--- license: mit tags: - deepseek - int4 - vllm - llmcompressor base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers --- # DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 ## Model Overview - **Model Architecture:** Qwen2ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Release Date:** 2/7/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). ### Model Optimizations This model was obtained by quantizing the weights of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 128. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. ## Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams number_gpus = 1 model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16" tokenizer = AutoTokenizer.from_pretrained(model_name) sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot # Load model model_stub = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" model_name = model_stub.split("/")[-1] num_samples = 2048 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_stub) model = AutoModelForCausalLM.from_pretrained( model_stub, device_map="auto", torch_dtype="auto", ) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.map(preprocess_fn) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( targets="Linear", scheme="W4A16", ignore=["lm_head"], dampening_frac=0.1, ) # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) # Save to disk in compressed-tensors format save_path = model_name + "-quantized.w4a16 model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --apply_chat_template \ --fewshot_as_multiturn \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` ### Accuracy
Category | Metric | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | Recovery |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 37.20 | 35.84 | 96.3% |
GSM8K (Strict-Match, 5-shot) | 69.98 | 68.01 | 97.2% | |
HellaSwag (Acc-Norm, 10-shot) | 43.86 | 42.38 | 96.6% | |
MMLU (Acc, 5-shot) | 37.38 | 36.98 | 98.9% | |
TruthfulQA (MC2, 0-shot) | 45.21 | 46.68 | 103.3% | |
Winogrande (Acc, 5-shot) | 54.30 | 55.49 | 102.2% | |
Average Score | 47.99 | 47.56 | 99.1% | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 34.63 | 34.21 | 98.8% |
BBH (Acc-Norm, 3-shot) | 2.40 | 2.82 | --- | |
Math-Hard (Exact-Match, 4-shot) | 0.00 | 0.00 | --- | |
GPQA (Acc-Norm, 0-shot) | 0.93 | 1.19 | --- | |
MUSR (Acc-Norm, 0-shot) | 1.26 | 1.37 | --- | |
MMLU-Pro (Acc, 5-shot) | 1.32 | 1.31 | --- | |
Average Score | 6.80 | 6.82 | --- | |
Coding | HumanEval (pass@1) | 37.90 | 35.70 | 94.2% |
HumanEval (pass@10) | 61.30 | 61.40 | 100.2% | |
HumanEval+ (pass@10) | 33.00 | 31.90 | 96.7% | |
HumanEval+ (pass@10) | 55.90 | 55.50 | 99.3% |
Instruction Following 256 / 128 |
Multi-turn Chat 512 / 256 |
Docstring Generation 768 / 128 |
RAG 1024 / 128 |
Code Completion 256 / 1024 |
Code Fixing 1024 / 1024 |
Large Summarization 4096 / 512 |
Large RAG 10240 / 1536 |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hardware | Model | Average cost reduction | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD |
A6000x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.8 | 5667 | 1.6 | 2776 | 0.8 | 5515 | 0.8 | 5466 | 6.4 | 705 | 6.5 | 697 | 3.5 | 1295 | 18.3 | 246 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8 | 1.14 | 0.7 | 6635 | 1.3 | 3340 | 0.7 | 6396 | 0.7 | 6343 | 5.3 | 845 | 5.4 | 832 | 2.9 | 1547 | 21.3 | 211 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 1.38 | 0.5 | 8293 | 1.1 | 4184 | 0.6 | 7976 | 0.6 | 7504 | 4.3 | 1051 | 4.4 | 1033 | 2.5 | 1819 | 21.1 | 213 | |
A100x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.6 | 3359 | 1.2 | 1654 | 0.6 | 3286 | 0.6 | 3241 | 4.7 | 424 | 4.9 | 411 | 2.6 | 778 | 21.1 | 95 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8 | 1.05 | 0.6 | 3531 | 1.1 | 1807 | 0.6 | 3427 | 0.6 | 3480 | 4.5 | 448 | 4.5 | 447 | 2.4 | 842 | 23.5 | 86 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 1.03 | 0.6 | 3469 | 1.1 | 1751 | 0.6 | 3403 | 0.6 | 3407 | 4.5 | 447 | 4.6 | 435 | 2.5 | 815 | 23.3 | 86 | |
H100x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.4 | 2604 | 0.8 | 1299 | 0.4 | 2543 | 0.4 | 2551 | 3.3 | 330 | 3.4 | 326 | 1.8 | 612 | 14.0 | 78 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic | 1.04 | 0.4 | 2694 | 0.8 | 1364 | 0.4 | 2670 | 0.4 | 2639 | 3.2 | 347 | 3.2 | 341 | 1.6 | 673 | 14.1 | 78 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 0.84 | 0.5 | 2111 | 1.0 | 1065 | 0.5 | 2068 | 0.5 | 2119 | 4.1 | 270 | 4.1 | 265 | 2.1 | 530 | 15.1 | 73 |