provence-reranker-debertav3-v1 / modeling_provence.py
nadiinchi's picture
Update modeling_provence.py
7a69bce verified
import string
from typing import Optional, Union, Tuple, List
from dataclasses import dataclass
from tqdm import tqdm
import warnings
import nltk
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
from transformers import DebertaV2PreTrainedModel, DebertaV2Model, PretrainedConfig
try:
from transformers.models.deberta_v2.modeling_deberta_v2 import (
StableDropout,
ContextPooler,
)
except ImportError:
from transformers.models.deberta_v2.modeling_deberta_v2 import ContextPooler
StableDropout = nn.Dropout
from transformers.modeling_outputs import ModelOutput
@dataclass
class RankingCompressionOutput(ModelOutput):
compression_logits: torch.FloatTensor = None
ranking_scores: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
"""adapted from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/deberta_v2/modeling_deberta_v2.py#L1357
"""
class ProvenceConfig(PretrainedConfig):
model_type = "Provence"
def __init__(self, **kwargs):
super().__init__(**kwargs)
class Provence(DebertaV2PreTrainedModel):
config_class = ProvenceConfig
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
### RANKING LAYER
self.classifier = nn.Linear(output_dim, num_labels)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
### COMPRESSION LAYER: another head
token_dropout = drop_out
self.token_dropout = nn.Dropout(token_dropout)
self.token_classifier = nn.Linear(
config.hidden_size, 2
) # => hard coded number of labels
self.name = "Provence"
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
self.max_len = config.max_position_embeddings
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> RankingCompressionOutput:
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
ranking_logits = self.classifier(pooled_output)
compression_logits = self.token_classifier(self.token_dropout(encoder_layer))
ranking_scores = ranking_logits[
:, 0
].squeeze() # select first dim of logits for ranking scores
return RankingCompressionOutput(
compression_logits=compression_logits,
ranking_scores=ranking_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def process(
self,
question: Union[List[str], str],
context: Union[List[List[str]], str],
title: Optional[Union[List[List[str]], str]] = "first_sentence",
batch_size=32,
threshold=0.1,
always_select_title=False,
reorder=False,
top_k=5,
enable_warnings=True,
):
# convert input format into queries of type List[str] and contexts/titles of type List[List[str]]
if type(question) == str:
queries = [question]
else: # list of strs
queries = question
if type(context) == str:
contexts = [[context]]
else:
contexts = context
if type(title) == str and title != "first_sentence":
titles = [[title]]
else:
titles = title
assert (
titles == "first_sentence"
or titles == None
or type(titles) == list
and len(titles) == len(queries)
), "Variable 'titles' must be 'first_sentence' or a list of strings of the same length as 'queries'"
if type(titles) == list:
assert all(
[
len(titles_item) == len(contexts_item)
for titles_item, contexts_item in zip(contexts, titles)
]
), "Each list in 'titles' must have the same length as the corresponding list in 'context'"
assert len(queries) == len(
contexts
), "Lists 'queries' and 'contexts' must have same lengths"
dataset = TestDataset(
queries=queries,
contexts=contexts,
titles=titles,
tokenizer=self.tokenizer,
max_len=self.max_len,
enable_warnings=enable_warnings,
)
selected_contexts = [
[{0: contexts[i][j]} for j in range(len(contexts[i]))]
for i in range(len(queries))
]
reranking_scores = [
[None for j in range(len(contexts[i]))] for i in range(len(queries))
]
with torch.no_grad():
for batch_start in tqdm(
range(0, len(dataset), batch_size), desc="Pruning contexts..."
):
qis = dataset.qis[batch_start : batch_start + batch_size]
cis = dataset.cis[batch_start : batch_start + batch_size]
sis = dataset.sis[batch_start : batch_start + batch_size]
sent_coords = dataset.sent_coords[
batch_start : batch_start + batch_size
]
ids_list = dataset.ids[batch_start : batch_start + batch_size]
ids = pad_sequence(
ids_list, batch_first=True, padding_value=dataset.pad_idx
).to(self.device)
mask = (ids != dataset.pad_idx).to(self.device)
outputs = self.forward(ids, mask)
scores = F.softmax(outputs["compression_logits"].cpu(), dim=-1)[:, :, 1]
token_preds = scores > threshold
reranking_scrs = (
outputs["ranking_scores"].cpu().numpy()
) # get first score
if len(reranking_scrs.shape) == 0:
reranking_scrs = reranking_scrs[None]
for (
ids_list_,
token_preds_,
rerank_score,
qi,
ci,
si,
sent_coords_,
) in zip(
ids_list, token_preds, reranking_scrs, qis, cis, sis, sent_coords
):
selected_mask = sentence_rounding(
token_preds_.cpu().numpy(),
np.array(sent_coords_),
threshold=threshold,
always_select_title=always_select_title
and si == 0
and titles != None,
)
assert len(selected_mask) == len(token_preds_)
selected_contexts[qi][ci][si] = ids_list_[
selected_mask[: len(ids_list_)]
]
if si == 0:
reranking_scores[qi][ci] = rerank_score
for i in range(len(queries)):
for j in range(len(contexts[i])):
if type(selected_contexts[i][j][0]) != str:
toks = torch.cat(
[
ids_
for _, ids_ in sorted(
selected_contexts[i][j].items(), key=lambda x: x[0]
)
]
)
selected_contexts[i][j] = self.tokenizer.decode(
toks,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
else:
selected_contexts[i][j] = selected_contexts[i][j][0]
if reorder:
print(reranking_scores[qi])
print(np.sort(reranking_scores[i])[::-1][:top_k])
idxs = np.argsort(reranking_scores[i])[::-1][:top_k]
selected_contexts[i] = [selected_contexts[i][j] for j in idxs]
reranking_scores[i] = [reranking_scores[i][j] for j in idxs]
if type(context) == str:
selected_contexts = selected_contexts[0][0]
reranking_scores = reranking_scores[0][0]
return {
"pruned_context": selected_contexts,
"reranking_score": reranking_scores
}
# Some utils functions
def sentence_rounding(predictions, chunks, threshold, always_select_title=True):
"""
predictions: a binary vector containing 1 for tokens which were selected and 0s otherwise
chunks: a list of pairs [start, end] of sentence, i.e. sentence is in coordinates predictions[start:end]
the functions
"""
cumulative_sum = np.cumsum(predictions)
chunk_sums = cumulative_sum[chunks[:, 1] - 1] - np.where(
chunks[:, 0] > 0, cumulative_sum[chunks[:, 0] - 1], 0
)
chunk_lengths = chunks[:, 1] - chunks[:, 0]
chunk_means = chunk_sums / chunk_lengths
if always_select_title and (chunk_means>threshold).any():
chunk_means[0] = 1
means = np.hstack((np.zeros(1), chunk_means, np.zeros(1)))
repeats = np.hstack(
([chunks[0][0]], chunk_lengths, [predictions.shape[0] - chunks[-1][1]])
)
return np.repeat(means, repeats) > threshold
def normalize(s: str) -> str:
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
def sent_split_and_tokenize(text, tokenizer, max_len):
sents_nltk = nltk.sent_tokenize(text)
sents = []
for j, sent_nltk in enumerate(sents_nltk):
tokinput = (" " if j != 0 else "") + sent_nltk
tok = tokenizer.encode(tokinput, add_special_tokens=False)
ltok = len(tok)
if ltok == 0:
continue
if ltok <= max_len:
sents.append(tok)
else:
for begin in range(0, ltok, max_len):
sents.append(tok[begin : begin + max_len])
return sents
class TestDataset(Dataset):
def __init__(
self,
queries,
contexts,
tokenizer,
max_len=512,
titles="first_sentence",
enable_warnings=True,
):
self.tokenizer = tokenizer
self.max_len = max_len
self.pad_idx = 0
self.cls_idx = [1]
self.sep_idx = [2]
self.eos = [2]
# hardcoded deberta-specific indexes
self.nb_spe_tok = len(self.cls_idx) + len(self.sep_idx)
self.enable_warnings = enable_warnings
self.unusual_query_length = (
self.max_len // 2
) # TODO: change to data-driven value
self.unusual_title_len = self.max_len // 2 # TODO: change to data-driven value
self.create_dataset(contexts, queries, titles)
self.len = len(self.cis)
def create_dataset(self, contexts, queries, titles="first_sentence"):
self.qis = []
self.cis = []
self.sis = []
self.sent_coords = []
self.cntx_coords = []
self.ids = []
if self.enable_warnings:
warnings_dict = {
"zero_len_query": set(),
"too_long_query": set(),
"unusually_long_query": set(),
"unusually_long_title": set(),
"split_context": set(),
}
for i, query in enumerate(queries):
tokenized_query = self.tokenizer.encode(
normalize(query), add_special_tokens=False
)
# normalize query because all training data has normalized queries
query_len = len(tokenized_query)
if query_len == 0:
if self.enable_warnings:
warnings_dict["zero_len_query"].add(i)
continue
elif query_len >= self.max_len - self.nb_spe_tok - 1: # -1 for eos
if self.enable_warnings:
warnings_dict["too_long_query"].add(i)
continue
elif query_len >= self.unusual_query_length:
if self.enable_warnings:
warnings_dict["unusually_long_query"].add(i)
left_0 = len(tokenized_query) + self.nb_spe_tok
tokenized_seq_0 = self.cls_idx + tokenized_query + self.sep_idx
max_len = self.max_len - left_0 - 1
for j, cntx in enumerate(contexts[i]):
title = titles[i][j] if type(titles) == list else titles
tokenized_sents = sent_split_and_tokenize(cntx, self.tokenizer, max_len)
# each (sent + query + special tokens) <= max_len
if title is not None and title != "first_sentence":
tokenized_title = self.tokenizer.encode(
title, add_special_tokens=False
)
ltok = len(tokenized_title)
if ltok == 0:
pass
elif ltok <= max_len:
tokenized_sents = [tokenized_title] + tokenized_sents
else:
if self.enable_warnings and ltok >= self.unusual_title_len:
warnings_dict["unusually_long_title"].add(i)
tokenized_sents = [
tokenized_title[begin : begin + max_len]
for begin in range(0, ltok, max_len)
] + tokenized_sents
tokenized_seq = tokenized_seq_0
left = left_0
sent_coords = []
block = 0
for idx, tokenized_sent in enumerate(tokenized_sents):
l = len(tokenized_sent)
if left + l <= self.max_len - 1:
sent_coords.append([left, left + l])
tokenized_seq = tokenized_seq + tokenized_sent
left += l
else:
if self.enable_warnings:
warnings_dict["split_context"].add(i)
if len(tokenized_seq) > left_0:
tokenized_seq = tokenized_seq + self.eos
self.qis.append(i)
self.cis.append(j)
self.sis.append(block)
self.sent_coords.append(sent_coords)
self.cntx_coords.append(
[sent_coords[0][0], sent_coords[-1][1]]
)
self.ids.append(torch.tensor(tokenized_seq))
tokenized_seq = tokenized_seq_0 + tokenized_sent
sent_coords = [[left_0, left_0 + l]]
left = left_0 + l
block += 1
if len(tokenized_seq) > left_0:
tokenized_seq = tokenized_seq + self.eos
self.qis.append(i)
self.cis.append(j)
self.sis.append(block)
self.sent_coords.append(sent_coords)
self.cntx_coords.append([sent_coords[0][0], sent_coords[-1][1]])
self.ids.append(torch.tensor(tokenized_seq))
if self.enable_warnings:
self.print_warnings(warnings_dict, len(queries))
def __len__(self):
return len(self.ids)
def print_warnings(self, warnings_dict, N):
n = len(warnings_dict["zero_len_query"])
info = " You can suppress Provence warnings by setting enable_warnings=False."
if n > 0:
ex = list(warnings_dict["zero_len_query"])[:10]
warnings.warn(
f"{n} out of {N} queries have zero length, e.g. at indexes {ex}. "
"These examples will be skipped in context pruning, "
"their contexts will be kept as is." + info
)
n = len(warnings_dict["too_long_query"])
if n > 0:
ex = list(warnings_dict["too_long_query"])[:10]
warnings.warn(
f"{n} out of {N} queries are too long for context length {self.max_len}, "
f"e.g. at indexes {ex}. These examples will be skipped in context pruning, "
"their contexts will be kept as is." + info
)
n = len(warnings_dict["unusually_long_query"])
if n > 0:
ex = list(warnings_dict["unusually_long_query"])[:10]
warnings.warn(
f"{n} out of {N} queries are longer than {self.unusual_query_length} tokens, "
f"e.g. at indexes {ex}. These examples will processed as usual in context pruning, "
"but the quality of context pruning could be reduced." + info
)
n = len(warnings_dict["unusually_long_title"])
if n > 0:
ex = list(warnings_dict["unusually_long_title"])[:10]
warnings.warn(
f"{n} out of {N} titles are longer than {self.unusual_title_length} tokens, "
f"e.g. at indexes {ex}. These examples will processed as usual in context pruning, "
"but the quality of context pruning could be reduced." + info
)
n = len(warnings_dict["split_context"])
if n > 0:
ex = list(warnings_dict["split_context"])[:10]
warnings.warn(
f"{n} out of {N} contexts were split into several pieces for context pruning, "
f"due to a limited context length of Provence which is equal to {self.max_len}. "
"This could potentially reduce the quality of context pruning. "
"You could consider checking and reducing lengths of contexts, queries, or titles."
+ info
)