nm-research commited on
Commit
c0dc799
·
verified ·
1 Parent(s): a542407

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +486 -0
README.md CHANGED
@@ -276,3 +276,489 @@ lm_eval \
276
  </tr>
277
  </tbody>
278
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
  </tr>
277
  </tbody>
278
  </table>
279
+
280
+ ## Inference Performance
281
+
282
+
283
+ This model achieves up to 3.4x speedup in single-stream deployment and up to 2.0x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
284
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
285
+
286
+ <details>
287
+ <summary>Benchmarking Command</summary>
288
+
289
+ ```
290
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
291
+ ```
292
+ </details>
293
+
294
+ ### Single-stream performance (measured with vLLM version 0.7.2)
295
+ <table>
296
+ <thead>
297
+ <tr>
298
+ <th></th>
299
+ <th></th>
300
+ <th></th>
301
+ <th></th>
302
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
303
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
304
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
305
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
306
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
307
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
308
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
309
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
310
+ </tr>
311
+ <tr>
312
+ <th>GPU class</th>
313
+ <th>Number of GPUs</th>
314
+ <th>Model</th>
315
+ <th>Average cost reduction</th>
316
+ <th>Latency (s)</th>
317
+ <th>QPD</th>
318
+ <th>Latency (s)</th>
319
+ <th>QPD</th>
320
+ <th>Latency (s)</th>
321
+ <th>QPD</th>
322
+ <th>Latency (s)</th>
323
+ <th>QPD</th>
324
+ <th>Latency (s)</th>
325
+ <th>QPD</th>
326
+ <th>Latency (s)</th>
327
+ <th>QPD</th>
328
+ <th>Latency (s)</th>
329
+ <th>QPD</th>
330
+ <th>Latency (s)</th>
331
+ <th>QPD</th>
332
+ </tr>
333
+ </thead>
334
+ <tbody style="text-align: center" >
335
+ <tr>
336
+ <th rowspan="3" valign="top">A6000</th>
337
+ <td>2</td>
338
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
339
+ <td>---</td>
340
+ <td>6.3</td>
341
+ <td>359</td>
342
+ <td>12.8</td>
343
+ <td>176</td>
344
+ <td>6.5</td>
345
+ <td>347</td>
346
+ <td>6.6</td>
347
+ <td>342</td>
348
+ <td>49.9</td>
349
+ <td>45</td>
350
+ <td>50.8</td>
351
+ <td>44</td>
352
+ <td>26.6</td>
353
+ <td>85</td>
354
+ <td>83.4</td>
355
+ <td>27</td>
356
+ </tr>
357
+ <tr>
358
+ <td>1</td>
359
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w8a8</th>
360
+ <td>1.81</td>
361
+ <td>6.9</td>
362
+ <td>648</td>
363
+ <td>13.8</td>
364
+ <td>325</td>
365
+ <td>7.2</td>
366
+ <td>629</td>
367
+ <td>7.2</td>
368
+ <td>622</td>
369
+ <td>54.8</td>
370
+ <td>82</td>
371
+ <td>55.6</td>
372
+ <td>81</td>
373
+ <td>30.0</td>
374
+ <td>150</td>
375
+ <td>94.8</td>
376
+ <td>47</td>
377
+ </tr>
378
+ <tr>
379
+ <td>1</td>
380
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
381
+ <td>3.07</td>
382
+ <td>3.9</td>
383
+ <td>1168</td>
384
+ <td>7.8</td>
385
+ <td>580</td>
386
+ <td>4.3</td>
387
+ <td>1041</td>
388
+ <td>4.6</td>
389
+ <td>975</td>
390
+ <td>29.7</td>
391
+ <td>151</td>
392
+ <td>30.9</td>
393
+ <td>146</td>
394
+ <td>19.3</td>
395
+ <td>233</td>
396
+ <td>61.4</td>
397
+ <td>73</td>
398
+ </tr>
399
+ <tr>
400
+ <th rowspan="3" valign="top">A100</th>
401
+ <td>1</td>
402
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
403
+ <td>---</td>
404
+ <td>5.6</td>
405
+ <td>361</td>
406
+ <td>11.1</td>
407
+ <td>180</td>
408
+ <td>5.7</td>
409
+ <td>350</td>
410
+ <td>5.8</td>
411
+ <td>347</td>
412
+ <td>44.0</td>
413
+ <td>46</td>
414
+ <td>44.7</td>
415
+ <td>45</td>
416
+ <td>23.6</td>
417
+ <td>85</td>
418
+ <td>73.7</td>
419
+ <td>27</td>
420
+ </tr>
421
+ <tr>
422
+ <td>1</td>
423
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w8a8</th>
424
+ <td>1.50</td>
425
+ <td>3.7</td>
426
+ <td>547</td>
427
+ <td>7.3</td>
428
+ <td>275</td>
429
+ <td>3.8</td>
430
+ <td>536</td>
431
+ <td>3.8</td>
432
+ <td>528</td>
433
+ <td>29.0</td>
434
+ <td>69</td>
435
+ <td>29.5</td>
436
+ <td>68</td>
437
+ <td>15.7</td>
438
+ <td>128</td>
439
+ <td>53.1</td>
440
+ <td>38</td>
441
+ </tr>
442
+ <tr>
443
+ <td>1</td>
444
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
445
+ <td>2.30</td>
446
+ <td>2.2</td>
447
+ <td>894</td>
448
+ <td>4.5</td>
449
+ <td>449</td>
450
+ <td>2.4</td>
451
+ <td>831</td>
452
+ <td>2.5</td>
453
+ <td>798</td>
454
+ <td>17.4</td>
455
+ <td>116</td>
456
+ <td>18.0</td>
457
+ <td>112</td>
458
+ <td>10.5</td>
459
+ <td>191</td>
460
+ <td>49.5</td>
461
+ <td>41</td>
462
+ </tr>
463
+ <tr>
464
+ <th rowspan="3" valign="top">H100</th>
465
+ <td>1</td>
466
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
467
+ <td>---</td>
468
+ <td>3.3</td>
469
+ <td>327</td>
470
+ <td>6.7</td>
471
+ <td>163</td>
472
+ <td>3.4</td>
473
+ <td>320</td>
474
+ <td>3.4</td>
475
+ <td>317</td>
476
+ <td>26.6</td>
477
+ <td>41</td>
478
+ <td>26.9</td>
479
+ <td>41</td>
480
+ <td>14.3</td>
481
+ <td>77</td>
482
+ <td>47.8</td>
483
+ <td>23</td>
484
+ </tr>
485
+ <tr>
486
+ <td>1</td>
487
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-dynamic</th>
488
+ <td>1.52</td>
489
+ <td>2.2</td>
490
+ <td>503</td>
491
+ <td>4.3</td>
492
+ <td>252</td>
493
+ <td>2.2</td>
494
+ <td>490</td>
495
+ <td>2.3</td>
496
+ <td>485</td>
497
+ <td>17.3</td>
498
+ <td>63</td>
499
+ <td>17.5</td>
500
+ <td>63</td>
501
+ <td>9.5</td>
502
+ <td>116</td>
503
+ <td>33.4</td>
504
+ <td>33</td>
505
+ </tr>
506
+ <tr>
507
+ <td>1</td>
508
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
509
+ <td>1.61</td>
510
+ <td>2.1</td>
511
+ <td>532</td>
512
+ <td>4.1</td>
513
+ <td>268</td>
514
+ <td>2.1</td>
515
+ <td>516</td>
516
+ <td>2.1</td>
517
+ <td>513</td>
518
+ <td>16.1</td>
519
+ <td>68</td>
520
+ <td>16.5</td>
521
+ <td>66</td>
522
+ <td>9.1</td>
523
+ <td>120</td>
524
+ <td>31.9</td>
525
+ <td>34</td>
526
+ </tr>
527
+ </tbody>
528
+ </table>
529
+
530
+ **Use case profiles: prompt tokens / generation tokens
531
+
532
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
533
+
534
+
535
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
536
+ <table>
537
+ <thead>
538
+ <tr>
539
+ <th></th>
540
+ <th></th>
541
+ <th></th>
542
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
543
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
544
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
545
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
546
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
547
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
548
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
549
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
550
+ </tr>
551
+ <tr>
552
+ <th>Hardware</th>
553
+ <th>Model</th>
554
+ <th>Average cost reduction</th>
555
+ <th>Maximum throughput (QPS)</th>
556
+ <th>QPD</th>
557
+ <th>Maximum throughput (QPS)</th>
558
+ <th>QPD</th>
559
+ <th>Maximum throughput (QPS)</th>
560
+ <th>QPD</th>
561
+ <th>Maximum throughput (QPS)</th>
562
+ <th>QPD</th>
563
+ <th>Maximum throughput (QPS)</th>
564
+ <th>QPD</th>
565
+ <th>Maximum throughput (QPS)</th>
566
+ <th>QPD</th>
567
+ <th>Maximum throughput (QPS)</th>
568
+ <th>QPD</th>
569
+ <th>Maximum throughput (QPS)</th>
570
+ <th>QPD</th>
571
+ </tr>
572
+ </thead>
573
+ <tbody style="text-align: center" >
574
+ <tr>
575
+ <th rowspan="3" valign="top">A6000x2</th>
576
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
577
+ <td>---</td>
578
+ <td>6.2</td>
579
+ <td>13940</td>
580
+ <td>1.9</td>
581
+ <td>4348</td>
582
+ <td>2.7</td>
583
+ <td>6153</td>
584
+ <td>2.1</td>
585
+ <td>4778</td>
586
+ <td>0.6</td>
587
+ <td>1382</td>
588
+ <td>0.4</td>
589
+ <td>930</td>
590
+ <td>0.3</td>
591
+ <td>685</td>
592
+ <td>0.1</td>
593
+ <td>124</td>
594
+ </tr>
595
+ <tr>
596
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w8a8</th>
597
+ <td>1.80</td>
598
+ <td>8.7</td>
599
+ <td>19492</td>
600
+ <td>4.2</td>
601
+ <td>9474</td>
602
+ <td>4.1</td>
603
+ <td>9290</td>
604
+ <td>3.0</td>
605
+ <td>6802</td>
606
+ <td>1.2</td>
607
+ <td>2734</td>
608
+ <td>0.9</td>
609
+ <td>1962</td>
610
+ <td>0.5</td>
611
+ <td>1177</td>
612
+ <td>0.1</td>
613
+ <td>254</td>
614
+ </tr>
615
+ <tr>
616
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
617
+ <td>1.30</td>
618
+ <td>5.9</td>
619
+ <td>13366</td>
620
+ <td>2.5</td>
621
+ <td>5733</td>
622
+ <td>2.4</td>
623
+ <td>5409</td>
624
+ <td>1.6</td>
625
+ <td>3525</td>
626
+ <td>1.2</td>
627
+ <td>2757</td>
628
+ <td>0.7</td>
629
+ <td>1663</td>
630
+ <td>0.3</td>
631
+ <td>676</td>
632
+ <td>0.1</td>
633
+ <td>214</td>
634
+ </tr>
635
+ <tr>
636
+ <th rowspan="3" valign="top">A100x2</th>
637
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
638
+ <td>---</td>
639
+ <td>12.9</td>
640
+ <td>13016</td>
641
+ <td>5.8</td>
642
+ <td>5848</td>
643
+ <td>6.3</td>
644
+ <td>6348</td>
645
+ <td>5.1</td>
646
+ <td>5146</td>
647
+ <td>2.0</td>
648
+ <td>1988</td>
649
+ <td>1.5</td>
650
+ <td>1463</td>
651
+ <td>0.9</td>
652
+ <td>869</td>
653
+ <td>0.2</td>
654
+ <td>192</td>
655
+ </tr>
656
+ <tr>
657
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w8a8</th>
658
+ <td>1.52</td>
659
+ <td>21.4</td>
660
+ <td>21479</td>
661
+ <td>8.9</td>
662
+ <td>8948</td>
663
+ <td>10.6</td>
664
+ <td>10611</td>
665
+ <td>8.2</td>
666
+ <td>8197</td>
667
+ <td>3.0</td>
668
+ <td>3018</td>
669
+ <td>2.0</td>
670
+ <td>2054</td>
671
+ <td>1.2</td>
672
+ <td>1241</td>
673
+ <td>0.3</td>
674
+ <td>264</td>
675
+ </tr>
676
+ <tr>
677
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
678
+ <td>1.09</td>
679
+ <td>13.5</td>
680
+ <td>13568</td>
681
+ <td>6.5</td>
682
+ <td>6509</td>
683
+ <td>6.0</td>
684
+ <td>6075</td>
685
+ <td>4.7</td>
686
+ <td>4754</td>
687
+ <td>2.8</td>
688
+ <td>2790</td>
689
+ <td>1.6</td>
690
+ <td>1651</td>
691
+ <td>0.9</td>
692
+ <td>862</td>
693
+ <td>0.2</td>
694
+ <td>225</td>
695
+ </tr>
696
+ <tr>
697
+ <th rowspan="3" valign="top">H100x2</th>
698
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-32B</th>
699
+ <td>---</td>
700
+ <td>25.5</td>
701
+ <td>14392</td>
702
+ <td>12.5</td>
703
+ <td>7035</td>
704
+ <td>14.0</td>
705
+ <td>7877</td>
706
+ <td>11.3</td>
707
+ <td>6364</td>
708
+ <td>3.6</td>
709
+ <td>2041</td>
710
+ <td>2.7</td>
711
+ <td>1549</td>
712
+ <td>1.9</td>
713
+ <td>1057</td>
714
+ <td>0.4</td>
715
+ <td>200</td>
716
+ </tr>
717
+ <tr>
718
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-dynamic</th>
719
+ <td>1.46</td>
720
+ <td>46.7</td>
721
+ <td>25538</td>
722
+ <td>20.3</td>
723
+ <td>11082</td>
724
+ <td>23.3</td>
725
+ <td>12728</td>
726
+ <td>18.4</td>
727
+ <td>10049</td>
728
+ <td>5.3</td>
729
+ <td>2881</td>
730
+ <td>3.7</td>
731
+ <td>2097</td>
732
+ <td>2.6</td>
733
+ <td>1445</td>
734
+ <td>0.5</td>
735
+ <td>256</td>
736
+ </tr>
737
+ <tr>
738
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-32B-quantized.w4a16</th>
739
+ <td>1.23</td>
740
+ <td>36.9</td>
741
+ <td>20172</td>
742
+ <td>17.4</td>
743
+ <td>9500</td>
744
+ <td>18.0</td>
745
+ <td>9822</td>
746
+ <td>14.2</td>
747
+ <td>7755</td>
748
+ <td>5.3</td>
749
+ <td>2900</td>
750
+ <td>3.3</td>
751
+ <td>1867</td>
752
+ <td>2.3</td>
753
+ <td>1265</td>
754
+ <td>0.4</td>
755
+ <td>241</td>
756
+ </tr>
757
+ </tbody>
758
+ </table>
759
+
760
+ **Use case profiles: prompt tokens / generation tokens
761
+
762
+ **QPS: Queries per second.
763
+
764
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).