <td>78</td>
520
+ </tr>
521
+ </tbody>
522
+ </table>
523
+
524
+ **Use case profiles: prompt tokens / generation tokens
525
+
526
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
527
+
528
+
529
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
530
+ <table>
531
+ <thead>
532
+ <tr>
533
+ <th></th>
534
+ <th></th>
535
+ <th></th>
536
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
537
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
538
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
539
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
540
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
541
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
542
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
543
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
544
+ </tr>
545
+ <tr>
546
+ <th>Hardware</th>
547
+ <th>Model</th>
548
+ <th>Average cost reduction</th>
549
+ <th>Maximum throughput (QPS)</th>
550
+ <th>QPD</th>
551
+ <th>Maximum throughput (QPS)</th>
552
+ <th>QPD</th>
553
+ <th>Maximum throughput (QPS)</th>
554
+ <th>QPD</th>
555
+ <th>Maximum throughput (QPS)</th>
556
+ <th>QPD</th>
557
+ <th>Maximum throughput (QPS)</th>
558
+ <th>QPD</th>
559
+ <th>Maximum throughput (QPS)</th>
560
+ <th>QPD</th>
561
+ <th>Maximum throughput (QPS)</th>
562
+ <th>QPD</th>
563
+ <th>Maximum throughput (QPS)</th>
564
+ <th>QPD</th>
565
+ </tr>
566
+ </thead>
567
+ <tbody style="text-align: center" >
568
+ <tr>
569
+ <th rowspan="3" valign="top">A6000x1</th>
570
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
571
+ <td>---</td>
572
+ <td>14.9</td>
573
+ <td>67138</td>
574
+ <td>7.1</td>
575
+ <td>32094</td>
576
+ <td>7.4</td>
577
+ <td>33096</td>
578
+ <td>5.9</td>
579
+ <td>26480</td>
580
+ <td>2.0</td>
581
+ <td>9004</td>
582
+ <td>1.5</td>
583
+ <td>6639</td>
584
+ <td>1.1</td>
585
+ <td>4938</td>
586
+ <td>0.3</td>
587
+ <td>1151</td>
588
+ </tr>
589
+ <tr>
590
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w8a8</th>
591
+ <td>1.36</td>
592
+ <td>20.2</td>
593
+ <td>90956</td>
594
+ <td>8.8</td>
595
+ <td>39786</td>
596
+ <td>10.2</td>
597
+ <td>45963</td>
598
+ <td>8.1</td>
599
+ <td>36596</td>
600
+ <td>3.1</td>
601
+ <td>13968</td>
602
+ <td>2.1</td>
603
+ <td>9629</td>
604
+ <td>1.4</td>
605
+ <td>6374</td>
606
+ <td>0.3</td>
607
+ <td>1429</td>
608
+ </tr>
609
+ <tr>
610
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
611
+ <td>1.00</td>
612
+ <td>13.3</td>
613
+ <td>59681</td>
614
+ <td>6.1</td>
615
+ <td>27633</td>
616
+ <td>5.9</td>
617
+ <td>26689</td>
618
+ <td>4.7</td>
619
+ <td>20944</td>
620
+ <td>2.9</td>
621
+ <td>13108</td>
622
+ <td>1.9</td>
623
+ <td>8355</td>
624
+ <td>1.0</td>
625
+ <td>4362</td>
626
+ <td>0.3</td>
627
+ <td>1170</td>
628
+ </tr>
629
+ <tr>
630
+ <th rowspan="3" valign="top">A100x1</th>
631
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
632
+ <td>---</td>
633
+ <td>26.4</td>
634
+ <td>53073</td>
635
+ <td>13.0</td>
636
+ <td>26213</td>
637
+ <td>14.5</td>
638
+ <td>29110</td>
639
+ <td>11.4</td>
640
+ <td>22936</td>
641
+ <td>4.4</td>
642
+ <td>8749</td>
643
+ <td>3.3</td>
644
+ <td>6680</td>
645
+ <td>2.3</td>
646
+ <td>4634</td>
647
+ <td>0.5</td>
648
+ <td>1105</td>
649
+ </tr>
650
+ <tr>
651
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w8a8</th>
652
+ <td>1.27</td>
653
+ <td>34.3</td>
654
+ <td>69009</td>
655
+ <td>14.8</td>
656
+ <td>29791</td>
657
+ <td>19.0</td>
658
+ <td>38214</td>
659
+ <td>15.7</td>
660
+ <td>31598</td>
661
+ <td>5.6</td>
662
+ <td>11186</td>
663
+ <td>4.2</td>
664
+ <td>8350</td>
665
+ <td>3.0</td>
666
+ <td>6020</td>
667
+ <td>0.7</td>
668
+ <td>1328</td>
669
+ </tr>
670
+ <tr>
671
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
672
+ <td>0.93</td>
673
+ <td>23.9</td>
674
+ <td>47993</td>
675
+ <td>12.0</td>
676
+ <td>24194</td>
677
+ <td>12.5</td>
678
+ <td>25239</td>
679
+ <td>10.0</td>
680
+ <td>20029</td>
681
+ <td>4.5</td>
682
+ <td>9055</td>
683
+ <td>3.3</td>
684
+ <td>6681</td>
685
+ <td>2.1</td>
686
+ <td>4156</td>
687
+ <td>0.5</td>
688
+ <td>1043</td>
689
+ </tr>
690
+ <tr>
691
+ <th rowspan="3" valign="top">H100x1</th>
692
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-7B</th>
693
+ <td>---</td>
694
+ <td>54.3</td>
695
+ <td>59410</td>
696
+ <td>26.0</td>
697
+ <td>28440</td>
698
+ <td>32.1</td>
699
+ <td>35154</td>
700
+ <td>26.7</td>
701
+ <td>29190</td>
702
+ <td>8.0</td>
703
+ <td>8700</td>
704
+ <td>6.6</td>
705
+ <td>7275</td>
706
+ <td>5.2</td>
707
+ <td>5669</td>
708
+ <td>1.2</td>
709
+ <td>1266</td>
710
+ </tr>
711
+ <tr>
712
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-FP8-dynamic</th>
713
+ <td>1.16</td>
714
+ <td>62.9</td>
715
+ <td>68818</td>
716
+ <td>30.3</td>
717
+ <td>33196</td>
718
+ <td>39.4</td>
719
+ <td>43132</td>
720
+ <td>31.1</td>
721
+ <td>34073</td>
722
+ <td>9.2</td>
723
+ <td>10058</td>
724
+ <td>7.1</td>
725
+ <td>7748</td>
726
+ <td>6.1</td>
727
+ <td>6714</td>
728
+ <td>1.3</td>
729
+ <td>1415</td>
730
+ </tr>
731
+ <tr>
732
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-7B-quantized.w4a16</th>
733
+ <td>1.02</td>
734
+ <td>56.2</td>
735
+ <td>61483</td>
736
+ <td>26.7</td>
737
+ <td>29243</td>
738
+ <td>32.5</td>
739
+ <td>35592</td>
740
+ <td>26.9</td>
741
+ <td>29461</td>
742
+ <td>8.3</td>
743
+ <td>9072</td>
744
+ <td>6.4</td>
745
+ <td>7027</td>
746
+ <td>5.2</td>
747
+ <td>5731</td>
748
+ <td>1.2</td>
749
+ <td>1291</td>
750
+ </tr>
751
+ </tbody>
752
+ </table>
753
+
754
+ **Use case profiles: prompt tokens / generation tokens
755
+
756
+ **QPS: Queries per second.
757
+
758
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).