Upload 2 files
Browse files- handler.py +31 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from optimum.pipelines import pipeline
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler():
|
8 |
+
def __init__(self, path=""):
|
9 |
+
# load the optimized model
|
10 |
+
model = ORTModelForSequenceClassification.from_pretrained(path)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
12 |
+
# create inference pipeline
|
13 |
+
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
|
14 |
+
|
15 |
+
|
16 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
17 |
+
"""
|
18 |
+
Args:
|
19 |
+
data (:obj:):
|
20 |
+
includes the input data and the parameters for the inference.
|
21 |
+
Return:
|
22 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
23 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
24 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
25 |
+
"""
|
26 |
+
inputs = data.pop("inputs", data)
|
27 |
+
parameters = data.pop("parameters", dict())
|
28 |
+
|
29 |
+
prediction = self.pipeline(inputs, **parameters)
|
30 |
+
|
31 |
+
return prediction
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers==4.44.2
|
2 |
+
optimum[onnxruntime-gpu]==1.22.0
|