nm-research commited on
Commit
7f448dc
·
verified ·
1 Parent(s): 03be53d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +475 -0
README.md CHANGED
@@ -276,3 +276,478 @@ lm_eval \
276
  </tr>
277
  </tbody>
278
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
  </tr>
277
  </tbody>
278
  </table>
279
+
280
+ ## Inference Performance
281
+
282
+
283
+ This model achieves up to 2.8x speedup in single-stream deployment and up to 1.4x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
284
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
285
+
286
+ <details>
287
+ <summary>Benchmarking Command</summary>
288
+
289
+ ```
290
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
291
+ ```
292
+ </details>
293
+
294
+ ### Single-stream performance (measured with vLLM version 0.7.2)
295
+ <table>
296
+ <thead>
297
+ <tr>
298
+ <th></th>
299
+ <th></th>
300
+ <th></th>
301
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
302
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
303
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
304
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
305
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
306
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
307
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
308
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
309
+ </tr>
310
+ <tr>
311
+ <th>Hardware</th>
312
+ <th>Model</th>
313
+ <th>Average cost reduction</th>
314
+ <th>Latency (s)</th>
315
+ <th>QPD</th>
316
+ <th>Latency (s)</th>
317
+ <th>QPD</th>
318
+ <th>Latency (s)</th>
319
+ <th>QPD</th>
320
+ <th>Latency (s)</th>
321
+ <th>QPD</th>
322
+ <th>Latency (s)</th>
323
+ <th>QPD</th>
324
+ <th>Latency (s)</th>
325
+ <th>QPD</th>
326
+ <th>Latency (s)</th>
327
+ <th>QPD</th>
328
+ <th>Latency (s)</th>
329
+ <th>QPD</th>
330
+ </tr>
331
+ </thead>
332
+ <tbody style="text-align: center" >
333
+ <tr>
334
+ <th rowspan="3" valign="top">A6000x1</th>
335
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
336
+ <td>---</td>
337
+ <td>5.4</td>
338
+ <td>837</td>
339
+ <td>10.7</td>
340
+ <td>419</td>
341
+ <td>5.5</td>
342
+ <td>813</td>
343
+ <td>5.6</td>
344
+ <td>805</td>
345
+ <td>42.2</td>
346
+ <td>107</td>
347
+ <td>42.8</td>
348
+ <td>105</td>
349
+ <td>22.9</td>
350
+ <td>197</td>
351
+ <td>71.7</td>
352
+ <td>63</td>
353
+ </tr>
354
+ <tr>
355
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8</th>
356
+ <td>1.59</td>
357
+ <td>3.3</td>
358
+ <td>1345</td>
359
+ <td>6.7</td>
360
+ <td>673</td>
361
+ <td>3.4</td>
362
+ <td>1315</td>
363
+ <td>3.5</td>
364
+ <td>1296</td>
365
+ <td>26.5</td>
366
+ <td>170</td>
367
+ <td>26.8</td>
368
+ <td>168</td>
369
+ <td>14.5</td>
370
+ <td>310</td>
371
+ <td>48.3</td>
372
+ <td>93</td>
373
+ </tr>
374
+ <tr>
375
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
376
+ <td>2.51</td>
377
+ <td>2.0</td>
378
+ <td>2275</td>
379
+ <td>4.0</td>
380
+ <td>1127</td>
381
+ <td>2.2</td>
382
+ <td>2072</td>
383
+ <td>2.3</td>
384
+ <td>1945</td>
385
+ <td>15.3</td>
386
+ <td>294</td>
387
+ <td>15.9</td>
388
+ <td>283</td>
389
+ <td>9.9</td>
390
+ <td>456</td>
391
+ <td>36.6</td>
392
+ <td>123</td>
393
+ </tr>
394
+ <tr>
395
+ <th rowspan="3" valign="top">A100x1</th>
396
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
397
+ <td>---</td>
398
+ <td>2.6</td>
399
+ <td>765</td>
400
+ <td>5.2</td>
401
+ <td>383</td>
402
+ <td>2.7</td>
403
+ <td>746</td>
404
+ <td>2.7</td>
405
+ <td>732</td>
406
+ <td>20.8</td>
407
+ <td>97</td>
408
+ <td>21.2</td>
409
+ <td>95</td>
410
+ <td>11.3</td>
411
+ <td>179</td>
412
+ <td>36.7</td>
413
+ <td>55</td>
414
+ </tr>
415
+ <tr>
416
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8</th>
417
+ <td>1.34</td>
418
+ <td>1.9</td>
419
+ <td>1072</td>
420
+ <td>3.8</td>
421
+ <td>533</td>
422
+ <td>1.9</td>
423
+ <td>1045</td>
424
+ <td>1.9</td>
425
+ <td>1032</td>
426
+ <td>14.8</td>
427
+ <td>136</td>
428
+ <td>15.2</td>
429
+ <td>132</td>
430
+ <td>8.1</td>
431
+ <td>248</td>
432
+ <td>39.6</td>
433
+ <td>51</td>
434
+ </tr>
435
+ <tr>
436
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
437
+ <td>1.93</td>
438
+ <td>1.2</td>
439
+ <td>1627</td>
440
+ <td>2.5</td>
441
+ <td>810</td>
442
+ <td>1.3</td>
443
+ <td>1530</td>
444
+ <td>1.4</td>
445
+ <td>1474</td>
446
+ <td>9.7</td>
447
+ <td>208</td>
448
+ <td>10.2</td>
449
+ <td>197</td>
450
+ <td>5.8</td>
451
+ <td>348</td>
452
+ <td>37.6</td>
453
+ <td>53</td>
454
+ </tr>
455
+ <tr>
456
+ <th rowspan="3" valign="top">H100x1</th>
457
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
458
+ <td>---</td>
459
+ <td>1.6</td>
460
+ <td>672</td>
461
+ <td>3.3</td>
462
+ <td>334</td>
463
+ <td>1.7</td>
464
+ <td>662</td>
465
+ <td>1.7</td>
466
+ <td>652</td>
467
+ <td>12.8</td>
468
+ <td>85</td>
469
+ <td>13.0</td>
470
+ <td>84</td>
471
+ <td>7.0</td>
472
+ <td>155</td>
473
+ <td>25.2</td>
474
+ <td>43</td>
475
+ </tr>
476
+ <tr>
477
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic</th>
478
+ <td>1.33</td>
479
+ <td>1.2</td>
480
+ <td>925</td>
481
+ <td>2.3</td>
482
+ <td>467</td>
483
+ <td>1.2</td>
484
+ <td>908</td>
485
+ <td>1.2</td>
486
+ <td>896</td>
487
+ <td>9.3</td>
488
+ <td>118</td>
489
+ <td>9.5</td>
490
+ <td>115</td>
491
+ <td>5.2</td>
492
+ <td>210</td>
493
+ <td>23.9</td>
494
+ <td>46</td>
495
+ </tr>
496
+ <tr>
497
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
498
+ <td>1.37</td>
499
+ <td>1.2</td>
500
+ <td>944</td>
501
+ <td>2.3</td>
502
+ <td>474</td>
503
+ <td>1.2</td>
504
+ <td>931</td>
505
+ <td>1.2</td>
506
+ <td>907</td>
507
+ <td>9.1</td>
508
+ <td>121</td>
509
+ <td>9.2</td>
510
+ <td>119</td>
511
+ <td>5.1</td>
512
+ <td>214</td>
513
+ <td>22.5</td>
514
+ <td>49</td>
515
+ </tr>
516
+ </tbody>
517
+ </table>
518
+
519
+ **Use case profiles: prompt tokens / generation tokens
520
+
521
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
522
+
523
+
524
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
525
+ <table>
526
+ <thead>
527
+ <tr>
528
+ <th></th>
529
+ <th></th>
530
+ <th></th>
531
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
532
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
533
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
534
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
535
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
536
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
537
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
538
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
539
+ </tr>
540
+ <tr>
541
+ <th>Hardware</th>
542
+ <th>Model</th>
543
+ <th>Average cost reduction</th>
544
+ <th>Maximum throughput (QPS)</th>
545
+ <th>QPD</th>
546
+ <th>Maximum throughput (QPS)</th>
547
+ <th>QPD</th>
548
+ <th>Maximum throughput (QPS)</th>
549
+ <th>QPD</th>
550
+ <th>Maximum throughput (QPS)</th>
551
+ <th>QPD</th>
552
+ <th>Maximum throughput (QPS)</th>
553
+ <th>QPD</th>
554
+ <th>Maximum throughput (QPS)</th>
555
+ <th>QPD</th>
556
+ <th>Maximum throughput (QPS)</th>
557
+ <th>QPD</th>
558
+ <th>Maximum throughput (QPS)</th>
559
+ <th>QPD</th>
560
+ </tr>
561
+ </thead>
562
+ <tbody style="text-align: center" >
563
+ <tr>
564
+ <th rowspan="3" valign="top">A6000x1</th>
565
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
566
+ <td>---</td>
567
+ <td>13.7</td>
568
+ <td>30785</td>
569
+ <td>5.5</td>
570
+ <td>12327</td>
571
+ <td>6.5</td>
572
+ <td>14517</td>
573
+ <td>5.1</td>
574
+ <td>11439</td>
575
+ <td>2.0</td>
576
+ <td>4434</td>
577
+ <td>1.3</td>
578
+ <td>2982</td>
579
+ <td>0.6</td>
580
+ <td>1462</td>
581
+ <td>0.2</td>
582
+ <td>371</td>
583
+ </tr>
584
+ <tr>
585
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8</th>
586
+ <td>1.44</td>
587
+ <td>21.4</td>
588
+ <td>48181</td>
589
+ <td>8.2</td>
590
+ <td>18421</td>
591
+ <td>9.8</td>
592
+ <td>22051</td>
593
+ <td>7.8</td>
594
+ <td>17462</td>
595
+ <td>2.8</td>
596
+ <td>6281</td>
597
+ <td>1.7</td>
598
+ <td>3758</td>
599
+ <td>1.0</td>
600
+ <td>2335</td>
601
+ <td>0.2</td>
602
+ <td>419</td>
603
+ </tr>
604
+ <tr>
605
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
606
+ <td>0.98</td>
607
+ <td>12.7</td>
608
+ <td>28540</td>
609
+ <td>5.7</td>
610
+ <td>12796</td>
611
+ <td>5.4</td>
612
+ <td>12218</td>
613
+ <td>3.7</td>
614
+ <td>8401</td>
615
+ <td>2.5</td>
616
+ <td>5583</td>
617
+ <td>1.3</td>
618
+ <td>2987</td>
619
+ <td>0.7</td>
620
+ <td>1489</td>
621
+ <td>0.2</td>
622
+ <td>368</td>
623
+ </tr>
624
+ <tr>
625
+ <th rowspan="3" valign="top">A100x1</th>
626
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
627
+ <td>---</td>
628
+ <td>15.6</td>
629
+ <td>31306</td>
630
+ <td>7.1</td>
631
+ <td>14192</td>
632
+ <td>7.7</td>
633
+ <td>15435</td>
634
+ <td>6.0</td>
635
+ <td>11971</td>
636
+ <td>2.4</td>
637
+ <td>4878</td>
638
+ <td>1.6</td>
639
+ <td>3298</td>
640
+ <td>0.9</td>
641
+ <td>1862</td>
642
+ <td>0.2</td>
643
+ <td>355</td>
644
+ </tr>
645
+ <tr>
646
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8</th>
647
+ <td>1.31</td>
648
+ <td>20.8</td>
649
+ <td>41907</td>
650
+ <td>9.3</td>
651
+ <td>18724</td>
652
+ <td>10.5</td>
653
+ <td>21043</td>
654
+ <td>8.4</td>
655
+ <td>16886</td>
656
+ <td>3.0</td>
657
+ <td>5975</td>
658
+ <td>1.9</td>
659
+ <td>3917</td>
660
+ <td>1.2</td>
661
+ <td>2481</td>
662
+ <td>0.2</td>
663
+ <td>464</td>
664
+ </tr>
665
+ <tr>
666
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
667
+ <td>0.94</td>
668
+ <td>14.0</td>
669
+ <td>28146</td>
670
+ <td>6.5</td>
671
+ <td>13042</td>
672
+ <td>6.5</td>
673
+ <td>12987</td>
674
+ <td>5.1</td>
675
+ <td>10194</td>
676
+ <td>2.6</td>
677
+ <td>5269</td>
678
+ <td>1.5</td>
679
+ <td>2925</td>
680
+ <td>0.9</td>
681
+ <td>1849</td>
682
+ <td>0.2</td>
683
+ <td>382</td>
684
+ </tr>
685
+ <tr>
686
+ <th rowspan="3" valign="top">H100x1</th>
687
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
688
+ <td>---</td>
689
+ <td>31.4</td>
690
+ <td>34404</td>
691
+ <td>14.1</td>
692
+ <td>15482</td>
693
+ <td>16.6</td>
694
+ <td>18149</td>
695
+ <td>13.3</td>
696
+ <td>14572</td>
697
+ <td>4.7</td>
698
+ <td>5099</td>
699
+ <td>2.6</td>
700
+ <td>2849</td>
701
+ <td>1.9</td>
702
+ <td>2060</td>
703
+ <td>0.3</td>
704
+ <td>347</td>
705
+ </tr>
706
+ <tr>
707
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic</th>
708
+ <td>1.31</td>
709
+ <td>40.9</td>
710
+ <td>44729</td>
711
+ <td>18.5</td>
712
+ <td>20260</td>
713
+ <td>22.1</td>
714
+ <td>24165</td>
715
+ <td>18.1</td>
716
+ <td>19779</td>
717
+ <td>5.7</td>
718
+ <td>6246</td>
719
+ <td>3.4</td>
720
+ <td>3681</td>
721
+ <td>2.5</td>
722
+ <td>2746</td>
723
+ <td>0.4</td>
724
+ <td>474</td>
725
+ </tr>
726
+ <tr>
727
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16</th>
728
+ <td>1.12</td>
729
+ <td>33.3</td>
730
+ <td>36387</td>
731
+ <td>15.0</td>
732
+ <td>16453</td>
733
+ <td>17.6</td>
734
+ <td>19241</td>
735
+ <td>14.2</td>
736
+ <td>15576</td>
737
+ <td>4.6</td>
738
+ <td>5034</td>
739
+ <td>3.0</td>
740
+ <td>3292</td>
741
+ <td>2.2</td>
742
+ <td>2412</td>
743
+ <td>0.4</td>
744
+ <td>481</td>
745
+ </tr>
746
+ </tbody>
747
+ </table>
748
+
749
+ **Use case profiles: prompt tokens / generation tokens
750
+
751
+ **QPS: Queries per second.
752
+
753
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).